A Forth-Based CAD for System-Level Microelectronic Design

Ilya E. Tarasov (Measurement systems), Veniamin G. Stakhin, Anton A. Obednin (IDM-Plus)

This article describes features of use of the Forth-based engine for the decision of a problem of creation microelecrtonic CAD. This project is carried out under a state contract, supported by the Ministry of Science and Education of the Russian Federation.

- · Early integration of embedded software, that enables complex hardware and software cosimulation.
- · Modeling at the transaction level (TLM, Transaction Level Modeling).

• Integration with industry standard software tools, such as topology-level CAD software, and, from the other side, mathematical and DSP software tools and high-level languages.

· Using script languages for automated creation of a project and running the design flow in a batch mode.

Quark-Forth, a C++ based Forth engine, interacts with Qt shell and providing a design flow

Quark CAD stack processor cores (included in a component library

The RISC-processor, named QuarkR, is a 32-bit general-purpose processor.

- \cdot Harvard architecture with a 3-stage pipeline
- · 32 general-purpose registers
- · 3-address and stack-based register file access, when the top of data stack is initially located in R31
- · Independent return stack (32 cells deep), switchable to a stack in the external data memory
- \cdot 32-bit wide command
- · Base Forth commands implemented in hardware as a command set extension (no

mode switching is required)

DSP:

· Independently running MAC engines, 1 or 2 blocks in each DSP core.

· Control processor unit, 32-bit stack core with 8-bit wide commands; command set is similar to that of QuarkR Matrix processor

· 4 cells deep data stack, 4 cells deep return stack

 \cdot Harvard architecture with separate code and data memories for each core

 \cdot Up to 32x32 processor unit grid

 \cdot Local links, global column buses and system bus interface

