Forth System Hooks — Metaobject Protocol in Forth Style

Ulrich Hoffmann
uh@fh-wedel.de

September 18, 2008

Abstract

The ANS Forth Standard and its follow up standard effort, Forth 200x, allow for
writing Forth applications portable to a wide range of commercial and open source
Forth systems. One area of Forth which has been notoriously hard to standardize
is the area of meta/target compilers as well as advanced compiler and interpreter
extensions.

Many Forth systems implement system specific extension mechanisms in order
to support just their special meta/target compiler but there is no common practice
how to do so. One extension mechanism is to place execution vectors — or hooks
— at key positions in the Forth system. In the un—extended case, the vectors have
no or a default behavior and in the extended case the can get sophisticated and
elaborated behavior.

One example of a very simple hook would be a vector notfound in the typical
outer interpreter, which would be located right at the end when both, token lookup
in the dictionary and the conversion of the token to a number, failed. In the un—
extended case notfound would issue an error message (complaint) about an unknown
token. In the extended case, say hexadecimal number input with $—prefix, notfound
could try a hexadecimal number conversion, and leave the appropriate number on
the stack, or issue an error message as before.

We could write a hexadecimal number input with $—prefix as a portable Forth
system extension, if we would agree on the hook notfound and its default behavior.

Other extensions that come to mind are object oriented systems with advanced
search order requirements such as Manfred Mahlows CSP (Context Switching Pre-
lude) system. It also can benefit from well defined system hooks.

The idea of hooks is quite common, not only with Forth system but also with
operating systems in general. The EMACS editor provides a vast collection of hooks
for all kinds of extensions.

In the context of Common Lisp’s Object System CLOS, a technique called the
Meta Object Protocol has been developed by Gregor Kiczales in the early 1990s
which allowed to implement an early form of aspect oriented programming. The
advantage of their unique approach was that the CLOS community widely accepted
the functionality of their hook pendants as defined in the book The Art of Meta
Object Programming (AMOP). As a result AMOP based CLOS extensions were
portable over a wide variety of CLOS implementations.

The talk will give a short overview of hooks and the CLOS meta object protocol
and will also propose possible Forth system hooks in traditional Forth implementa-
tions with hope to come closer to a Forth system hook standardization.



