
Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

A Debugger for the b16 CPU

Bernd Paysan1

1Diodes Zetex GmbH

EuroForth 2008

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Outline
1 Motivation

b16 Architecture Overview
2 Adding In–Circuit Debugging

Available Components
Register Structure
Read Registers
Write Registers
Debugger Core

3 Debugging Software
Status Readout
Breakpoints
Source Window

4 Integrating Test Equipment
5 Lessons Learned

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

b16 Architecture Overview

Motivation

For the current project with the b16 core [1] inside, a few things are
“unusual”:

Firmware programmer isn’t a Forth expert (i.e. not me)
Program in writable memory (first test chip: RAM, final chip:
Flash or OTP)

Under these circumstances, it makes some sense to debug the
firmware using a “classical” in–circuit–debugger. It will turn out
that adding such a debugger to the hardware is a fairly trivial
exercise, leaving writing the software as “main” challenge.

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

b16 Architecture Overview

Features

The features such a debugger should have are quite common:
Interface the chip with a PC, so that the PC can control
memory content (and memory mapped IO registers)
The debugging window should show the source code, and
jump with the cursor to the currently executed location (if the
CPU is halted)
Typical commands: Single step, multiple steps, run/stop,
set/clear breakpoint
Direct access to a memory location, dump of a consecutive
memory block
Optional: Forth console to mix debugging commands with
other instructions (e.g. measurement and stimuli equipment
driven by serial lines)
Missing: Classical command line for the embedded CPU

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

b16 Architecture Overview

b16 Architecture Overview

Just to recap: The core components of the b16 are

An ALU
A data stack with top and next of stack (T and N) as inputs
for the ALU
A return stack with top R
An instruction pointer P
An instruction latch I

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

b16 Architecture Overview

b16 small Block Diagram

Block Diagram

ALU

NOS

RAM/ROM

 Instruction Word

TOS

B16 small Block Diagram

Address MUX

Stack
Return−Stack

P

R

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Available Components
Register Structure
Read Registers
Write Registers
Debugger Core

Available Components

CPU core (small change: add multiply and div step again)
SPI interface

Two versions: Little and big endian

Missing: Debugger

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Available Components
Register Structure
Read Registers
Write Registers
Debugger Core

Register Structure

Debugging Registers

Address read write
$FFE0 P P
$FFE2 T T
$FFE4 R R
$FFE6 I I
$FFE8 state state
$FFEA stack[sp++] push+T
$FFEC rstack[rp++] pushr+R
$FFEE stop start/step

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Available Components
Register Structure
Read Registers
Write Registers
Debugger Core

Read Registers

if(!dr || run) dout <= ’hz;
else casez(daddr)

3’h0: dout <= P;
3’h1: dout <= T;
3’h2: dout <= R;
3’h3: dout <= I;
3’h4: dout <= { run, 4’h0, c, state,

{4-sdep{1’b0}}, sp,
{4-rdep{1’b0}}, rp };

3’h5: dout <= N;
3’h6: dout <= toR;
3’h?: dout <= 0;

endcase

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Available Components
Register Structure
Read Registers
Write Registers
Debugger Core

Write Registers

if(dw) casez(daddr)
3’h0: P <= din;
3’h1: T <= din;
3’h2: R <= din;
3’h3: I <= din;
3’h4: { c, state, sp, rp } <=

{ din[10:8],
din[sdep+3:4], din[rdep-1:0] };

3’h5: { sp, T } <= { spdec, din };
3’h6: { rp, R } <= { rpdec, din };

endcase

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Available Components
Register Structure
Read Registers
Write Registers
Debugger Core

Debugger Core

always @(posedge clk or negedge nreset)
if(!nreset) begin

drun <= 1;
drun1 <= 1;

end else begin
drun <= drun1;
if((dr | dw) && (addr[3:1] == 3’h7)) begin

drun <= !dr & dw;
drun1 <= !dr & dw & data[0];

end
end

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Status Readout
Breakpoints
Source Window

Debugger GUI

Debugger GUI

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Status Readout
Breakpoints
Source Window

Problems with Readout

SPI post–access read makes status read problematic (will also
modify stack pointer)
Unexpected side effects of instruction loaded on stack readouts

Solution:

First read the four registers
Set I to 0
Read status & stacks (stacks 4 times)
Restore I

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Status Readout
Breakpoints
Source Window

Readout Code

: load-regs (--)
DBG_P regs 4 spiw@s
0 DBG_I spiw!
\ clear instruction register to read stacks
DBG_STATE regs 8 + 3 spiw@s
stack 16 + stack 4 + DO

DBG_S[] I 2 spiw@s
4 +LOOP
regs 6 + w@ DBG_I spiw! ...

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Status Readout
Breakpoints
Source Window

Breakpoints

Original idea: Call control register address −→ stops CPU
Doesn’t work due to loop elimination in the design
Turned out to be a bad idea, anyway (wastes 20% return stack
space)
Solution: Replace instruction by loop to itself.

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Status Readout
Breakpoints
Source Window

Source Window

MINOS editor component: Load the source into it
Canvas on the left side displays address (for breakpoints)
Change assembler so that listing contains enough information
to translate address+state into cursor position
No IDE at the moment (changes on the source go nowhere)

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Integrating Test Equipment

Other test equipment (from HP, driven via RS232) needs
integration:

Voltage source
Measurement ADC

Typical use: Apply voltage, measure with equipment, measure
with chip (several times), collect data
Problem: RS232 nowadays via USB, there’s no easy way to
know which interface is connected where

Bernd Paysan A Debugger for the b16 CPU

Motivation
Adding In–Circuit Debugging

Debugging Software
Integrating Test Equipment

Lessons Learned

Lessons Learned

If time permits, diverging modules like the SPI should be
merged and made configurable
The register order should be changed so that the stack access
doesn’t require special care (stack access first)

Read with side effect is evil, anyway

Integrating the assembler into the debugger should be fairly
trivial, and thereby it creates an IDE with little effort
Further magic could allow to seamlessly insert code with just a
small stop and restart of the CPU
Adding some (further) interactivity with the target CPU is also
fairly trivial
Hot–plugged devices must have a unique serial ID (this is a
hint to Intel!!!)

Bernd Paysan A Debugger for the b16 CPU

Appendix For Further Reading

For Further Reading I

EuroForth 2004, b16–small — Less is More, Bernd Paysan

EuroForth 2007, Audio GUI: MINOS@work, Bernd Paysan

Bernd Paysan A Debugger for the b16 CPU

