
The N.I.G.E. Machine: an FPGA based micro-computer

system for prototyping experimental scienti�c hardware

Andrew Read

May 2012

anding_eunding@yahoo.com

Abstract

This paper describes the N.I.G.E. Machine, a user-expandable micro-computer sys-

tem that runs on an FPGA development board and is designed speci�cally for the rapid

prototyping of experimental scienti�c hardware or other devices. The key components

of the system include a stack-based softcore CPU optimized for embedded control,

a FORTH software environment, and a �exible digital logic layer that interfaces the

micro-computer components with the external environment. The system has been

demonstrated on a Digilent Nexys 2 development board and in an example scienti�c

experiment involving a light source and sensor.

1 Introduction

1.1 Overall concept

The N.I.G.E. Machine's primary intended application is as an electronic control and mea-
surement unit for experimental scienti�c apparatus. The concept is to combine the merits
of a traditional computer-based control system with the �exibility of Field Programmable
Gate Arrays (FPGAs), and a rapid prototyping environment. This is done using a FORTH
based, harmonized hardware-software system and a commodity FPGA development board.

FPGAs are integrated circuits with recon�gurable internal logic components and inter-
connects that can be repeatedly reprogrammed with fresh logic designs at the time of use.
The functional capability of FPGAs is broadly equivalent to traditional integrated circuits,
although operating parameters di�er. Logic designs are written in a hardware description
language such as VHDL or Verilog and then downloaded to the FPGA as a binary �le after
being synthesized by the development tools of the relevant FPGA manufacturer. Typically
new logic designs are tested on special circuit boards (development boards) that host an
FPGA alongside commonly used peripheral components such as external memory, switches,
indicators, and connectors.

The N.I.G.E. Machine is a complete, user-expandable micro-computer system with ex-
tensive input/output (I/O) capabilities, hosted on a low-cost FPGA development board.
It comprises (a) a general purpose, stack-based, 32-bit softcore CPU that has a number of
optimizations for embedded control such as deterministic execution and rapid interrupt re-
sponse time, (b) FORTH system software, and (c) a set of digital logic interface components
including both peripherals for development use (keyboard, video) and also user-expandable
peripherals for application speci�c interface logic (interrupt controller, hardware registers,
and various I/O ports).

The softcore CPU and the other digital logic components are coded in VHDL[1] and the
FORTH environment is coded in the assembly language of the softcore CPU. The N.I.G.E

1

Machine has been implemented and tested on a Digilent Nexys 2 development board with
a Xilinx Spartan-3E XC3S1200E FPGA. With a keyboard and video monitor connected to
the board, the system is a fully operational, stand-alone native FORTH environment from
power on. A short video has been made to demonstrate[2].

1.2 Engineering approach

Typically there will be three layers of engineering in an application for prototyping an
experimental scienti�c apparatus:

The physical layer: The scienti�c hardware, with actuators and sensors, driven by some
electronic circuitry. The external electronic circuitry is connected to the N.I.G.E. Machine
through the numerous expansion connectors available on the host FPGA development board,
routing to free I/O pins on the FPGA.

The digital logic interface layer: Factory or custom (written in VHDL) digital logic
interface peripherals directly interface with the external electronic circuitry and provide
I/O functionality for the micro-computer system. The use of application-speci�c, custom
digital logic interface peripherals permits greater scope for high-speed pre-processing of
external signals and for processing multiple external signals in parallel than is possible with
typical �xed-logic I/O ports. In addition, complete �exibility is permitted in the interface
speci�cation and design. The digital logic interface components are connected into the
micro-computer architecture largely through hardware registers and external interrupts.

The micro-computer layer: The micro-computer system, built on the softcore CPU
and the FORTH system software, is the platform both for the interactive prototyping of
the external hardware and the custom digital logic interface, and also for running the �nal
operating software.

1.3 Comparison to alternatives

Other platforms have existed for some time that also combine elements of this engineering
approach, for example:

• The use of a digital logic layer interfacing with the scienti�c apparatus parallels that
of the CMS and ATLAS detectors at CERN. In the case of these detectors, the volume
of measurement data and the speed with which it is generated necessitates a digital
logic layer ahead of the computer layer to identify potentially interesting events and
�lter out the remainder before further processing. The CERN detectors are very high
performance designs and extremely expensive.

• Numerous commodity, easy-to-use microcontrollers, such as the Atmel ATMEGA or
Parallax Propeller provide a CPU with direct access to digital I/O ports alongside a
selection of �xed-function hardware resources such as counters and timers. FORTH is
sometimes implemented on such microcontroller platforms.

• Standard commercial or open source FPGA softcores are available that can be con�g-
ured directly by the FPGA development tools, for example the Xilinx MicroBlaze[15].

• A number of small softcores have been designed speci�cally to execute FORTH[3, 4,
5, 6, 7, 8]. Several aspects of the J1[3] have directly inspired this project.

The N.I.G.E. Machine does not intend to compete head-on with any one of these alternatives,
but rather o�er something novel in the way that it brings di�erent aspects together to create
a �exible platform particularly focused on enabling rapid, small-scale, scienti�c research and
development. In particular:

2

• The N.I.G.E. Machine works with FPGA development boards that are easy-to-use and
a�ordable, so they are within the range of small labs and individuals.

• The N.I.GE. Machine is a fully integrated micro-computer system with video and
keyboard facilities (rather than a purely embedded system).

• No complex or slow-to-use tool chain is required for software development. FORTH is
instantly available at power-on.

• Rather than than relying on generic, �xed-function hardware resources, the N.I.G.E.
Machine's digital logic interface layer can be custom built and optimized for each new
application.

• The N.I.G.E. Machine's stack-based softcore is a full-featured, general purpose CPU
that includes functionality such as interrupts, �exible memory access, and debugging
facilities.

1.4 Scope of this paper

The primary aim of this paper is to describe the new softcore CPU and this is the main focus
of section 2, �Methods�. The paper also aims to illustrate the novel hardware development
platform o�ered to users of the N.I.G.E. Machine and the use of FORTH for the development
and testing of experimental apparatus. These are the main focus of the example application
described in section 4, �Application discussion�.

2 Methods

2.1 Key design objectives

In order to meet the goals outlines above, key design objectives for the softcore CPU were
set out under the headings of (1) platform, (2) real-time control, and (3) CPU performance.
These objectives and the strategies devised to meet them are as follows.

2.1.1 Platform objectives

Rapid prototyping To shorten application and software development time for users it
was decided to (a) not require the use of an external tool-chain for programming and (b)
have an interpreter available at power on. An interpreter allows the user to experiment
directly with the electronic apparatus and also test small routines for bottom-up software
development. BASIC was considered, but FORTH was chosen because it provides both
an interpreter and also a compiler which can produce executables that are almost as fast
as directly assembled machine code. For a new computer system, FORTH also has the
advantage that it can be implemented quite easily in assembly language.

Custom digital logic interface layer The scope for creating custom digital logic inter-
faces in VHDL for each new application di�erentiates the N.I.G.E. Machine from a conven-
tional microcontroller platform with resident FORTH, and opens up new design possibili-
ties. The system can o�er this �rstly because it is built with soft-logic in an FPGA and
secondly because the key micro-controller interface components (principally the memory-
mapped hardware register module and the prioritized hardware interrupt controller) have
been made user-expandable.

Stand-alone usage Alongside the CPU softcore and FORTH, a full set of peripheral
modules (e.g. keyboard, video, other I/O) have been developed to create a complete micro-
computer system for stand-alone use.

3

2.1.2 Real-time control objectives

Fast interrupt response time Fast interrupt response time facilitates the high fre-
quency, low-latency processing of external signals[9]. One of the key handicaps to interrupt
processing is the need to save the state of a large register set. Sympathetic with the choice
of FORTH for the system software, the softcore CPU is stack based and so no save/restore
of registers is required for interrupt (or subroutine) processing[11]. The N.I.G.E. Machine's
typical interrupt response time is only 2 cycles to branch to the interrupt vector table fol-
lowed by 3 cycles to branch through the vector to the interrupt routine itself.

Deterministic execution Deterministic execution[9] is the certainty that a given set
of instructions will execute in a given number of CPU clock cycles regardless of state.
Conversely, without deterministic execution, jitter is the deviation of an expected periodic
signal from true periodicity. Avoiding jitter in electronic interfaces is essential for precise
control and measurement. The instruction set and CPU control unit have been designed so
that all instructions execute in a �xed number of cycles, including conditional branches and
static RAM (SRAM) memory access. The CPU's execution pipeline has been designed so
that there are no con�ict states that could result in missed cycles.

Fast branch performance Fast, deterministic, branch performance is important to op-
timize response times in an embedded application[9]. On the N.I.G.E. Machine conditional
and unconditional branches (BEQ and BRA) are designed such that they always execute in
only 3 clock cycles (2 cycles for decode, 1 cycle for memory).

Maximum code density The fastest memory resources available to a softcore CPU are
FPGA SRAM blocks. These also have the advantage over external memory of deterministic
access (i.e. guaranteed single clock cycle read/write). However FPGA SRAM resources are
typically limited to a several tens or hundreds of kilobytes. To maximize the use of SRAM as
program memory, code density needs to be as high as possible[9]. On the N.I.G.E Machine
almost all instructions are encoded in a single byte. This is achieved by using microcode as
opposed to a hardwired decoder in the CPU.

2.1.3 CPU performance objectives

High instruction throughput High instruction throughput translates directly into
higher processing performance. Without super-scalar features or parallel cores, the best
achievable goal is throughput of one cycle per instruction. The N.I.G.E. Machine's CPU
design features a three-stage execution pipeline that delivers single cycle throughput for
most instructions.

Flexible memory access The N.I.G.E. Machine is a 32-bit (longword) CPU and all
system memory is byte addressable. To optimize the speed and �exibility of memory access:
(1) separate CPU instructions have been created to read and write memory in byte, word,
and longword format, (2) the CPU is designed with three separate memory buses (one for
SRAM access and two for byte and word access to the external pseudo-static dynamic RAM
(PSDRAM) that is part of the Nexys 2 development board), and (3) even address alignment
is not required when accessing word or longword data in SRAM system memory.

Fast subroutine performance As an optimization for the execution of FORTH, the
instruction set includes a compound RTS (return from subroutine) instruction that can be
overlaid on top of most single byte instructions, saving one clock cycle on each subroutine
return. This follows the design of the J1 processor[3].

4

2.2 Limitations

Hardware and design tradeo�s also resulted in some limitations of the N.I.G.E. Machine as
set out below. None of the limitations are fundamental to the design and hopefully they
will be addressed in future developments.

Program memory space The softcore CPU is currently only able to execute instruction
code located within FPGA SRAM memory. The external PSDRAM on the Nexys 2 devel-
opment board memory cannot be used as a program memory store unless its contents are
�rst copied to SRAM for execution.

Narrow instruction fetch Instructions are fetched from SRAM one byte at a time.
This means that instructions requiring several bytes (mainly the load literal instructions)
necessarily take several cycles to execute.

Lack of �oating point The current implementation of FORTH does not include �oating
point software routines nor does the digital logic design include any �oating point function-
ality in FPGA hardware.

Blocking interrupts The interrupt scheduler provides interrupt prioritization but once
an interrupt is in progress it will block all other interrupts, even those of higher priority.

Lack of double precision (64-bit) arithmetic Some FORTH words in the ANSI core
set require double precision division. However the current implementation of FORTH does
not include double precision arithmetic software routines. Additionally the hardware dividers
used in the CPU are limited to 32-bit operands.

2.3 Implementation of the CPU and other digital logic

2.3.1 CPU instruction set

The softcore CPU has 63 instructions as follows:

Stack manipulation 15 instructions: NOP (no operation), the FORTH words DROP,
DUP, ?DUP, SWAP, OVER, NIP, ROT, >R, R@, R>, plus four words for loading or saving
the parameter and return stack pointers

Math operations 12 instructions: +, -, NEGATE, 1+, 1-, arithmetic shift left and right,
signed and unsigned multiply, add and subtract with carry, and signed and unsigned divide

Comparison operations 11 instructions: the bitwise equality tests = and <>, signed
comparisons <, >, unsigned comparisons U<, U>, comparisons with zero: 0=, 0<>, 0<,
0>, and FALSE, which returns zero

Bitwise operations 7 instructions: the Boolean operations AND, OR, INVERT, XOR,
logical shift left and right, and byte and word sign extension to 32 bits

Memory operations 6 instructions: FETCH and STORE of byte, word, or longword
values

Load literal operations 3 instructions: LOAD longword, word or byte values from within
the program code

5

Flow control 6 instructions: JMP (jump to the address on the parameter stack), BSR
and JSR (branch/jump to subroutine), RTS (return from subroutine), and BEQ, BRA
(conditional and unconditional �ow control)

Exception handling 3 instructions: TRAP (software trap vector) RTS_TRAP (a single-
step), and RTI (return from interrupt)

2.3.2 Memory data format

Data is stored in memory in big-endian format. That is, for multi-byte data the highest
value byte is stored at the lowest numbered memory address. By way of context, Motorola
68k processors also use big-endian format while Intel processors use little-endian format.
Either format could have been implemented in the softcore CPU but the big-endian format
was found to be more suitable for the design of the shift registers that fetch data from
memory, as well as being the author's preference because of its Motorola 68k heritage.

2.3.3 Instruction set encoding

The default instruction size is a single byte, encoded as follows (�gure 1): bit 7 identi�es
whether the instruction is a branch or an ordinary instruction. If the instruction is a branch
then bit 6 speci�es if the branch is conditional or unconditional. If the instruction is ordinary
(not a branch) then bit 6 speci�es whether a return from subroutine is to be taken along
with the execution of the instruction (this is the compound RTS instruction). For ordinary
instructions, bits 5 � 0 (�gure 2) are read as an integer that identi�es the instruction in
question (i.e. the �opcode�). For branch instructions bits 5 � 0 of the instruction are
read as the high part (bits 13 � 8) of the branch address, with a following byte holding the
low part (bits 7 � 0) of the branch address. Where literal data is required as part of an
instruction it follows in the succeeding bytes (�gure 3).

Bit 7 Bit 6 Interpretation

1 1 Unconditional branch (BRA)
1 0 Conditional branch (BEQ)
0 1 Ordinary instruction plus return from subroutine (RTS)
0 0 Ordinary instruction

Figure 1: Bits 7 and 6 of an instruction speci�es its type.

Bit 7 Bit 6 Bits 5 - 0

1 x High part of branch address
0 x Opcode

Figure 2: Bits 5-0 of an instruction either specify the high part of the branch address or the
opcode.

Byte 1 (bits 5-0) Byte 2 Byte 3 Byte 4 Byte 5

Branch 14 bit branch address - - -
Load.L Opcode 32-bit literal
Load.W Opcode 16-bit literal - -
Load.B Opcode 8-bit literal - - -

Figure 3: Multi-byte instructions specify literal data (big-endian format).

6

2.3.4 Overall CPU architecture

The CPU comprises a datapath and a control unit[10].
The datapath holds the registers and computation components associated with the data

held in the parameter and return stacks. The datapath is a passive entity in the sense that
it does not contain any control logic or state information of its own. Rather it includes a
network of multiplexers and other switches that route data between registers and through
computation components in various con�gurations. The behavior of the datapath at any
moment is entirely governed by a set of external control signals feeding to it from the control
unit.

The control unit is built around a sophisticated �nite state machine (FSM) that is re-
sponsible for reading program instructions from system memory, decoding those instructions,
and then setting the control signals to the datapath as appropriate for the execution of each.
The control unit is also responsible for adjusting the program counter (PC) so that program
instructions are read from memory in the appropriate order taking into account program
jumps and branches, dealing with interrupts and other exceptions, and supporting data
transfers between system memory and the data path.

2.3.5 Execution pipeline

The architecture of the CPU is built around a three stage execution pipeline. The pipeline
stages are as follows:

1. �FETCH OPCODE�. The next instruction is read from SRAM at the current address
of the program counter. The control unit identi�es the instruction type and extracts
the opcode.

2. �DECODE AND EXECUTE� The current opcode is decoded via microcode and the
appropriate control signals are sent to the datapath. The datapath con�gures ac-
cording to the control signals and the result of the computation becomes available in
combinatorial logic.

3. �SAVE� The parameter and return stack registers and memory (i.e. the synchronous
logic) are updated with the result of the computation performed by DECODE AND
EXECUTE in the previous stage.

The operation of the pipeline is illustrated with a worked example in �gure 4. In this
example, as at CPU clock cycle #0 the program counter is pointing to memory address
zero. The execution pipeline proceeds thus:

Component / clock cycle Cycle #0 Cycle #1 Cycle #2 Cycle #3

Program counter 0
Instruction byte 38
Opcode 38
Microcode 1210
TOS_n (combinatorial logic) 0
TOS (synchronous logic register) 0

Figure 4: Illustration of the execution pipeline for the CPU instruction FALSE, which places
zero on the parameter stack

1. �FETCH OPCODE�. On the rising edge of clock cycle #1 SRAM system memory
reads the data byte at the memory address pointed to by the program counter and
makes it available to the control unit where it is known as the instruction byte. In
this example the instruction byte has a value of 38 (corresponding to the instruction

7

�FALSE� which places zero on the top of the parameter stack). During the same
clock cycle combinatorial logic within the control unit identi�es (based on bit 7 of the
instruction byte) that this is an ordinary instruction and extracts the opcode from the
instruction byte. In this case the opcode also has the value 38.

2. �DECODE AND COMPUTE�. On the rising edge of clock cycle #2 SRAM microcode
memory within the control unit takes the opcode as a lookup address and returns the
corresponding microcode value. During the same clock cycle the combinatorial logic in
the datapath is con�gured according to the microcode value through its control signals
and the value of the computation becomes available at the output of the multiplexer
TOS_n (�gure 5). In this case the microcode value is 1210 (corresponding to a par-
ticular con�guration of control lines that will cause the datapath to push a zero onto
the top of the parameter stack).

3. �SAVE�. On the rising edge of clock cycle #3, the value presented by the multiplexer
TOS_n (i.e. the result of the computation in the previous pipeline stage) is written
into the synchronous logic register TOS (�gure 5). At the same time the current value
of TOS is written into NOS, and the current value of NOS is pushed into the SRAM
block that holds the remainder of the parameter stack.

The CPU has a throughput of one instruction per clock cycle for most instructions since
each pipeline stage executes in a single cycle, thus on every clock cycle another instruction
is completing execution. The CPU has a latency of three cycles since it takes three pipeline
stages to execute each instruction in full. As with any pipeline design there is a tradeo� be-
tween the number of pipeline stages and the maximum feasible CPU clock frequency. Longer
pipelines have less logic to execute at each stage, thus requiring less time and permitting a
higher clock frequency, but at the expense of higher latency and the introduction of issues
such as con�icts between instructions at the beginning and end of the pipeline. The N.I.G.E.
Machine's pipeline was designed to ensure deterministic execute at all times (i.e. no con�ict
states, failed branch predictions, etc.) at the same time as a maximizing clock frequency
subject to that constraint. In particular the design mixes SRAM access (which tend to be
very fast) with combinatorial logic functions (which tend to be slower) in stages 1 and 2 to
balance the overall load throughout the pipeline.

2.3.6 The CPU datapath: parameter stack

Figure 5 illustrates the parameter stack datapath.
The top-of-stack (TOS) and next-on-stack (NOS) storage locations are 32 bit hardware

registers while the remainder of the parameter stack is implemented with a dedicated 2KB
SRAM block. This SRAM block is dual ported and the second port is mapped to the CPU
address space. (This is useful for implementing FORTH instructions such as PICK.) The
datapath is directed from the control unit via a 14 bit wide signal generated from control
unit microcode that drive a set of multiplexers in the datapath and determine the data �ow.
The main multiplexers controlling the parameter stack are as follows:

• The multiplexer TOSn selects the value for the update of the TOS register from
one of eight computation units: addition/subtraction, logic operations, multipurpose,
comparison, multiply, unsigned multiply, divide and unsigned divide.

• The multiplexer NOSn selects the value for update of the NOS register from: TOS,
NOS (i.e. itself, no-update), the item below NOS in the parameter stack RAM, or an
arithmetic value from one of the computation units.

• The multiplexer PSPn is responsible for updating the parameter stack (PS) pointer,
which is a 9 bit address signal spanning 512 * 32 bit cells in 2KB SRAM. The PS
pointer can be incremented (the stack grows by one item), decremented (the stack

8

�����������	�
�����

�
����������	�
����

�������
������	

����

������ ���	
 ����	
��
 � �� � ��

����

��� ���
� ����

����

� �� �� ���

��������
�

��������

�	
��
	�

�	
��
	�

�
�
�
��
�
�		

�
��
		
�
�

��

�
�
�
		�
��
�
�
��

Figure 5: The parameter stack datapath illustrates the use of an SRAM block in combination
with hardware registers.

shrinks by one item), held constant or updated with the current TOS value. When
the PS pointer is incremented, the current NOS item is written from the 32 bit register
to SRAM. The opposite data�ow occurs when the PS pointer is decremented.

The eight multiplexed computation units attached to TOSn essentially form the arithmetic
logic unit (ALU) of the CPU. Each computation unit is directed by signals from the control
unit microcode according to the functionality required by each operation. Some of the
computation functionality is provided by Xilinx CORE modules that may leverage special
purpose circuitry available within the FPGA such as hardware multipliers and carry logic
structures. The computation units are summarized as follows:

• ADDSUB, an adder/subtractor implemented using a XILINX CORE template that
leverages special purpose carry structures on the FPGA. There is a carry �ag within the
ADDSUB unit that is not directly accessible to the CPU but which gives the N.I.G.E.
machine the capability to perform double precision addition and subtraction. The
carry �ag is only changed by one of the 7 addition or subtraction operations above and
remains unchanged during the execution of all other instructions. (Interrupts should
be temporarily suspended via the interrupt mask hardware register before performing
double precision addition and subtraction to ensure that the hidden carry �ag is not
changed inadvertently).

• LOGIC, bitwise logic computations implemented in VHDL.

• MULTI, a general purpose multiplexer implemented in VHDL.

• COMP, a comparison unit implemented using a XILINX CORE template with sup-
porting logic in VHDL.

• M and UM, signed and unsigned multiply implemented using on-chip FPGA pipelined
multipliers with 32 bit operands and a 64 bit result. The operations complete in 5
clock cycles.

• D and UD, signed and unsigned divide implemented in logic fabric using a XILINX
CORE template with 32 bit operands, a 32 bit quotient and a 32 bit remainder. The
operations complete in approximately 40 clock cycles.

9

����������	

����

� �� �� ���

����
�����

���

��� �	�

�����

��� ��

��������

�
��
������������	

�	
��
	�

�
��
��
��
�
�

�
�
�
��
��
��

Figure 6: The return stack datapath illustrates the use of an SRAM block in combination
with hardware registers.

2.3.7 The CPU datapath: return stack

Figure 6 illustrates the return stack datapath.
The Top of Return Stack (TORS) value is implemented as a 32 bit hardware register

and the remainder of the return stack in a dedicated, dual ported 2KB SRAM block the
second port of which is mapped to the CPU address space.

• The multiplexer RSn updates TORS with either the value from the top of the pa-
rameter stack (TOS), or the program counter of the next instruction following the
instruction that is currently being executed. (The latter represents the operation of a
JSR or BSR instruction.)

• The multiplexer RSPn updates the return stack pointer with either no change (0),
decrement (-1, return stack size decreases), increment (+1, return stack size increases),
or load from the parameter stack (TOS). The multiplexer is driven by a signal from
control unit microcode.

• There is a secondary multiplexer, RSPnn driven by an auxiliary signal from the control
unit that is able to decrement the return stack pointer regardless of the state of control
unit microcode and the RSPn multiplexer. This is required because logic for the RTS
instructions is hardwired rather than controlled by microcode.

2.3.8 The CPU Control Unit

The main components of the control unit are:

• A �nite state machine (FSM) which determines next state logic and control signal
outputs.

• Microcode held in a 2KB SRAM block that decodes instruction opcodes into control
signals that will be routed directly to the datapath.

• A program counter and associated logic which steps program execution through mem-
ory in the appropriate order.

• Memory access logic which (a) routes memory write connections between the relevant
bytes of the parameter stack registers and the appropriate system memory channels,
and (b) accumulates byte or word length data from successive memory read cycles into
a longword register which is connected to the datapath.

10

2.3.9 The �nite state machine

The FSM is responsible for setting the values of control signals according to the current state
and the current program instruction. Since the majority of CPU instructions execute in a
single cycle, in most cases there is no change of state from instruction to instruction. The
state in which all of the single-cycle instructions are executed is documented in the VHDL
source code with the name �common�. The state machine changes state from common to
one of a number of other states for the following events:

• Instructions that take more than a single cycle to execute (?dup, multiply, divide, load
literal, memory fetch, and memory store).

• Jumps, branches, and returns.

• Interrupts and traps.

2.3.10 Microcode

The CPU datapath requires 14 control lines to direct the various multiplexers and compu-
tation units appropriately for each instruction (plus one auxiliary control line for the RTS
instruction). A simple �hardwired� decoder in the CPU control unit might require that these
control lines be represented directly in the bits of the CPU instruction set. However by using
microcode, the 14 control lines can be obtained from only 6 bits in the CPU instruction by
con�guring a 2K SRAM block with 6 address lines and 14 data lines. This enables higher
code density through single-byte instruction encoding . There is a latency of one clock cycle
for reading the microcode from the SRAM. This corresponds to part of the second stage of
the pipeline (�DECODE AND EXECUTE�).

2.3.11 Program counter

The control unit operates such that the code of the next instruction is being read from
SRAM at the same time as the current instruction is being executed. This is part of the
�rst stage of the pipeline (�FETCH OPCODE�). Update of the program counter is controlled
by the FSM. At each cycle the possibilities for update of the program counter and return
stack are:

• For single cycle instructions and load literal instructions, add one to the PC. Load
literal instructions proceed byte by byte through the literal data using the PC.

• For other multi cycle instructions, add zero to the PC until the last cycle of the
instruction and then add one. This is required to prime the �rst stage of the pipeline
(�FETCH OPCODE�) so that the next-but-one instruction is read from memory at
the appropriate time

• For an external interrupt, redirect the program counter according to the vector number
provided by the interrupt controller. In this case the current value of the program
counter needs to be placed on the return stack since the current instruction will not
be executed.

• For a TRAP or RTI_TRAP instruction, redirect the program counter to the trap
vector. (The RTI_TRAP instruction is a two-phase instruction used for single step-
ping; �rst of all an RTI from the current trap routine is made, then one instruction
at the current PC is executed, and then control is passed immediately back to the
TRAP vector). For a TRAP instruction the PC of instruction following the current
instruction is stored on the return stack.

11

• For a jump (JSR, JMP), redirect the program counter to the value currently on the
top of the parameter stack (TOS). In the case of a JSR, also save the address of the
next instruction on the return stack.

• For a branch instruction (BSR, BRA, BEQ), if the branch is taken redirect the program
counter to the value of the PC plus the value on the top of stack. BRA and BEQ are two
byte instructions and the PC will be on the second byte when the branch calculation is
made. This needs to be taken into account by the assembler when calculating branch
o�sets.

2.3.12 Memory Channels

The CPU has three separate memory channels. Each of these channels has a read data bus,
a write data bus plus memory control signals as required. A single address bus is common
to all channels. The three data channels are as follows:

• An 8-bit data channel to SRAM.

• An 8-bit data channel to PSDRAM via the direct memory access (DMA) controller.

• An 16-bit data channel to PSDRAM via the DMA controller. This memory channel
has twice the bandwidth of the 8-bit channel and is used for the read /write of word
and longword data.

2.3.13 Other hardware components

The other principal hardware components implemented in VHDL are as follow:

Interrupt controller Responsible for prioritizing and scheduling interrupt signals from
I/O devices to the CPU. The interrupt controller can be con�gured to accept additional
interrupts from user-designed components in the digital logic layer that have their own
interrupt vector routines. An interrupt mask register is available for enabling and suspending
interrupts.

Video controller Responsible for providing a VGA signal for connection to a monitor.
The video controller provides 256 colours and text/character graphics resolutions of 100*75,
100*60, 80*60, or 80*48 characters per screen, plus pixel graphics resolutions of 800*600 or
640*480 pixel per screen, double bu�ered.

Direct Memory Access (DMA) controller Responsible for multiplexing access from
the CPU, the video controller, and other components to the 16MB PSDRAM on board the
Nexys 2 development board.

RS232 controllers There are two by default, which provide an RS232 port for gen-
eral purpose I/O and a dedicated RS232 port for connection to a third party SD-card
reader/writer that serves as an external storage medium for the N.I.G.E. Machine.

PS/2 keyboard controller For direct connection to a PS/2 keyboard.

Memory-mapped hardware registers The interface between system control registers
to the CPU address space. The hardware registers are expandable to accommodate user-
designed components in the digital logic layer.

12

2.4 Implementation of system software

The N.I.G.E. Machine's FORTH environment is coded in assembly language and occupies
just less than 8K of system memory. Published versions of FORTH were examined for
guidance with the implementation[12][13]. For the most primitive FORTH words, there
is a one-to-one correspondence with the CPU instruction set. Other FORTH words are
implemented as machine language subroutines. There is no inner interpreter. The operating
model on the N.I.G.E. Machine's FORTH environment could be classi�ed as subroutine
threaded or native.

Because the CPU instruction set is in general a subset of primitive FORTH words,
the FORTH environment serves as the �local assembler� for the N.I.G.E. Machine. The
N.I.G.E. Machine's FORTH implementation was developed in assembly language on a PC
with a specially developed two-pass cross assembler and the cross assembler itself is written
in standard ANSI FORTH.

The ANSI FORTH CORE[14] wordset has been implemented with very few exceptions,
along with a selection of the most applicable words from the CORE EXTENSION, FACIL-
ITY, FILE ACCESS, PROGRAMMING TOOLS and STRING wordsets . Where minor
departures from the ANSI standard have occurred they are due to reasons of implementa-
tion e�ciency on an embedded system. In addition, a set of system speci�c words have been
developed to enable convenient control of the N.I.G.E. Machine's facilities.

3 Results

3.1 Synthesis results obtained from the Xilinx ISE development

software.

Version 13.2 of the Xilinx ISE tools was used to develop and synthesize the logic design for
the Xilinx XC3S1200E Spartan-3E FPGA that is used in the N.I.G.E Machine. To put this
FPGA in context, broadly speaking Xilinx has for several years o�ered two main families
of device, Virtex and Spartan. Virtex are the high performance devices and Spartan are
the economy or high-volume devices. Device families are also di�erentiated by generation
numbers that indicate improving technology, typically driven by advances in the manufac-
turing process. Currently the latest devices in the Virtex family are at generation 7 and
the latest devices in the Spartan family are at generation 6. Within the Spartan family, the
prior generation to 6 was 3 (generation numbers 4 and 5 were skipped). Table 1 o�ers a
comparison of Xilinx FPGAs according to the performance of the proprietary Xilinx softcore
CPU, the MicroBlaze.

The Spartan-3E FPGA used in the N.I.G.E. Machine is therefore a one-generation-old
device in the economy family of Xilinx FPGAs, and so relatively modest in comparison to
the latest available technology. Nevertheless, it is in itself a highly capable device.

Device family Typical MicroBlaze clock speed (3 stage pipeline format)

Virtex-6/7 240 MHz
Spartan-6 150 MHz
Spartan-3 50 MHz

Table 1: Xilinx device families compared according to MicroBlaze performance[15].

13

Resource Used Available Utilization

4-input LUT's 3,884 17,344 22%
Slice �ip �ops 2,920 17,344 16%
2K block RAM 28 28 100%
Multipliers 8 28 28%

Table 2: N.I.G.E. Machine FPGA utilization on a Xilinx XC3S1200E, Spartan-3E FPGA.

Resource LUT's

CPU 2,529
of which datapath 1,920
of which control unit 609
DMA controller 364
Hardware registers 280
Video controller 114
Diligent IO port 95
RS232 controller 71
Reset controller 52
PS/2 controller 39
System RAM 33
Interrupt controller 31

Table 3: N.I.G.E. Machine FPGA utilization at module level.

Parameter

Maximum frequency 50.140 MHz
Minimum period 19.944 ns
Minimum input required time before clock 11.507 ns
Minimum output required time after clock 13.097 ns

Table 4: N.I.G.E. Machine timing summary on a Xilinx XC3S1200E, Spartan-3E FPGA.

14

3.2 Instruction frequency

Instruction Frequency

LOAD.W 17.88%
JSR 9.17%
RTS and ,RTS* 9.06%
LOAD.B 6.47%
BEQ 4.60%
DUP 4.17%
OVER 3.67%
FETCH.L 3.56%
DROP 3.42%
STORE.L 3.02%
SWAP 2.91%
R> 2.37%
BRA 2.37%
FALSE 2.23%
FETCH.B 2.19%
1+ 2.05%

* Of which RTS 6.36% and ,RTS 2.70%

Table 5: The 80% most used CPU instructions in the FORTH system software (as counted by
the cross-assembler and ignoring execution frequency di�erences due to loops and conditional
code, etc.)

3.3 Implications for design objectives

The FPGA logic utilization of 22% for a full micro-computer system on a relatively modest
device is a very positive result. There is a signi�cant amount of room remaining on the
FPGA for the digital logic layer. If anything, further improvements in the design could
be focused on addressing some of the current design limitations even at the expense of
consuming a reasonable amount of additional logic area.

The maximum frequency of 50MHz was roughly as expected on this particular FPGA
given the benchmark to the MicroBlaze (Table 1). Detailed analysis of the post place-and-
route timing report did not reveal obvious bottlenecks in any one area of the design. The
delays are roughly balanced between logic and routing. There was some evidence that the
carry structure in the datapath adder unit may be a slightly slower path, and likewise the
hardware registers.

The instruction frequency results were illuminating when considered in relation to the de-
sign objectives. The table well illustrates the load-store architecture of the CPU (LOAD.W
is the most used instruction), and the subroutine threaded nature of FORTH (JSR and RTS
are the second and third most used instructions). Given that high instruction throughput
was speci�ed as a design objective, it is interesting that the most used instruction (LOAD.W)
is one of the minority of instructions that do not execute in a single cycle. (LOAD.W ex-
ecutes in three cycles as a direct result of the narrow instruction fetch that was discussed
under design limitations.) Another optimization speci�ed at the design stage, the compound
RTS instruction, is only used in 30% of all return-from-subroutine instances, perhaps be-
cause of the limitation that it is only compatible with single cycle instructions that do not
otherwise involve the return stack.

Clear priorities for future versions of the CPU softcore will be to widen the instruction
fetch and to broaden the applicability of the compound RTS instruction, as well as identi-
�cation of the hardware modules that can be further developed to increase the maximum
potential clock frequency.

15

4 Application discussion

An experimental setup in applied physics served as an illustration of the use of the N.I.G.E.
Machine. A short video is available to demonstrate [16]. The objective of the experiment was
to measure the response of a certain light sensor to changes in the brightness of an LED. The
light sensor in question was a light-to-frequency converter manufactured by the �rm TAOS
which comprises a photodiode and a current-to-frequency converter in a single package. The
package has three connecting pins: 5V supply, ground, and output. The output signal is
a square wave that varies in frequency from less than 1Hz to around 500kHz in response
to the illumination of the photodiode. A tri-colour LED provided the illumination for the
experiment. The LED has a common anode that connects to the positive supply voltage
and three separate cathodes on the red, green, and blue elements that connect to ground
via resistors of appropriate value. Three general purpose PNP transistors were connected
between the cathodes and the resistors to provide switching for each colour element.

The circuit was constructed on breadboard. The output pin of the TAOS sensor and
bases of the three PNP transistors were connected via hookup wires to an expansion port
on the Nexys 2 board that routes directly to free pins on the FPGA.

A digital logic layer was designed to control and take measurements from the circuit in
real time. As with the N.I.G.E. Machine overall, the Xilinx webpack tools were use for this
development work. (The webpack tools are a free download from the Xilinx website[15].)

A frequency counter was required for measuring the output of the TAOS unit. A straight-
forward frequency counter module was developed in VHDL that comprised (a) a debounce
process to eliminate any switching noise on the signal line, (b) a �nite state machine to
follow the square wave of the TAOS signal and (c) a counter and register to record the
number of cycles of the square wave in one second. For controlling the three LED elements
three variable duty cycle square wave outputs were required (with a variable duty cycle
square wave, the average current to an LED element can be adjusted whilst keeping the
supply voltage constant. If the square wave has a su�ciently high frequency (say 100Hz
or more) there will not be any �icker observed by the light sensor.) A variable duty cycle
square wave generator is very straightforward to design in VHDL and a suitable module
was written in less than about 10 lines of logic description. Both the frequency counter and
the variable duty cycle module were interfaced to the micro-computer layer of the N.I.G.E.
Machine via hardware registers memory mapped to the address space of the CPU. This was
accomplished by extending the existing hardware register module of the N.I.G.E. Machine.
Three single-byte memory addresses were mapped to the duty cycles for the red, green and
blue LED elements. Writing values of 0-100 to these registers adjusts the brightness of each
of the red, green, and blue LED elements from full o� to full on in real time. The output
from the frequency counter was mapped to a longword memory address that could be read
directly as the current frequency reading in Hz. The frequency reading in the register is
automatically updated each one second in this design.

The digital logic layer was initially developed independently of the N.I.G.E. Machine in
a stand-alone application. After a brief logic design was drawn up, the VHDL simulator
was used to verify that the modules were operating as expected. A few small enhancements
and simpli�cations were made at the simulation stage. After simulation was complete the
Nexys2 board was programmed with the design of the two modules and connected to the
breadboard and the electronic circuit. The modules were veri�ed working as expected. At
this stage a branch was made in the Subversion version control repository where all of the
source code for the N.I.G.E. Machine is held. Using a branch structure in the version control
system allowed a special version of the N.I.G.E. Machine source code to be created without
a�ecting the main development path. The frequency counter and variable duty cycle modules
were incorporated into the source code of the N.I.G.E. Machine and the Nexys2 board was
programmed with the revised version. The functionality was again veri�ed.

Finally, the FORTH environment was used to begin investigating the properties of the
circuit. Initially small FORTH de�nitions were constructed to set the duty cycles of the

16

three LED colour elements and read the frequency count from the TAOS sensor. These
words were used to informally investigate such things as the dynamic range of the sen-
sor/LED combination, the level of illumination background in a lit and unlit room, and the
illumination levels of the three di�erent LED colours. This general �tinkering� allowed the
experimenter to gain a general feeling for the apparatus before running an actual experi-
ment. Next, simple FORTH words were constructed to test the frequency output at various
levels of duty cycle input and repeat these measurements over a series of input values. The
results were read from the N.I.G.E. Machine and analyzed on a PC using Microsoft Excel.
(The N.I.G.E. Machine includes an interface to a third party SD-card reader/writer than
could also be used for logging the experimental results and transferring them to a PC for
analysis.)

There are various ways in which the sophistication of the experimental set-up could be
extended. For example the frequency counter module in the digital logic layer currently
counts the signal from the light sensor over a period of one second. This is a simple and
direct way to obtain a frequency count but a better dynamic range and/or response speed
for measurements could be achieved by making the count period user selectable, for example
1/16 second, 1/4 second, 1 second, 4 seconds. This could be easily achieved with another
writable hardware register that directs the frequency counter module accordingly. Or, the
measurement system could be changed so that rather than counting the number of square
waves over a �xed time period, the time taken to receive a certain number of waves would be
measured instead, and thus the dynamic-range would be self-adjusting. An interrupt could
also be used to signal when each new reading is ready.

The example described here illustrates the general approach of using a custom built
digital logic interface for a new application and developing with a rapid prototyping envi-
ronment. The initial digital logic interface functionality may be kept quite straightforward
so as to minimize the time needed prepare the �rst design. As the user �nds that there are
experimental boundaries that need to be pushed back, it is straightforward to go back and
iterate the design of the digital logic layer in a focused way to meet those goals. FORTH is
used as a �language for direct communication between human beings and machines�. The
interactivity allows the experimenter to tinker with the apparatus at the initial stage, per-
haps checking the overall characteristics or problem-solving any issues. When ready, the
experiment proper can be built bottom up using the small routines that are already tested
and understood.

5 Next steps and acknowledgments

The experiment described here was chosen just as an example to illustrate the capabilities
of the N.I.G.E. Machine and the typical steps in developing an application. It is hoped
that the N.I.G.E. Machine will �nd use in real scienti�c projects going forward. Future
developments are anticipated that will enhance its capabilities including porting the design
to more advanced FPGA development boards that o�er additional speed and functionality
(for example the Digilent Atlas board using a Spartan-6 FPGA).

I would like to acknowledge and thank Gunnar von Boehn and Jens Künzer of the
Natami project for their thoughts on VHDL development and the N.I.G.E. Machine system
manual, Jonathan Keelan of the Open University for his advice on the presentation of this
paper, and the anonymous reviewers who's suggestions considerably improved its clarity of
communication. The remaining de�ciencies of the paper are solely the responsibility of the
author.

17

References

[1] Volnei A. Pedroni, �Circuit Design and Simulation with VHDL�, 2nd edition, MIT Press,
2011

[2] The author, http://www.youtube.com/watch?v=0v-HuVLRoUc

[3] James Bowman , �J1: a small Forth CPU Core for FPGAs� in EuroForth, 2010

[4] K. Schleisiek, �MicroCore,� in EuroForth, 2001.

[5] B. Paysan, �b16-small � Less is More,� in EuroForth, 2004.

[6] E. Hjrtland and L. Chen, �EP32 - a 32-bit Forth Microprocessor,� in Canadian Confer-
ence on Electrical and Computer Engineering, pp. 518�521, 2007.

[7] E. Jennings, �The Novix NC4000 Project,� Computer Language, vol. 2, no. 10, pp.
37�46, 1985.

[8] Rible, John, "QS2: RISCing it all," Proceedings of the 1991 FORML Conference, Forth
Interest Group, Oakland, CA (1991), pp. 156-159.

[9] Stephen Pelc, �Programming FORTH�, MPE, 2011

[10] Enoch O. Hwang, �Digital Logic and Microprocessor Design with VHDL�, C.L. Engi-
neering, 2005

[11] P. J. Koopman, Jr., �Stack computers: the new wave�, Halsted Press, 1989

[12] Brad Rodriguez, �Moving Forth�, The Computer Journal, 1993

[13] Phil Burk, �pFORTH�, public domain, 1994-2012

[14] Elizabeth D. Rather and Edward K. Conklin, �Forth Programmer's Handbook�, 3rd
edition, Booksurge Publishing, 2008

[15] Xilinx website, http://www.xilinx.com

[16] The author, http://www.youtube.com/watch?v=0Kj5EMdnkMk

18

http://www.youtube.com/watch?v=0v-HuVLRoUc
http://www.xilinx.com
http://www.youtube.com/watch?v=0Kj5EMdnkMk

	Introduction
	Overall concept
	Engineering approach
	Comparison to alternatives
	Scope of this paper

	Methods
	Key design objectives
	Platform objectives
	Real-time control objectives
	CPU performance objectives

	Limitations
	Implementation of the CPU and other digital logic
	CPU instruction set
	Memory data format
	Instruction set encoding
	Overall CPU architecture
	Execution pipeline
	The CPU datapath: parameter stack
	The CPU datapath: return stack
	The CPU Control Unit
	The finite state machine
	Microcode
	Program counter
	Memory Channels
	Other hardware components

	Implementation of system software

	Results
	Synthesis results obtained from the Xilinx ISE development software.
	Instruction frequency
	Implications for design objectives

	Application discussion
	Next steps and acknowledgments

