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Abstract
The canonical Forth Virtual machine has remained essentially the same since its inception.  
Modern silicon implementations and compiler techniques indicate that the VM as used in  
practice  differs  from this  model.  It  is  time  to  consider  overhauling  the  canonical  Forth  
Virtual Machine. In particular, the addition of address registers is considered.

Introduction
Classical or canonical Forth views the world as a CPU connected to main memory and two 
stacks which are not addressable, and are quite separate from main memory.  C views the 
world as a CPU connected to memory, which includes a list of frames (usually a stack of 
frames) which must be in addressable memory.

By adding the necessary registers for the frame stack to the canonical  Forth machine, we 
arrive at the basic design of the SENDIT VM, which was discussed in various papers in the 
late 1990s. SENDIT (EP9152) was a project carried out under the European Union’s ESPRIT 
research and development programme. SENDIT was based upon the results of a preceding 
project,  PROCIC  EP5497,  and  produced  tools  for  the  development  of  heterogeneous 
networks for use in embedded and real time applications.
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The SENDIT VM looks remarkably similar  to other stack machine CPUs derived from a 
Forth architecture and designed to execute C efficiently.

Another branch of the Forth virtual machine has been called machineForth, and appears in 
software implementations such as ColorForth and various CPUs from iTV, Ultratechnology 
and IntellaSys, most lately in the SEAForth S24 multicore chips.

Other CPU core designs include MicroCore and designs from Bernd Paysan, Brad Eckert and 
Chris Bailey.

What distinguishes these cores is that they introduce data cells, registers and operations that 
are unsupported by the canonical  Forth machine.  In the description I have chosen not  to 
include the TOS, NOS and TOR virtual registers. TOS and NOS are common across virtually 
all implementations as ALU inputs and outputs. TOR has wide variation in implementation 
for anything other than to hold a return address.

This paper explores the impact  of these designs on how the Forth programming language 
could be changed.
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Why update the Forth Virtual Machine?
The canonical Forth virtual machine is weak in several areas.

1) It does not execute C well, which is important for commercial exploitation of silicon 
stack machines.

2) It is weak for DSP operations, which restricts performance in embedded applications 
without changes to the VM or much increased compiler complexity,

3) Without  index operations,  it  is  cumbersome to  deal  with complex  data  structures 
whose base address is passed as an argument to a word.

Execution of C requires a frame pointer for access to local variables and buffers.

DSP operations often require three or four parameters to be manipulated regularly, e.g.
1) source address, destination address and length,
2) first source address, second source address, destination address and length.

Canonical  Forth  requires  ugly  source  code  to  deal  with  these  situations.  Silicon 
implementations such as C18, FR32 and the Teesside University machines have provided 
index and scratch registers, whereas others have provide more access to the top of the return 
stack. Using the top of the return stack as a loop counter has been common for some time, 
e.g. the FOR ... NEXT loop structure.

The Forth community has long talked about TOS (top of data stack), NOS (next/second on 
data stack) and TOS (top or return stack). These are not quite enough for DSP operations an 
Chuck Moore's  current  silicon  includes  A and B registers  which  are  used both  as  index 
registers and for scratch storage.

A new Forth Virtual Machine
I claim no particular  novelty in  this  machine.  It  is  a  synthesis  of  practice  that  has  been 
observed in several software and silicon machines over the years. What triggered this paper 
was  seeing  that  Forth  various  compilers,  e.g.  Gary  Bergstom's  AFT  (Another  Forth 
Translator) have either implemented additional registers and facilities in their Forth VMs, or 
are seriously considering doing so.

If we look at what is common between these designs we find the following that can be treated 
as registers rather than just as ALU connections.

A Register  used  as  a  scratch  or  index  register,  often  with  auto-increment 
and/or auto-decrement addressing.

B Register  used  as  a  scratch  or  index  register,  often  with  auto-increment 
and/or auto-decrement addressing.

LP Local frame pointer with base+literal indexed addressing.

UP User  area  pointer  with  base+literal  indexed  addressing  for  thread-local 
storage.

Table 1: Additional Forth VM registers
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Inspecting  various  Forth  implementations  and  source  code,  we  can  make  various 
observations:

1) Use of the A and B registers considerably reduces the need for local variables.
2) Use of the A and B registers can considerably reduce stack manipulation in both 

source and compiled code.
3) Although  UP  can  be  implemented  as  a  variable,  most  Forth  systems,  especially 

embedded systems, implement it using a CPU register.
4) What distinguishes the A/B pair  and the LP/UP pair is that  A/B implement auto-

increment addressing, and occasionally auto-decrement addressing. The LP/UP pair 
implement base + offset addressing.

5) The use of the scratch registers improves source code density (level of abstraction) 
and reduces stack shuffling at basic block boundaries and avoids complexity in code 
generators.

In order to avoid mandating use of these registers, we can simply rename them in terms of 
how they are used:

A Register  used  as  a  scratch  or  index  register,  often  with  auto-increment 
and/or auto-decrement addressing.

B Register  used  as  a  scratch  or  index  register,  often  with  auto-increment 
and/or auto-decrement addressing.

X Memory pointer with base+literal indexed addressing.

Y Memory pointer with base+literal indexed addressing.

Table 2: Additional registers in the new VM
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Wordsets

A and B registers
This a fully featured wordset. Some systems only provide auto-increment/decrement on the A 
register. On some systems, the B register cannot be read. The A and B registers provide the 
source and destination address pointers used for block, string and DSP operations as well as 
providing scratch storage.

>A \ x --
Writes to the A register.
>B \ x --
Writes to the B register.
A> \ -- x
Reads the A register.
B> \ -- x
Reads the B register.
A@ \ -- x
Read the memory pointed to by the A register.
A! \ x --
Write the memory pointed to by the A register
B@ \ -- x
Read the memory pointed to by the B register.
B! \ x --
Write the memory pointed to by the B register
A@+ \ -- x
Read memory pointed to by A, increment A by one cell. A post-incremented read.
B@+ \ -- x
Read memory pointed to by B, increment B by one cell. A post-incremented read.
A@- \ -- x
Read memory pointed to by A, decrement A by one cell. A post-decremented read.
B@- \ -- x
Read memory pointed to by B, decrement B by one cell. A post-decremented read.
A!+ \ x --
Write to the memory pointed to by A, and update A.
B!+ \ x --
Write to the memory pointed to by B, and update B.

X and Y registers.
The X and Y registers provide indexed addressing. In Forth they can be used to implement 
the USER area and local frame pointers. 

>X \ x --
Writes to the X register.
>Y \ x --
Writes to the Y register.
X> \ -- x
Reads the X register.
Y> \ -- x
Reads the Y register.
nX@ \ n -- x
Read the memory pointed to by the X register plus n (literal) address units.
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nX! \ x --
Write the memory pointed to by the X register plus n (literal) address units.
nY@ \ -- x
Read the memory pointed to by the Y register plus n (literal) address units.
nY! \ x --
Write the memory pointed to by the Y register plus n (literal) address units.

Biquad filter example
My thanks go to Gary Bergstrom for permission to publish this code.

: *. \ fr1 fr2 -- fr3
\ Fractional multiply.
  +1. */  ;
: 1STEP+ \ sum -- sum'
\ Perform a multply/accumulate step, incrementing both
\ pointers.
  B@+ A@+ *. +  ;
: 1STEP- \ sum -- sum'
\ Perform a multply/accumulate step, incrementing the
\ coefficient pointer and decrementing the data pointer.
  B@+ A@- *. +  ;
: SHIFT2 \ fr --
\ The last step of the filter. The current data item
\ is shifted into the next data slot and replaced by fr.
  A@ SWAP A!+ A!+ ;
: (BIQUAD) \ frx -- fry
\ The core of the biquad filter operation.
  DUP >R
  B@+ *. ( initial sum = B0*input )
  1STEP+ 1STEP-  R> SHIFT2
  1STEP+ 1STEP-  ;
: BIQUAD \ fx addr-filt addr-coef -- fry
\ A single order biquad filter.
  >B >A  (BIQUAD) DUP SHIFT2  ;
: 2xBIQUAD \ fx addr-filt addr-coef -- fry
\ A second order biquad filter.
  >B >A (BIQUAD) (BIQUAD) DUP SHIFT2  ;
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