
Filters for Unicode Markup, a work in progress
report.

Bill Stoddart and Angel Robert Lynas
University of Teesside, UK

September 19, 2008

Abstract

The advent of Unicode extends the restrictive ASCII character set
with millions of characters. However, we still have the same keyboards!
Very often a document or program will require a limited set of Unicode
characters in addition to characters available from the keyboard. We
describe an approach which allows a user to provide a “markup” for
each special character required, such as \alpha for the Greek letter
α, and in which the markup is replaced by the character it represents
when typed at the keyboard or streamed from file. The techniques
used include vectoring Forth’s keyboard input to enable markup se-
quences to take effect during Forth command line input, and writing
Unix filters in Forth. The latter allows the provision of wrappers that
allow the use of Unicode markup with any Unix editor that can accept
input from the standard input device.
keywords. Forth, Unicode, Unix Filters, UTF-8, RVM-Forth

1 Introduction

The Unicode Standard, available at unicode.org, provides a description
of an extended character set encompassing mathematical symbols and the
alphabets of most natural languages. The matter of character encodings
is separated from the form of the characters themselves, and the encoding
that has become dominant within Linux distributions is known as UTF-
8, in which characters are represented within files or computer memory as
a sequence of between one and four bytes. Support for Unicode is now
becoming widely available, although it is still not included in some well known
packages, for example Lesstif, the freeware version of Motif. Incorporation

1

of a UTF-8 locale is non-trivial, as it breaks an implicit assumption under
which almost all packages have been written, that each character occupies
an equal amount of space. The Forth 93 Standard looked forward towards
internationalisation, but assumed characters would remain of equal length
but might become longer. Whilst such encodings are defined in Unicode,
they have not proved to be the most popular ones, and anyone wishing to
display a Unicode character on an Linux X Windows terminal or editing
window will probably need to do it using the variable length encodings of
UTF-8.

Unicode encoding issues were raised in 1998-9 by Stephen Pelc, Steve
Coul and Peter Knaggs. An updated discussion from Stephen Pelc and Peter
Knaggs appeared in 2001. An RFD on extended characters, designed to
cope with all Unicode encodings, has been posted to the Forth Standards
forum on forth200x.org by Bernd Paysan. A discussion paper “Xchars, or
Unicode in Forth” by Anton Ertl and Bend Paysan appeared in EuroForth
2005 proceedings. Support for wide characters has been included in GForth
and BigForth.

We are currently including UTF-8 support within our RVM-Forth (Re-
versible Virtual Machine Forth) environment, to gain access to mathematical
symbols and other symbols commonly used in mathematics, such as letters
from the Greek alphabet. We do this by providing a markup sequence for
each special character required, e.g. \alpha for the Greek letter α. When
the markup sequence is entered from the keyboard, it is immediately replaced
by the Unicode character it represents. We provide this facility at the Forth
command line, and also make it available for use in editing via a Unix filter,
also written in Forth.

2 Preparing RVM-Forth to act as a Unix Fil-

ter

RVM-Forth is a subroutine threaded Forth. It has a small nucleus generated
by “meta compilation” of a description of Forth written in Forth. Meta-
compilation of the nucleus generates a Gnu Assembler file which is linked
with object code generated from parts of the nucleus which are written in
C. This provides an executable Forth Nucleus. When the Forth Nucleus is
invoked, command line arguments are provided in the usual C style, and
these are converted to a single string which is interpreted as though it where
Forth terminal input. The usual startup sequence is:

RVM-FORTH HI

2

Where HI is a command that loads additional utilities, provided as Forth
source code files, which are incrementally compiled. This process appears to
the user to take virtually no time.

To use RVM-Forth to provide a UTF-8 markup filter when editing the
file example.r with the Nano editor, we invoke it from a script file NANO as:

NANO example.r

Where NANO contains:

#! /usr/bash

RVM_FORTH UTILS ALSO UTF8 FILTER | nano -c -O -E -T 3 $1

stty echo icanon

Here the command UTILS loads the same utilities as HI, but does not
print a sign on message. Forth is taking its input from the keyboard, and
piping its output to Nano.

Unix, by default, uses buffered keyboard input in which a whole line
is input and echoed to the terminal before the characters are seen by a
program. RVM-Forth configures Unix keyboard input to be unbuffered, so
that it receives one character at a time without that character being echoed
to the screen. The second line of the file is included to restore normal Unix
terminal handling when the filter terminates.

The commands ALSO UTF-8 FILTER add the Forth wordlist UTF-8 to
Forth’s search order, then invokes the command FILTER, which is from this
wordlist. FILTER records keyboard input in a circular “markup buffer”, as
well as generally passing it through to standard output. Whenever a defined
markup sequence matches with the characters most recently received into the
markup buffer, FILTER reinitialises the markup buffer, outputs characters to
delete the markup sequence from the edit screen, and replaces it with the
associated Unicode character.

The Forth side of the filter is non-terminating, and overall termination
occurs when the user exits from the editor.

A second possible use of the same filter is as
RVM_FORTH UTILS ALSO UTF8 FILTER < raw.r > cooked.r

In this case Forth is receiving its input from file and must leave configuration
of terminal input to the Unix filter mechanism. To achieve this Forth needs
to test whether its input is coming from a keyboard during its configuration
sequence, which it does by issuing a Unix system call via the C function:

int stdin_is_kbd() /*return -1 (Forth true flag) if stdin is the

keyboard, and 0 if stdin has been redirected to a pipe or file */

{ if (system("[-t 0]") == 0) return -1; else return 0 ;

}

3

The functionality of this command is made available as a Forth command
by the following code1

CODE STDIN_IS_KBD (-- f, returns true if stdin is the keyboard)

xchg %esp,%esi

call stdin_is_kbd

push %eax

xchg %esp,%esi

ret

ENDCODE

A second issue is that, from our observations of Unix filter behaviour,
it seems that FILTER will need to terminate when the end of the input file
is reached. The different termination behaviours required of FILTER are
provided by the loop test in the following definition.

: FILTER (--, pre: stdin is the keyboard or a file.

Filter input, replacing markup sequences with the

corresponding UTF-8 character codes)

INITIALISE-BUFFER

BEGIN ?KEY STDIN_IS_KBD OR WHILE FILTER-KEY REPEAT BYE ;

When receiving from a file, FILTER will terminate when no further bytes
are available, which occurs at he end of the file. At this point (and not
before) ?KEY returns a false flag.

Summarising, to enable RVM-Forth for Unix filter applications we have
had to control the output of the RVM-Forth sign on message to ensure it does
not occur during Filter deployment, and make standard input configuration
dependant on whether the system finds it is receiving input from a keyboard
or a file. When running RVM-Forth as a filter which pipes its output to an
editor, the Forth filter need not explicitly terminate as it will be terminated
externally when the editor terminates. When Forth runs as a filter which
receives its input from a file, it must terminate when the end of the file is
reached, and this will correspond to ?KEY returning a false flag.

1We do not use the elegant postfix syntax of the classical Forth assemblers because
our assembly code is passed through to the Gnu assembler after processing for control
structures and code definitions, making it convenient to use the Gnu AT&T syntax for
our assembler commands.

4

3 Recognising and acting upon markup se-

quences

The association between markup sequences and UTF-8 character encodings
is recorded as a sequence of ordered pairs using the RVM-Forth Sets Package.

Part of the sequence which records Greek alphabetic characters, for ex-
ample, is:

STRING INT PROD [" \GAMMA " CE93 |-> , " \DELTA " CE94 |-> ,

" \THETA " CE98 |-> , " \LAMBDA " CE9B |-> , " \XI " CE9E |-> ,

" \PI " CEA0 |-> , " \SIGMA " CEA3 |-> , " \PHI " CEA6 |-> ,

..]

Here we are constructing a sequence of string integer pairs. The open square
bracket is a start sequence bracket. Strings are enclosed by quotes, and
|-> is the maplet symbol, which removes two elements from the stack and
constructs an ordered pair. The following comma compiles the ordered pair
as the next sequence element.

”\GAMMA ” is the markup string for a capital gamma (Γ) character, and
CE93 is the UTF-8 hexadecimal encoding for the character, which occupies
two bytes. As each keyboard character is entered, it is added to the circular
markup buffer. The text in the markup buffer is then compared with the
markup sequences to see if any markup sequence matches the most recent
text in the buffer. If it does, we re-initialise the markup buffer, backspace and
erase the markup sequence on the screen, and output the UTF-8 character.

Some input keys require special treatment. A backspace results in the
last character in the markup buffer being removed if the buffer is not empty.
A new line will clear the markup buffer.

No attempt is made to handle escape sequences. These are recorded in the
markup buffer and passed though to standard output like normal key strokes.
This means, for example, that using the cursor movement keys during entry
of a markup will prevent that markup being recognised. This can actually
be useful, as it provides a way of entering a markup sequence without hav-
ing it transformed into its corresponding Unicode character. It also means,
however, that spurious markups can occur. For example, the left arrow key
generates the hex byte sequence 1B 5B 44. Since 5B 44 corresponds to [D,
then if we include [D as a markup sequence, it will be spuriously recognised
when a left arrow key is entered.

5

4 Experience with Unix editors

We have previously integrated Nedit into our Forth IDE. Typing SEE <word>

at the Forth command prompt will cause Nedit to open the source file con-
taining the definition of <word> in read only mode at the line where it is
defined. EDIT <word> will open the file at the same place but in read/write
mode. Nedit has the advantage of supporting a read only mode and of dis-
playing line numbers. Unfortunately it is not suitable for UTF-8 encodings
as it is based on Lesstif, which currently has no UTF-8 locale support.

Gedit handle files with extended characters, and some old versions of
Gedit claim to have options for accepting input from STDIN. This option is
not recorded on current documentation however, and we have not been able
to make Gedit work with our UTF-8 filter. Another disadvantage is that
there is no explicit read only mode. We have nevertheless implemented an
option for Gedit to be the associated editor, and we use a Bash script to
provide a read only wrapper for Gedit when a browsing mode is required.

Kate can also handle extended characters, and looked a promising candi-
date for use with a filter. In the Kate handbook,

(docs.kde.org/stable/en/kdesdk/kate/kate.pdf)
we read, under command line options:

kate --stdin

Reads the document content from STDIN. This is similar to the

common option - used in many command line programs, and allows

you to pipe command output into Kate.

Whatever this might mean, it does not allow a filter configuration similar
to the one used with Nano above. Standard output can be piped into Kate
with commands such as:

ls | kate --stdin

but we have not been able to use Kate with our UTF-8 filter in such a way
that user input to Kate is passed through the markup filter.

Nano needs no special option to accept input from STDIN, and it works
perfectly with the filter when the script NANO is invoked from the Unix
Shell. However, when Nano is invoked from a system command sent by
Forth, as when using EDIT, it sometimes fails to hit the correct line in the
source file and also does not always record new lines correctly during the
subsequent editing session.

6

5 Markup filtering of the Forth command line

The markup of utf-8 characters is achieved at the Forth command prompt
by vectoring the execution of the Forth Standard ACCEPT to UTF8-ACCEPT.
ACCEPT accepts the input of a given number of characters from the console
into an input buffer, displaying characters as they are entered and termi-
nating on receiving a new line or obtaining the given number of charac-
ters. UTF8-ACCEPT has the additional behaviour of storing received char-
acters in the markup buffer and checking the markup buffer for a match
against the possible markup sequences, such as \alpha . When a match is
found, backspaces are output to delete the markup sequence from the screen,
and the corresponding Unicode character is output in its place. Termination
occurs on receipt of a new line character, or when the given maximum num-
ber of bytes have been received into the input buffer. Input of a backspace
character causes the last character in the markup buffer to be removed, if it
exists, and causes the last character of the input buffer to be removed. This
latter may occupy between one and four bytes.

6 Adapting RVM-Forth to UTF-8 Unicode

Switching character representation to UTF-8 revokes the assumption under
which RVM-Forth was written, that each character occupies one byte, and
also the assumption, taken in the Forth Standard, that each character occu-
pies an equal amount of memory space known as a “char location”. With
UTF-8 encoding a string of n characters may occupy more than n address
units, leading to possible buffer overruns if we continue to rely on our old
assumptions.

We use the abbreviation pchar, introduced Stephen Pelc and Peter Knaggs.
A pchar refers to a “primitive character”, from the ASCII character set, and
requiring one char location of storage. In the UTF-8 encoding, other, “ex-
tended characters”, occupy between 2 and 4 character locations.2

The current Standard description of ACCEPT has the signature:
(c-addr +n1 -- +n2)

and a description that begins with: “Receive a string of at most +n1 char-
acters..”. This needs to be re-expressed as “Receive a string of length at
most +n1 address units”. There are further issues if markup is used to enter
extended characters. After entering “\alpha \beta ” we have the two char-

2,This is not quite accurate, since, in some alphabets, characters may be written with
diacritical marks which themselves are encoded as separate characters. However, we al-
ready have enough to deal with here..

7

acter string αβ, which of four address units in length. However we have to
allow a buffer length of ten in order to enter the string. Where a pchar oc-
cupies one byte and UTF-8 encoding is used, the maximum character length
is 4 bytes. If m is the length of the longest markup sequence and m > 4,
then to allow entry of n characters it is sufficient to accept a string of length
4 ∗ (n− 1) +m address units.

ACCEPT is typical of a number of Standard words which deal with char-
acters and whose glossary definitions require rewording in terms of character
locations rather than characters. A new wordset is required to deal with the
special operations required of wide characters, and here the current RFD
provides valuable suggestions.

7 Conclusions and future work

Using markup to access a limited range of special characters allows us to write
Forth code which can makes use of classical mathematical symbols. This is
particularly beneficial to RVM-Forth which has an extensive set package and
supports λ notation. Future work includes rewriting the mathematical parts
of the RVM Forth source code using the extended character set where ap-
propriate, and writing infix expression compilers for set expressions using
the techniques outlined in our EuroForth 2008 paper ”Using Forth in a Con-
cept Oriented Computer Language Course.” Further work is also envisaged
to get the Forth IDE words SEE and EDIT working with more editors, and
combining this functionality with that of the markup filter.

8

