
Forth Semantics for Compiler Verification

Bill Stoddart, Campbell Ritchie, Steve Dunne

September 13, 2012

Abstract

Here we are interested in the semantics of Forth from the point of view
of using Forth as a target language for a formally verified compiler for
Ruth-R, a reversible sequential programming language we are currently
developing. We limit out attention to those Forth operations and con-
structs which will be targetted by the Ruth-R compiler. To facilitate the
comparison of meanings of source and target languages, we represent the
semantics of Forth code by translation into a form which can be described
using the ”prospective value” semantics we use for Ruth-R.

1 Introduction

We are interested in the semantics of Forth from the point of view of using Forth
as a target language for a formally verified compiler.

Our source language for this project is Ruth-R, an expressive reversible guarded
command language for which we are currently constructing the syntax, seman-
tics, and compiler. The semantics of Ruth-R are expressed in terms of the value
some expression E can take after the execution of some program S , which we
represent as S � E . We call this the prospective value of E after executing S ,
and refer to the semantics as “prospective value semantics”, or PV semantics
for short.

The target language is RVM-Forth [11], a reversible version of Forth we have
developed to explore the algorithmic possibilities of reversible languages.

Our approach will be to give a translation of each Forth operation into a form
to which PV semantics may be applied. That is, we translate it into the form
of a sequential programming language, with the stack appearing as a variable.

Our investigations also cover different representations of the same value. For
example, RVM-Forth provides a generic set package, but for efficiency reasons
we may wish to represent small sets using bit vectors.

A key design question for us will be how to model the Forth parameter stack,
and we will compare two possible approaches: first as a sequence of cell val-
ues, (an approach previously investigated by P Knaggs[4]) whose entries are
subsequently viewed in terms of interpretation functions; and secondly as a

1

“conceptual stack”, a structure which is directly able to hold values of any
type.

Our approach is also influenced by the fine grained nature of Forth semantics;
the infix language assignment x := x + 1 will compile to Forth as x 1 + to x;
and for compositionality we require separate semantic translations for each of
x, 1, + and to x and the sequential composition of these to obtain the se-
mantics of x 1 + to x . This makes it essential that the semantic description
of the sequential composition of operations be expressed in a simple way.

Our approach is more detailed than the Pöial algebra of stack effects [7] but
is less ambitious that some other previous formulations. We do not seek a
technique for the complete description for the Forth virtual machine[6] or the
operation of the Forth compiler [5], but we rather extend Forth with the data
types and control structures required by Ruth-R, and then give semantic de-
scriptions of these components; thus the work described here can be charac-
terised as a shallow formulation. Its advantages are that is is axiomatic, fully
compositional, and minimises the semantic distance between source and target
languages.

Our general approach is conditioned by that we have adopted for expressing
the semantics of reversible language. We borrow many techniques from the B-
Method [1] as described in [12], and to simplify our theory presentation we use
Hehner’s conception of a “bunch” as the contents of a set.

The rest of the paper is structured as follows: section 2 deals with mathematical
background and the axioms of our semantics; section 3 sketches an algebraic
treatment of stack semantics; Section 4 considers two different models for the
stack, and discusses assignment, literal values, and differing representations of
the same data; section 5 defines the semantics of selection and iteration; section
6 discusses local variables; in section 7 we conclude.

2 Mathematical Preliminaries

2.1 Bunch Theory

Following Hehner[2], we give a mathematical meaning to the contents of a set,
which we call a bunch: e.g. the contents of the set {1, 2} is the bunch 1, 2. We
write ∼A for the contents of set A, thus ∼{1, 2} = 1, 2.

The comma used in a bunch extension expression such as 1, 2, 5 is now a mathe-
matical operator, called bunch union. It is associative and commutative, and its
precedence is just below than that of the expression connectives. It is associated
with set union through the rule

A ∪ B = {∼A,∼B}

Binary operations applied to bunches are lifted to apply pairwise, thus adding
the bunches 0, 1 and 2, 4 yields 0+2, 0+4, 1+2, 1+4. Note that we cannot write
this sum as 0, 1 + 2, 4 because bunch union (comma) has a lower precedence

2

than +; nor can we use standard brackets to enforce precedence, as we retain
the use of brackets to express tuples. We can however bracket with ∼{..}, as in
∼{0, 1}+∼{2, 4} = 2, 4, 3, 5

A bunch A is a sub-bunch of B if each element of A is an element of B . We
write this as A : B . Sub-bunches are related to subsets by the rule:

A : B ⇔ {A} ⊆ {B}

The guarded bunch p −→ E is equal to the empty bunch, null , if predicate p
is false, and otherwise equal to E . The preconditioned bunch p E is equal
to the improper bunch ⊥ if p is false, and otherwise equal to E . The improper
bunch expresses complete ignorance about a value, extending to a suspicion that
a computation supposed to produce a value might have crashed.

We use a typed set theory based on the axiomatic approach used in the B-
Method. We assume the availability of any required given sets, including the
integers, and we are able to produce from these new maximal sets by the use of
set product and powerset operations. These maximal sets act as types. We can
generate new sets by set comprehensions of the form

{x | x ∈ X ∧ P • E }

where expression E is of a fixed type, so that our set comprehensions can only
produce homogeneous sets.

We similarly restrict our attention to bunches which are homogeneous; these
have the same type as their elements, thus 1, 2 is of type integer, which we can
write as 1, 2 ∈ Z.

Analogously to set comprehension, we can write the bunch comprehension:∮
x • E

Here, although the type of x is not given explicitly it has to be implicit from an
examination of the expression E . The result consists of all values that E can
take as x ranges over its type. For example the bunch 10, 20 can be written as
the bunch comprehension

∮
x • x : 1, 2 −→ 10 ∗ x .

2.2 Prospective Value Semantics

We are formalising a reversible language with a choice construct used to express
both non-determinism and provisional choices subject to backtracking. We write
S � E for the values expression E could take were program S to be executed.
We have the following rules which define S � E over the essential semantic
components of the language:

3

Name Rule Condition

skip skip � E = E
assignment x := F � E = (λ x • E)F
pre-condition P | S � E = P (S � E)

choice S 8 T � E = (S � E) , (T � E)

guard P
8−−→ S � E = P −→ (S � E)

seq comp S ; T � E = S � T � E
local variable var x .S � E =

∮
x • S � E x not free in E

The precedence of � is below that of programming connectives, whose prece-

dence, in descending order, is := ,
8−−→ , 8 , ; , | The large equals = has the

same meaning as “=” but a very low precedence: we require it when discussing
equality in the context of programs as the precedence of the standard equal sign
is above that of the program connectives.

Our use of bunches enables us to express the effects of choice and sequential
composition in a homogeneous manner, and to describe non-determinism. This
case is more fully argued in [8].

The attentive reader will note that these semantic components do not include
selection and iteration constructs. These are handled by means of choice and
guard. e.g

if g then S else T end

is expressed as:

g
8−−→ S 8 ¬ g

8−−→ T

This decomposition was first proposed by Hehner [2, 3] who used predicative
semantics. Abrial adapted it to predicate transformer semantics for use in in the
B-Method [1]. A description of our approach using prospective value semantics
is given in [10]. We can extend this to probabilistic programs [8], and express
preference within provisional choice [9].

3 Prospective values and stack algebra

We will consider two different ways a stack may be modelled in terms of an
underlying representation within our mathematical world of typed set theory,
before choosing our preferred representation. However, we will first deal alge-
braically with some basic stack manipulations. This will avoid some repetition,
as the algebraic treatment will be the same for either model.

We represent an empty stack by ε. If s is a stack state, let s x be the new
stack state obtained by pushing x .

If s is a non-empty stack, drop(s) will be the new stack obtained by dropping
the top item. We thus have

drop(s x) = s

4

Let top(s) be the top element of a non-empty stack s, and next(s) the second
from top element of a stack s which has at least two elements. Thus:

top(s x) = x and next(s x y) = x

The function swap takes a stack and returns the new stack obtained by swapping
the top two elements. Thus

swap(s x y) = s y x

We define the semantics of the Forth SWAP operation, which unlike the function
swap, acts on a particular stack (which we just call stack):

JSWAPKF = depth(stack) ≥ 2 | stack := swap(stack)

Here, the notation JSWAPKF encloses the Forth code being discussed in the se-
mantic brackets J ... KF . In general, if S is Forth code, JSKF will represent its
translation into a form whose meaning can be expressed in PV semantics.

With the above semantic definition of SWAP we bring a Forth stack manipulation
within the scope of PV semantics by treating it as an assignment. The semantics
of SWAP given above also tells us that its frame (the list of variables it may alter)
contains just stack . Also, by PV rules for pre-condition and assignment:

JSWAPKF � stack = depth(stack) ≥ 2 swap(stack)

We can apply similar treatments to other stack manipulation operations.

JDROPKF = depth(stack) ≥ 1 | stack := drop(stack)
and hence
JDROPKF � stack = depth(stack) ≥ 1 | drop(stack)

For NIP we introduce an auxiliary function nip such that for any stack s and
items x , y we have nip(s x y) = s y , allowing us to define the semantics
of the Forth operation NIP as:

JNIPKF = stack := depth(stack) ≥ 2 stack := nip(stack)

and hence

JNIPKF � stack = depth(stack) ≥ 2 nip(stack)

In addition to giving the meaning of individual Forth operations, we also need
to express the meaning of Forth’s program connectives. The first we require is
sequential composition:

JS TKF = JSKF ; JTKF

We are now in a position to prove a semantic equality. We will show that NIP

is equivalent to SWAP DROP. We define two Forth programs to be equal if their
semantic representations are equal. i.e. for Forth programs A and B :

A = B =̂ JAKF = JBKF

and we define their semantic representation to be equal if they have the same
frame and the same PV effect over the variables of that frame (or, equivalently,
the same PV effect over an arbitrary expression).

5

We will show that: JSWAP DROPKF = JNIPKF

Since the frame of JSWAP DROPKF and the frame of JNIPKF are both stack , we
can show the required equality by showing

JSWAP DROPKF � stack = JNIPKF � stack

JSWAP DROPKF � stack
= Forth seq comp
JSWAPKF ; JDROPKF � stack
= PV seq comp
JSWAPKF � JDROPKF � stack
= semantics of DROP
JSWAPKF � depth(stack) ≥ 1 | stack := drop(stack)
� stack = PV pre-cond

JSWAPKF � depth(stack) ≥ 1 stack := drop(stack)
� stack = PV assignment

JSWAPKF � depth(stack) ≥ 1 drop(stack)
= semantics of SWAP

depth(stack) ≥ 2 | stack := swap(stack)
� depth(stack) ≥ 1 drop(stack)
= PV pre-condition

depth(stack) ≥ 2 (stack := swap(stack)
� depth(stack) ≥ 1 drop(stack))
= by assignment

depth(stack) ≥ 2 depth(swap(stack)) ≥ 1
drop(swap(stack))

= simplifying pre-cond
depth(stack) ≥ 2 drop(swap(stack))

Now for depth(stack) ≥ 2 there will be some stack s and items x , y such that
stack = s x y and hence:

JSWAP DROPKF � stack =
depth(stack) ≥ 2 drop(swap(s x y) =

applying function swap
depth(stack) ≥ 2 drop(s y x) =

applying function drop
depth(stack) ≥ 2 s y =

from property of nip
depth(stack) ≥ 2 nip(s x y) =

equality: stack = s x y
depth(stack) ≥ 2 nip(stack) =

assignment introduction
depth(stack) ≥ 2 | stack := nip(stack)
� stack =

semantics of NIP
JNIPKF � stack

6

4 Modelling the stack

Modelling a stack which may contain items of any type is a challenge in our
semantics, where we rely on a typed set theory which only admits homogeneous
sets. We consider two possible approaches. In the first the stack is modelled
as a sequence of raw cell values, and we use interpretation functions to tell us
what is represented by these cells. In the second we model a stack state as an n-
tuple, taking advantage of the fact that different elements of a tuple need not be
homogeneous, and we describe a conceptual stack of possibly non-homogeneous
mathematical objects.

4.1 Modelling the stack as a sequence of cells

In this section we introduce a stack modelling technique which we will subse-
quently reject in favour of a more abstract approach. The section is included
mainly to show some difficulties that arise from this approach, and can be omit-
ted without affecting the readers understanding of the rest of the paper.

We might model the stack as a finite sequence of cells, where a cell is a function
defined on 32 bit machines as:

CELL = 0..31 7→ BIT

A stack is a finite sequence of cells. We introduce a constant, the set of all
stacks, which we call STACK .

STACK = fseq(CELL)

and we introduce a variable stack to represent the parameter stack, with the
invariant property:

stack ∈ STACK

With this model, pushing an element onto a stack is simply a matter of append-
ing an element to a sequence:

s ∈ STACK ∧ c ∈ CELL ⇒ s c = s a 〈c〉

Functions which perform calculations on a stack will interpret its cell values
in a particular way. For example the operation + might interpret them as
signed numbers. Let num ∈ CELL → −231 .. (231 − 1) be the “interpretation
function” giving the signed integer value associated with the cell under a two’s
complement representation. The inverse of num is also a function, such that for
any signed integer n in the representable range, num−1(n) will be the cell that
represents n.

To describe the semantics of the Forth word +, we first define a function plus
which acts on any stack of depth ≥ 2 and adds the top two elements: we see in
its definition the explicit interpretation of cell values as numbers:

7

plus ∈ STACK 7→ STACK
dom(plus) = {s | s ∈ STACK ∧ card(s) > 1 }
s ∈ STACK ∧ c1, c2 : CELL ⇒
plus(s a 〈c1, c2〉) = s a 〈num−1(num(c1) + num(c2)) 〉

The attentive reader will not that, in defining plus, we have not been careful
about what happens if the application of + yields a value outside the expressible
range. This is because we avoid any responsibility for the the value provided by
such an application by including an appropriate clause in the pre-condition in
the semantics of the Forth operation +:

J+KF = num(next(stack))+num(top(stack)) ∈ ran(num) ∧ depth(stack) ≥ 2
| stack := plus(stack)

The above example shows an approach we can take when the interpretation
functions we are using are constant. However, for some operations the results
will be data structures held in the heap and referenced by pointers on the stack.
Consider, for example, the following expression in RVM-Forth which represents
{100, 200} ∪ {300}:

INT { 100 , 200 , } INT { 300 , } ∪

As each set is evaluated, we obtain, on the stack, a pointer to a structure on the
heap. Let set be the interpretation function that maps the cell values of these
pointers to their corresponding sets. We note that set is a variable which changes
with every new set that is produced. Also, the pointer values are not explicitly
defined: we can only say that some suitable pointer is provided, which we must
do by introducing it with an existential quantifier. One possible description of
J∪KF is:

depth(stack) ≥ 2 ∧ top(stack) ∈ dom(set) ∧ next(stack) ∈ dom(set) ⇒
∃ c • J∪KF =
stack := drop(drop(stack)) c ‖
set := set ∪ { (c, set(next(stack) ∪ set(top(stack)) }

The reader will note that instead of an explicit definition of the semantics of
set union, we have obtained an implicit description in which the term J∪KF has
become a fully fledged mathematical object. This is not a situation we relish:
it imposes some additional responsibilities to show the mathematical validity of
such terms, and does not provide for equational reasoning.

These concerns, along with the entailment of irrelevant details concerning heap
pointers, motivate us to investigate an approach in which we model a non-
homogeneous stack of conceptual mathematical objects.

4.2 Modelling the conceptual stack

We use a typed set theory whose axioms are given in [1]. We can define some
“given sets” and from these we form new sets by means of the powerset and set
product operations. Set comprehension allows us to describe subsets of these

8

given and constructed sets.

We wish to model a “conceptual stack”, which may include different types of
mathematical object. The restrictions of our type theory rule out the use of a
sequence as the modelling vehicle, so we turn to tuples.

In a formalism which provides n-tuples, we could model a stack containing a b c
with the 3-tuple (a, b, c). However, our formalism provides only ordered pairs,
and when we write (a, b, c) we obtain an ordered pair ((a, b), c).

Thus we cannot just use (a, b, c) to model the stack containing a, b and c: since
ordered pairs are themselves a possible stack item, there would be no way to
distinguish a 3 item stack containing a, b and c from a two item stack containing
(a, b) and c (we note that tuple construction is left associative). Furthermore,
we would have no way to represent a stack of 0 or 1 items.

We can, however, construct some special ordered pairs which will model n-
tuples, or stacks. We require an arbitrary constant value to represent an empty
stack, and we call this ε.

For a stack s we define the act of pushing an element s using tuple construction
as:

s x =̂ (s, x)

We make use of the ordered pair notations:

first(x , y) =̂ x , second(x , y) =̂ y

And thus we can define the function that yields the top element of a stack:

top(s) =̂ second(s)

If the function top is applied to an empty stack we obtain, in our particular
theory of partial function application, the empty bunch. However, we will al-
ways impose pre-conditions on operations in order to wash our hands of any
responsibility for such an application.

We also have:

drop(s) =̂ first(s)
next(s) =̂ top(drop(s))
depth(s) =̂ s = ε −→ 0, s 6= ε −→ depth(drop(s)) + 1

At this point the diligent reader may wish to construct the stack s where s =
ε a b c and evaluate top(s), drop(s), next(s) and depth(s).

Since we cannot characterise s as a stack by saying it is a member of some type
(which for us is a maximal set) we introduce a unary predicate IsStack , with
the following defining properties:

IsStack(ε)
IsStack(s) ⇒ IsStack(s x)
and nothing else is a stack.

We now return to the semantics of set union which gave us some trouble when

9

modelling the stack as a sequence of cells. We begin, as usual, by the description
of an auxiliary function.

IsStack(s) ∧ ∃ T • x ⊆ T ∧ y ⊆ T ⇒ union(s x y) = s x ∪ y

Then we can give an explicit definition of the semantics of Forth set union:

J∪KF = ∃ T • top(stack) ⊆ T ∧ next(stack) ⊆ T |
stack := union(stack)

From now on we take the conceptual stack as our model.

4.3 On differing representations of the same data

Within a computer system we may have different representations of the same
data. A string could be a counted string or an ascii zero string. A sequence of
n elements has a representation in the RVM sets package in terms of its graph,
i.e. as a set of ordered pairs, but could also be represented by an n element
array. A function could be represented as an operation or, in passive form, by
its graph, or, if it is a sequence, as an array.

To show how such variations in representation may be handled using the con-
ceptual stack we consider the example of bitsets, which can represent subsets of
0..31 according the the bit settings in a 32 bit cell.

We define a function bits2set whose domain is the subsets of 0..31 and which
maps its argument to the corresponding bitset representation for that set. The
semantics of the corresponding Forth operation, Bits2Set is:

JBits2SetKF = depth(stack) > 0 ∧ top(stack) ⊆ 0..31 |
stack := drop(stack) bits2set(top(stack))

4.4 Literal values, variables, and assignments

Some RVM-Forth literal expressions are written in non-standard notation. For
example the set {10, 20} would be written in RVM-Forth as INT { 10 , 20 , }.
In the following we use JLKL to represent the translation of the RVM-Forth lit-
eral expression L into standard notation, but we do not give this translation in
detail.

We express the semantics of a literal expression L as:

JLKF = stack := stack JLKL

Let x be a variable (i.e. a Forth VALUE). We assume the existence of a corre-
sponding variable in the mathematical world, which we write, in mathematical
typeface, as x . The semantic representations for x are:

JxKF = stack := stack x

Jto xKF = depth(stack) > 0 | stack := drop(stack) ‖ x := top(stack)

10

5 Selection and Iteration

Instead of a condition test which is syntactically connected to the selection
statement, the Forth IF structure uses the value at the top stack item, assumed
to hold the result of a previous test.

J if S else T then KF =
var τ . τ = top(stack)

8−−→ stack := drop(stack) ;
if τ 6= 0 then JSKF else JTKF end

For iteration, we restrict our attention to the structure:

JBEGIN G WHILE S REPEATKF

since this most closely resembles the classic while loop representation used in
the formal semantics of sequential programming; to obtain the classical loop
interpretation we must impose the following restrictions:

frame(JGKF) = stack

JGKF � stack = stack E for some E

JSKF � stack = stack

these assumptions allow us to transcribe the loop into a standard sequential
programming representation JBEGIN G WHILE S REPEATKF =
while top(JGKF � stack) 6= 0 do JSKF end

6 Local variables

Local variables in RVM-Forth operations are used to capture operation argu-
ments and other local variables whose initial values are provided after execution
of an operation has begun. An example of local variable syntax in RVM-Forth
is:

: T (: x y :) 100 VALUE u 200 VALUE v ... ;

Here x and y will be initialised with the value of the next and top stack items
when T is invoked, and u and v will be initialised with the values 100 and 200.

Our semantics of local variables will be described in terms of initial values which
are taken from the Forth parameter stack. However, we wish to accommodate an
implementation technique which leaves the values where they are, and accesses
them by indexing into the Forth parameter stack. This provides more efficient
code on register based architectures, but we need to follow two rules to ensure
correct usage.

The first is that an operation whose arguments are instantiated as local variables
must not access any stack values held below these arguments. Here is an example
of declaration of local parameters that breaks that rule:

11

: SURFA (a:n b:n c:n -- 2*(a*b + a*c + b*c)) (: b c :) ...

here, the value supplied for argument a needs to be accessed from the stack, but
due to our implementation technique of leaving local values on the parameter
stack, it will be hidden below the values supplied for b and c. To allow a to be
accessed as a local variable we could begin our definition with:

: SURFA (a:n b:n c:n -- 2*(a*b + a*c + b*c)) (: a b c :) ...

The second rule is that the code between the parameter list and any instance of
VALUE must have a stack signature of the form (-- x). In terms of our Forth
semantics this means that, where S represents the code between the end of the
parameter stack and the relevant occurrence of VALUE, then for some expression
E :

JSKF � stack = stack E

Two illustrations will serve as justification: first we modify a previous example
so it breaks the rule:

: T (: x y :) 100 200 VALUE u VALUE v .. ;

We now have code between the end of the parameter list and an occurrence
of VALUE which adds two items to the stack. According to the semantics we
will give, this will initialise u to 200 and v to 100, but in our implementation,
which leaves local variables on the stack, it will still initialise u to 100 and v to
200. This happens as follows: the Forth compilation of (: x y :) sets up the
top two stack cells to be a stack frame for variables x and y. The declarations
VALUE u and VALUE v each extend the stack frame by one cell, associating with
these cells the names u and v. Thus when 100 and 200 appear on the stack
at run time, they provide the initial values for u and v respectively. Our rule
ensures the synchronisation of compile time and run time activity.

A second way in which the rule can be broken is illustrated by the following
code:

: T (: x :) DUP VALUE y .. ;

Here the programmer is making use of his knowledge of an implementation
which leaves local variables on the parameter stack. Where this is the case, this
example will initialise y with the same value as x. However, this is not formally
correct as our semantics will insist that the initial value for x has been removed
from the stack.

6.1 On Scope

The semantics of local variables requires an idea of the following code, indicated
by S in the rules below, within which the local variable is in scope. This scope
is, by default, till the end of the Forth definition in which the local is declared,
and otherwise is controlled by the use of scoping brackets.

12

6.2 Formal semantics of locals

The last local declared in the list of operation parameters is initialised from the
top of stack

J(: ... x :) SKF =
var x . x = top(stack)

8−−→ stack := drop(stack) ; J(: ... :) SKF

This above rule is applied until we obtain an empty parameter list, which has
the following empty frame semantics:

J(: :) SKF = JSKF

Local variables declared following the operation’s parameter list are formally
initialised from the stack:

JVALUE xKF = var x . x = top(stack)
8−−→ stack := drop(stack)

7 Conclusions

We have chosen an approach to Forth semantics which is prompted by the needs
of our particular research, which is to lay foundations for formal verification of a
compiler that uses Forth as its target language. Our source language, Ruth-R,
is an expressive reversible language with a prospective values semantics. To
allow the most direct comparison of meaning between a Ruth-R program and
the corresponding RVM-Forth program produced by the Ruth-R compiler, we
provide a semantics that is based on expressing the meaning of Forth operations
and programming constructs in terms of PV semantics.

References

[1] J-R Abrial. The B Book. Cambridge University Press, 1996.

[2] E C R Hehner. A Practical Theory of Programming. Springer Verlag, 1993.
Latest version available on-line.

[3] E R Hehner. Retrospective and Prospective for Unifying Theories of Pro-
gramming. In S. E. Dunne and W Stoddart, editors, UTP2006 The First
International Symposium on Unifying Theories of Programming, number
4010 in Lecture Notes in Computer Science, 2006.

[4] P. K. Knaggs and W. J. Stoddart. The Cell Type. In University of Rochester
Forth Conference on Automated Instruments, The Journal of Forth Appli-
cation and Research (JFAR), June 1991.

[5] J F Power and D Sinclair. A Formal Model of Forth Control Words in the
Pi-Calculus. Journal of Universal Computer Science, 10.9, 2004.

[6] W. J. Stoddart. An Event Calculus Model of the Forth Programming
System. In 12th EuroForth Conference Proceedings, October 1996. Note
that the downloadable document contains the pages in reverse order.

13

[7] W. J. Stoddart and P. K. Knaggs. Type Inference in Stack Based Lan-
guages. Formal Aspect of Computing, 5(4):289–298, 1993.

[8] W J Stoddart and F Zeyda. A Unification of Probabilistic Choice within
a Design-based Model of Reversible Computation. Formal Aspect of Com-
puting, 2007. Published on line, DOI 10.1007/s00165-007-0048-1.

[9] W J Stoddart, F Zeyda, and S Dunne. Preference and non-deterministic
choice. In ICTAC’10. Proceedings of the 7th International colloquium con-
ference on Theoretical aspects of computing, volume 6255 of LNCS, 2010.

[10] W J Stoddart, F Zeyda, and A R Lynas. A Design-based model of reversible
computation. In UTP’06, First International Symposium on Unifying The-
ories of Programming, volume 4010 of LNCS, June 2006.

[11] W J Stoddart, F Zeyda, and A R Lynas. A virtual machine for supporting
reversible probabilistic guarded command languages. ENTCS, 253, 2010.
Extended version of a paper presented at RC2009.

[12] F Zeyda. Reversible Computations in B. PhD thesis, University of Teesside,
2007.

14

