
Methods in objects2: Duck Typing and Performance

M. Anton Ertl∗

TU Wien

Abstract

The major new feature of objects2 is defining meth-
ods for any class (like in Smalltalk): this means that
we can have two classes that are unrelated by inher-
itance, yet react to the same messages and can be
used in the same contexts; this is also known as duck
typing. This paper discusses the implementation of
method dispatch for these general selectors as well
as the more restricted class selectors of the original
objects.fs, and compares the memory and execu-
tion time costs of these method selector implemen-
tations: Unhashed general selectors are as fast as
class selectors (down to two instructions), but can
consume a lot of memory (megabytes of dispatch
tables for large class hierarchies); hashed general
selectors are significantly slower (≥ 43 cycles), but
consume less memory. Programmers don’t need to
choose a selector implementation up front; instead,
it is easy to switch between them later, on a per-
selector basis.

1 Introduction

My objects.fs package provided Java-inspired fa-
cilities for defining methods: Essentially the pro-
grammer defines a method selector for a certain
class or interface, and can then only define methods
for this selector for descendent classes of that class,
or (for interface selectors) for classes implementing
this interface.

One disadvantage of this approach and the way it
was implemented in objects.fs was that passing
an object of the wrong class to a selector was not
detected. Detecting this would be useful for debug-
ging, and also useful for, e.g., implementing proxies
that pass on every not-understood method call to
another object.

Also, some people argued that Smalltalk-style
methods, which can be defined for any class, would
be useful. They would allow the use of duck typing:
A type is defined as a set of selectors, and every
class/object for which methods are defined for these
selectors, has this type.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

At first the implementation of these features
seemed to me too expensive in run-time, and the
benefits did not appear to be very significant. But
eventually I learned about more efficient implemen-
tation techniques as well as additional uses for these
features, so I set out to devise objects2, which pro-
vides these features (as well as backwards compat-
ibility with objects.fs).

In this paper I look at the basic syntax (Sec-
tion 2), at various method dispatch techniques (Sec-
tion 3 and their performance (Section 5), and at
the minimally invasive ways offered by objects2 for
selecting between dispatch techniques (Section 6).
It also discusses (Section 4) how to implement the
current object pointer and measures the resulting
execution time (Section 5).

What this paper does not discuss whether you
should use Smalltalk-style methods and duck typ-
ing or use than Java/C++-like methods. Objects2
gives you both options (with a very easy transition
between them, and the choice available per selec-
tor), and it is up to you to decide which one you
want or need to use. This paper also does not give
a general documentation of objects2; the documen-
tation comes with the package.

2 Defining methods

Figure 1 shows an example program that defines
three classes: A, it’s child A1, and the unrelated
class B (apart from the common ancestor class
object, which is unavoidable in objects2).

It also defines two method selectors: foo and
bar; there are two method definitions for each of
these selectors. The first method definition for a
name defines the selector (a Forth word with that
name), any further method definition just defines
the method (an anonymous colon definition) and
makes it the method that the selector calls for the
current class and it’s children.1

The some-A1 foo call demonstrates that A1 in-
herits the foo-A method from A. The some-A bar

example demonstrates that objects2 reports if a se-
lector is invoked for a class for which no method is

1This kind of conditional definition is very unusual in
Forth; it is due to the fact that we we want to optionally
use duck typing, so we don’t want to have to define the se-
lector beforehand, as was done in objects.fs).

Ertl Methods in objects2

object class

:: foo ." foo-A" ;;

end-class A

A class \ child class of A

:: bar ." bar-A1" ;;

end-class A1

A heap-new constant some-A

A1 heap-new constant some-A1

object class

:: foo ." foo-B" ;;

:: not-understood (sel-xt obj --)

(sel-xt) some-A1 swap execute ;;

end-class B

B heap-new constant some-B

some-A1 foo \ prints foo-A

some-B foo \ prints foo-B

some-A bar \ method not understood

some-B bar \ prints bar-A1

Classes

S
el

ec
to

rs

A BA1object

not-understood nu-objnu-obj nu-obj nu-B

foo

bar

foo-A foo-A foo-B

bar-A1

udfoo

udbar udbar udbar

Figure 1: An example program and its
class×selector matrix

defined for the selector (in contrast to objects.fs,
which would just blindly try to execute some xt,
with unpredictable results).

Finally, the some-B bar call demonstrates the
not-understood feature: Any call to a selector
for a class for which no method is defined results
in a call to the not-understood method for this
class. By default (i.e., inherited from object),
not-understood just produces an error report (as
demonstrated by some-A bar), but you can define
your own method to deal with not-understood mes-
sages, and this is done here: The not-understood

method for B just invokes the original selector
(which is passed as xt) for some-A1, which even-
tually prints bar-A1.

Objects2 has a bunch of other features (e.g., for
defining instance variables), but they do not play a
role for the issues discussed in this paper, so they
are not discussed here.

B

class

data

data

some-B

foo

bar

not-understood

(not yet used)

foo-B

udbar

nu-B

inst. vars

Figure 2: Object some-B and it’s class B. Some-B
has no instance variables

3 Dispatch Techniques

3.1 Unhashed general selectors

If any selector can be called with an object of any
class, we have to implement a class×selector ma-
trix. Figure 1 also shows the matrix for the ex-
ample program. Some entries are defined directly
by the programmer (e.g., the entry for foo×A),
some are defined by inheritance (e.g., foo×A1);
the rest gets the xt of the word udselector

(short for undefined-selector) which calls
not-understood for the class and passes it the xt
of selector .

In practice, instead of creating one big matrix,
we store each column in the data of its class (see
Fig. 2). Each object starts with a pointer to this
class data. So the code for dispatching an unhashed
method is:

: unhashed-selector (u-offset "name" --)

create ,

does> (... object -- ...)

(object selector-body)

@ over @ + (object xtp) @ execute ;

We cannot resize the class after objects of the
class have been created: resizing might require mov-
ing the class data, i.e., updating the class pointers
in the objects; since we do not track objects, we can-
not do that. Therefore, we specify in advance how
many unhashed selectors there are (see Section 6).

VFX Forth translates a call to such a selector
into:

MOV EDX, 0 [EBX]

ADD EDX, [<selector-body>]

CALL 0 [EDX]

The memory access to the selector body cannot
be optimized away by VFX, because the user is al-
lowed to change the offset there at any time. How-
ever, it is possible to define selectors in a way that
avoids that problem:

Ertl Methods in objects2

Classes Selectors Cells
Minos 129 364 46956
GlForth 29 79 2291

Figure 3: Memory consumption of unhashed gen-
eral selectors

: do-unhashed-selector (object offset --)

over @ + (object xtp) @ execute ;

: unhashed-selector (u-offset "name" --)

>r : r> postpone literal

postpone do-unhashed-selector postpone ; ;

VFX compiles a call to such a selector into

MOV EDX, 0 [EBX]

CALL [EDX+<u-offset>]

Unfortunately, this version is only fast on com-
pilers that inline calls and optimize the result, like
VFX.

Figure 3 shows the memory consumption of the
dispatch tables of unhashed general selectors. For
large programs the size of the dispatch tables can
become a problem, because it grows approximately
quadratically with the size of the program.

3.2 Hashed general selectors

Larger programs have more classes and more selec-
tors, and usually the matrix is sparsely populated,
i.e., most matrix entries point to udselector . To
save memory, we can use a hash table for looking
up all the entries that are not udselector ; if no
entry is found in the hash table, we call undef (a
generic variant of udselector), which eventually
calls not-understood. As a key into the hash table,
we can use an integer computed from a class index
and a selector index: the class indices are spread so
far apart that a class index can be just added to the
selector index to get a unique key. Fig. 4 shows a
hash table for our example.

The code for the hashed dispatch is:

does> (... object -- ...)

@ (... object sel-id)

over object-class @ class-base @ +

(object key)

tuck hash-multiplier um* +

(key object hash)

table-mask and 2* cells meth-hash-table +

rot begin (object table-entry key)

over @ over = if \ right class/selector?

drop cell+ @ execute exit then

over @ 0= if

nip undef exit then

swap cell+ cell+ swap

again ;

foo-A

foo-A

foo-B

nu-obj

nu-obj

B::foo

A1::foo

A::foo

A::not-understood

object::not-understood

key value

nu-objA1::not-understood

nu-BB::not-understood

bar-A1A1::bar

Figure 4: A hash table for our example program

First this computes the key, then this key is
hashed with a simple hash function, then we per-
form linear probing in the hash table, until the key
matches our class/selector pair (then we execute

the method), or until we find an empty entry (then
we call undef). Note that the search loop is typi-
cally iterated very few times (ideally 0 times).

Whether the hashed or the unhashed version is
preferred depends on the memory and run-time re-
quirements of the application. E.g., if we assume
that each selector in Minos has four methods on
average, and that these methods are inherited to
four classes on average, then we have 5824 entries
in our hash table. We need either an 8K entry (16K
cell) hash table with a 71% load factor (which may
be slow), or a 16K entry (32K cell) hash table with
a 36% load factor, but that does not save much
memory compared to unhashed selectors.

Objects2 gives you the option of using the un-
hashed access for the most frequently used selectors
(also useful for selectors that have methods for most
classes), and hashing for the rest; see Section 6. By
using unhashed selectors for the most frequent se-
lectors, the relatively high load factor of the smaller
hash table becomes acceptable, because only infre-
quent selectors are hashed; also, there are now fewer
entries in the hash table, so the load factor is re-
duced somewhat.

Ertl Methods in objects2

class-selector u

class-selector v

class-selector w

class-selector x

object class

:: u ." A-u" ;

end-class A

object class

:: v ." B-v" ;

end-class B

A class

:: w ." A1-w" ;

end-class A1

A class

:: x ." A2-x" ;

:: u ." A2-u" ;

end-class A2

u

A-u

v

B-v

u

A-u

u

A2-u

w

A1-w

x

A2-x

A B A1 A2

data

un-
hashed

data

un-
hashed

data

un-
hashed

data

un-
hashed

size size size size

Figure 5: Class selectors. Different selectors (u and
v, w and x) have the same index (optional checking
data in gray)

3.3 Class selectors

Consider the following restriction: A selector can
only be used on a specific class and its descen-
dents. This means that two selectors for two non-
overlapping classes (i.e., where neither class is de-
scended from the other) can use the same index,
resulting in densely populated dispatch tables (see
Fig. 5) and lower memory consumption. We call
these selectors class selectors.

We define classes starting with the most ancestral
ones, and define all class selectors before we define
child classes; this allows a very simple management
of the selector indices: Every class has a current
maximum selector index; defining a new class selec-
tor increases the maximum, thus creating an index
for the new class selector. A child class inherits the
maximum from its parent (and the parent’s maxi-
mum stays the same from then on).

The dispatch code for class selectors without
checking is the same as for unhashed selectors. The

difference is in the index management and in the
resulting restrictions: We have a limited number of
unhashed selectors (the number is specified when
loading objects2, see Section 6), whereas the class
selectors are unlimited, but must satisfy the class
selector restriction. In objects2 the indices of the
class selectors start right after the indices of the
unhashed selectors.

Using a class selector on an object of the wrong
class will call the wrong method, or whatever is
found at the class selector’s offset from the start of
the class; if we are lucky, we get a crash right away,
if we are unlucky, the program does something we
don’t want.

We can have class selectors that check whether
they are invoked for the right class: In addition to
the method xt, we store the body address of the
selector and the size of the class structure (shown
in gray in Fig. 5). The selector then checks that its
offset is within the class, and that what is stored
right before the method is its body address. If not,
the selector can produce an error (useful if check-
ing is turned off after debugging) or perform not-
understood processing. The selector code for the
latter case is:

does> (... object -- ...)

(object sel-body)

dup last-class-selector !

tuck @ over object-class @

(sel-body object offset class)

2dup class-size @ u< if

(sel-body object offset class)

+ rot over @ = if (object p)

cell+ @ execute exit

then

drop

else

2drop nip

then (object)

last-class-selector @ cell+ @

message-not-understood1 ;

With the parameters above (364 selectors, each
with 4 methods that are inherited to 4 classes on
average), class selectors consume 5824 cells of dis-
patch tables without checking and 11648 cells with
checking. However, to work around the class se-
lector restriction, programmers are likely to create
deeper inheritance hierarchies and define selectors
higher in the hierarchy, so the memory savings of
class selectors are probably less than would be ex-
pected from the simplistic calculation above. The
extreme variant of this would be to have a common
ancestor class for all classes and define all selectors
there, so all selectors are available for all classes, but
with the same memory consumption as unhashed
general selectors (for the unchecked version; check-
ing is not necessary in this case).

Ertl Methods in objects2

interface

selector i1

selector i2

end-interface I

interface

selector j1

selector j2

end-interface J

object class

implements I

:: i2 ." A-i2" ;

end-class A

object class

implements J

:: j1 ." B-j1" ;

end-class B

B class

implements I

:: i1 ." B1-i1" ;

end-class B1

A B B1

interfaces
I

J

I

J

I

J

methods

interface methods
A-i2

B-j1 B-j1

B1-i1

Figure 6: Interfaces and their implementation

3.4 Interface selectors

The original objects.fs did not have general se-
lectors, so it included interfaces to make it possible
to go beyond the limitations of class selectors: An
interface is a set of selectors; you can define any
class to support an interface, and the selectors of
the interface can then be called for the class and its
descendents. Figure 6 shows an example. The code
for (unchecked) interface dispatch is:

does> (... obj -- ...)

(obj sel-body)

2dup @ (obj sel-body object if-offset)

swap @ + @

(obj sel-body if-table)

swap cell+ @ + @ execute ;

Here the selector stores (first cell) the offset of the
interface from the class pointer, and (second cell)
the offset of the method from the interface pointer,
and uses both offsets to access the xt of the method.

Every interface requires a cell in every class (not
just those that implement the interface); there can
be several selectors per interface, so interfaces are
somewhere between class selectors and unhashed
general selectors in functionality and memory con-
sumption.

Objects2 has general selectors, and interfaces
do not appear to add enough to justify the ad-
ditional complexity, so objects2 emulates inter-
faces with general selectors (for compatibility with
objects.fs).

3.5 Monomorphic selectors

Sometimes a programmer defines a method (and,
implicitly, a selector) to keep the program flexible,
but does not define another method for the selec-
tor for now. Then the selector is actually used
monomorphically, and dispatch can be very simple:

does> (... object -- ...)

@ execute ;

In other words, a monomorphic selector is a de-
ferred word (this version does not check that only
descendents of the class for which the method was
defined are passed to the selector).

4 Implementing the current

object pointer

Apart from method dispatch, there is another in-
teresting implementation issue:

Like objects.fs, objects2 has a current object
this. This is set on method entry from the top of
stack, and is visible inside the method.

This sounds like an ideal use for locals (in par-
ticular, (local)), but there is one catch: Standard
programs must not use more than one locals defini-
tion per colon definition. And unfortunately there
are Forth systems like VFX that rely on and en-
force this restriction. So if we use locals for this,
the programmer cannot use locals inside methods.

The other alternative is to define this as a value.
The disadvantages are that this approach requires
hardening against exceptions which may be difficult
in some cases, and multi-tasking would require a
user value (or user variable), which may be slower
than global values.

Another property of the value implementation is
that it allows us to access instance variables from
outside methods; this has benefits in debugging,
and can also be used to access instance variables
from ordinary colon definitions, which can be used
for factoring or for converting non-object-oriented
code to object-oriented code. This kind of usage
also has dangers, and some may prefer a local this
because it prevents this usage.

Ertl Methods in objects2

early binding
monomorphic
unhashed/class does>
unhashed/class :
checked class

interface
hashed (0 collisions)
hashed (1 collision)
hashed (2 collisions)
hashed (3 collisions)

VFX value VFX local VFX none Gforth value Gforth local Gforth none

cycles Core2 Duo E8400

0

20

50

100

150

Figure 7: Time for one method call (plus overhead) in the micro-benchmark, varying dispatch code, Forth
system, and this implementation

5 Execution time results

To compare the run time of various method dis-
patch (and current object pointer) techniques, I
wrote a microbenchmark. It’s a simple loop whose
body calls the same selector 10 times in a row, and
the object for which it is called is always the same
(the method pushes that on the stack). I.e., caches
should be hit and indirect branch prediction should
be optimal.2 The called method just increments
the top-of-stack and pushes an object on the stack,
but of course it does the handling of this (except
for the none variant, which just drops the object
from the stack and pushes the object again). The
shown times include the loop overhead around the
selector calls. We also compare with early binding,
where the method is compiled directly into the loop
(and VFX inlines it) instead of going through some
selector code. For the hashed selector, four timing
variants are measured (by initializing the hash table
appropriately): with 0, 1, 2 and 3 collisions (for this
particular lookup) when probing the hash table; for
a load factor of 50% (the value I recommend), most
lookups should have zero or one collision.

Figure 7 shows the times in cycles per iteration,
on a 3GHz Core2 Duo E8400. Two different Forth
systems are used: VFX, an analytic native-code
compiler that produces fast code for straight-line
code; and Gforth, a system with a simpler code gen-
eration strategy (concatenate C-compiler-generated
code fragments). Also, the two variants of imple-

2That’s not realistic, but indirect branch prediction
should affect every technique in the same way and cache
misses should be relatively rare for frequently-executed code;
and rarely executed code does not have a significant influence
on performance.

menting this are compared with each other, and for
perspective, we also compare with not having this

and (in this case) just dropping the object passed
into the method.

All dispatch techniques except checked class se-
lectors and hashed selectors have about the same
performance on VFX, except that early binding is
particularly fast for the none case, because VFX
manages to optimize most of the loop body away: it
inlines all the calls, and then VFX optimizes nearly
all the dropping and pushing of the object away,
leaving just the increments.

Interestingly, even though the VFX code for the
unhashed selector using : looks much better than
when using does>, this is not reflected consistently
in the timing data.

Looking at the other dispatch techniques, on
VFX a value this costs about 3–4 cycles more than
no this and a local this costs about two more cy-
cles. With more substantial methods, an out-of-
order CPU like the Core 2 Duo will probably over-
lap the this-handling overhead with other code,
reducing the cost for this even further.

The checked class selelector and the hashed se-
lector are quite a bit slower on VFX: 30–35 cycles
slower for the checked class selector, 43–50 cycles
slower for the hashed selector with zero collisions.
Each collision adds 9–10 cycles on average. The dif-
ference from the other selectors is surprisingly large,
especially given the high speed of the other selec-
tors. I believe this is mainly due to the fact that
VFX’s register allocation is limited to straight-line
code (the other selectors all perform straight-line
code). Hardware optimizations in the CPU might
also play a role, even though the benchmark was
modified so that the loop stream detector [Int12]

Ertl Methods in objects2

\ 3 unhashed selectors

3 constant objects2-unhashed-selectors

\ hash table size: 2048

11 constant objects2-hash-table-shift

\ warn if >1200 methods in hash table

1200 constant objects2-max-occupation

require objects2.fs

\ declare three selectors, such that they

\ are unhashed

selector draw

selector foo

selector bar

\ declare class and monomorphic selectors

class-selector baz

monomorphic-selector flip

\ load class libraries

require graphical.fs \ graphical class

require wine.fs \ class about wine

\ load application code

require bla.fs

require blubb.fs

Figure 8: Choosing the implementation of selectors

should not come into play.

Unlike VFX, Gforth shows differences in perfor-
mance between early binding, monomorphic, un-
hashed, and interface selectors, with the unhashed
selector (implemented with does>) being 21–24 cy-
cles slower than early binding. Class selectors using
: as shown are significantly slower, because Gforth
does not inline. The extra cost for checked class
selectors is 40–45 cycles, and hashed dispatch with-
out collisions costs 32-40 cycles more than unhashed
dispatch, and each collision adds 34 cycles on aver-
age.

In Gforth a local this is faster than a value this
by about 10 cycles, and not dealing with this is
another 0–12 cycles faster.

Comparing unchecked class and interface selec-
tors (from objects.fs) with unhashed and hashed
selectors (new in objects2), we see that the added
flexibility of the objects2 selectors either costs space
(for the unhashed selector) or time and not as much
space (hashed selector). Whether these costs are
acceptable and whether the flexibility is worth the
cost depends on the application and its environ-
ment. One of the features of objects2 is that it is
easy to switch between these different selector vari-
ants, on a per-selector basis, as discussed in the
following section.

6 Optimizing Dispatch

Objects2 offers the choice of using unhashed
or hashed general selectors, class selectors, or
monomorphic selectors. Moreover, you can make
the choice on a per-selector basis, in a minimally
invasive way: You do not need to change the class
or method definitions, which may be libraries which
you may not want to change. Instead, you can spec-
ify in the load file of the application which selectors
use which dispatch implementation. The rest of this
section describes this feature.

By default selectors are general selectors. The
first n selectors are unhashed, the rest is hashed.
You can determine the unhashed selectors by set-
ting n before loading objects2.fs and then declar-
ing the n selectors that you want to be unhashed.

You can also set the number of classes and the
hash table size to reduce the memory consumption
to the necessary amount or to allow more than the
default number of classes and hash table entries.

You can also declare a selector as a class selector
or monomorphic selector in the load file.

Here is an example of how a load file might look:

Note that these selector declarations happen out-
side any class, they just influence what the later
method definitions do. Actually, implementation-
wise, these “declarations” define a selector word of
the desired kind, and a later method definition es-
sentially just defines the method and inserts the xt
into the appropriate table for this selector and class;
in case of a class selector the first method definition
inside a class also sets the root class for this selec-
tor, and every other method definition has to be in
a descendent class of that class.

7 Missing language features

There are two language features that would be use-
ful for implementing objects2 and which Forth sys-
tems usually provide in some way, but which are
not standardized:

body> (addr -- xt) would allow getting the
xt of the selector for not-understood processing.
But since this is not standardized, every selector
has to store its xt in an extra field. Absence cost:
one extra cell per selector.

>definer (xt -- definer) would allow to
check if a word has been defined as a selector or not,
and which kind of selector. But since this word is
not standardized, objects2 maintains several linked
lists, one for each kind of selector, and if it needs to
know the information, it searches these linked lists.
Absence cost: another extra cell per selector, more
CPU consumed by linear searches.

Ertl Methods in objects2

8 Related work

There is a large body of work on implementing
object-oriented languages in general and method
dispatch in particular [ACFG01, DH96, VH96,
AGS94, ZCC97]. Ducournau [Duc11] presents a
very good survey, but it helps to be familiar with
some of the implementation techniques in order to
understand this survey. The present work does not
introduce any new techniques; instead, it makes a
few of the existing techniques available to Forth pro-
grammers in a way that allows them to switch be-
tween different techniques easily, as appropriate for
the application.

There have also been a number of object-oriented
Forth extensions. Rodriguez and Poehlman [RP96]
list 23, and since then more have been introduced,
including objects.fs [Ert97]. This paper focuses
on the main feature where objects2 differs from
objects.fs: Allowing selectors to be used on ar-
bitrary classes; it discusses the implementation of
this feature and presents performance data.

A relatively recent entry in the collection of
object-oriented Forth extensions is FMS (Forth
meets Smalltalk). Like objects2, it supports defin-
ing methods for a given selector for any class. The
implementation is not much documented, but seems
to be based on a compressed table. I do not under-
stand the table format enough to evaluate its space
consumption. The dispatch code is relatively long
compared to the variants shown above, so I expect
it to take at least as much time as objects2’s hashed
dispatch with 0 collisions. A more substantial com-
parison is future work.

9 Conclusion

Fast, small, flexible (duck typing): Pick any two.

Fast, small: Class selectors, monomorphic selec-
tors

Fast, flexible: Unhashed general selectors

Small, flexible: Hashed general selectors

Objects2 allows you to choose between these
method selector implementations. Moreover, you
can choose separately for each selector, and you can
change the choice easily, in many cases not even
touching the actual class code.

References

[ACFG01] Bowen Alpern, Anthony Cocchi,
Stephen Fink, and David Grove. Effi-
cient implementation of java interfaces:
Invokeinterface considered harmless.

In Conference on Object-Oriented
Programming, Systems, Languages &
Applications (OOPSLA ’01), pages
108–124, 2001.

[AGS94] E. Amiel, O. Gruber, and E. Simon.
Optimizing multi-method dispatch us-
ing compressed dispatch tables. ACM
SIGPLAN Notices, 29(10):244–244, Oc-
tober 1994.

[DH96] Karel Driesen and Urs Hölzle. The
direct cost of virtual function calls
in C++. In Conference on Object-
Oriented Programming Systems, Lan-
guages & Applications (OOPSLA ’96),
pages 306–323, 1996.

[Duc11] Roland Ducournau. Implementing stat-
ically typed object-oriented program-
ming languages. ACM Computing Sur-
veys, 43(3):Article 18, April 2011.

[Ert97] M. Anton Ertl. Yet another Forth
objects package. Forth Dimensions,
19(2):37–43, 1997.

[Int12] Intel. Intel 64 and IA-32 Architectures
Optimization Reference Manual, April
2012. Order number 248966-026.

[RP96] Bradford J. Rodriguez and W. F. S.
Poehlman. A survey of object-oriented
Forths. SIGPLAN Notices, pages 39–42,
April 1996.

[VH96] Jan Vitek and R. Nigel Horspool.
Compact dispatch tables for dynami-
cally typed object oriented languages.
In Tibor Gyimóthy, editor, Compiler
Construction (CC’96), pages 309–325,
Linköping, 1996. Springer LNCS 1060.

[ZCC97] Olivier Zendra, Dominique Colnet, and
Suzanne Collin. Efficient dynamic dis-
patch without virtual function tables.
the SmallEiffel compiler. In Conference
on Object-Oriented Programming Sys-
tems, Languages & Applications (OOP-
SLA ’97), pages 125–141, 1997.

