Recognizers

Customize the Interpreter

Bernd Paysan

Overview

Motivation

Gforth’s Recognizers

Forth is extensible, provided all your extensions are simple,
space—delimited words

Literals are already part of the non—extensible,
unchangeable part of the standard interpreter

Many systems have mechanisms like notfound, where you
can plug in something in a system—dependent way. . .

During the number prefix RfD discussion, ANTON ERTL [1]
suggested a system called “Recognizer,” which was
roughly sketched, but would allow to dynamically
reconfigure the interpreter

MATTHIAS TRUTE had several discussions on IRC and
implemented a recognizer system in amForth[1]
Win32Forth got recognizers in the current development
snapshot, as well as Gforth

All these recognizers look slightly different, as they are still
experimental stuff

(addr u | token r:x / addr u r:fail)
A recognizer takes a string, and converts it to a
token, which consist of some data on the stack
and a method table. The method table have three
“virtual” methods (which are only concept):
(x*i token —y*j)
Invokes the interpretation semantics of a token
(similar to EXECUTE)

(token —)
Invokes the compilation semantics of a token
(token —)

Add the token to the currently defined word, so
that tokens can be postponed

Gforth’s Recognizers

RECOGNIZER: (xt-int xt-comp xt-lit ,name® —)
Creates a recognizer table

Recognizers are organized as a stack (similar to wordlists),
therefore you can

GET-RECOGNIZERS (rec—addr —recy .. recs n)
get the all the recognizers out of a stack

SET-RECOGNIZER (recp .. recq n rec—addr —)
set the recognizers of a stack

Gforth’s Recognizers

DO-RECOGNIZER (addr u rec—addr — token r:table | addr u

R:FAIL

r:fail)

walks through all the recognizers in a stack until
one matches, and either return its result or the
input string and r:fail

(—r:fail)

recognizer table, where all three methods fail with
-13 throw

Predefined Recognizers: Forth words

: 1it, (n --) postpone Literal ;

: nt, (nt --) name>comp execute ;

: nt-ex (nt --) name>int execute ;

> nt-ex ’ nt, ’ lit, recognizer: r:word

: word-recognizer (addr u -- nt r:word | addr u r:fail

2dup find-name
[[IFDEF] prelude-mask] run-prelude [[THEN]] dup
IF nip nip r:word ELSE drop r:fail THEN ;

Predefined Recognizers: Literals

: 21it, postpone 2Literal ;

> noop ’ lit, dup recognizer: r:num

> noop ’ 2lit, dup recognizer: r:2num

: num-recognizer (addr u -- n/d table | addr u r:fail |
2dup 2>r snumber? dup
IF 2rdrop 0> IF r:2num ELSE r:num THEN EXIT THEN
drop 2r> r:fail ;

Advanced Recognizers: Strings

slit, postpone sliteral ;
> noop ’ slit, dup recognizer: r:string

string-recognizer

(addr u -- addr’ u’ r:string | addr u r:fail)
2dup s\" \"" string-prefix?
IF drop source drop - 1+ >in !

\"-parse save-mem r:string
ELSE r:fail THEN ;
> string-recognizer
forth-recognizer get-recognizers
1+ forth-recognizer set-recognizers

For Further Reading

B ANTON ERTL
Usenet Posting number parsing hooks
https://groups.google.com/forum/?fromgroups#!msg/
comp.lang.forth/r7Vp3wixNus/WrelBaKeCvcJ

B MATTHIAS TRUTE
Recognizer — Interpreter dynamisch verdndern
VD 2011/02

B BERND PAYSAN

https://groups.google.com/forum/?fromgroups#!msg/comp.lang.forth/r7Vp3w1xNus/Wre1BaKeCvcJ
https://groups.google.com/forum/?fromgroups#!msg/comp.lang.forth/r7Vp3w1xNus/Wre1BaKeCvcJ

	Motivation
	Gforth's Recognizers
	Examples
	Appendix

