
Inlining in Gforth: Early Experiences

David Gregg

Trinity College Dublin

M. Anton Ertl∗

TU Wien

Abstract

Many optimizations are easier or more effective for
straight-line code (basic blocks). Straight-line code
in Forth is limited mainly by calls and returns. In-
lining eliminates calls and returns, which in turn
makes the basic blocks longer, and increases the ef-
fectiveness of other optimizations. In this paper we
present a first prototype implementation of ininlin-
ing for Gforth.

1 Introduction

Many code generation tasks and optimizations are
relatively easy to perform on basic blocks (code sec-
tions with only one entry point and one exit), of-
ten with optimal results (with respect to some opti-
mality criterion). Examples are register allocation,
static stack caching [EG04a], and superinstruction
selection [EG03]; all of these problems are relevant
for Forth implementations, and can be solved opti-
mally in linear time for basic blocks.

At optimization boundaries usually some over-
head occurs (at least you don’t see all of the op-
timization benefit); e.g., the register allocator has
to arrange the register contents in a canonical way,
stack caching has to perform a transition into the
canonical stack state, and superinstructions cannot
extend across the boundary.

Therefore, lots of effort has been expended on
extending the optimization boundaries beyond ba-
sic blocks, to loops (loop-level optimization), to
general control flow graphs in procedures (global
optimization), across procedure boundaries (inter-
procedural optimization), or to the whole program
(whole-program optimization).

However, these extended optimizations are of-
ten much more complicated, require more compile-
time, and often cannot be solved optimally in ac-
ceptable time. E.g., global register allocation turns
into graph colouring, an NP-hard problem; i.e., it
requires exponential time for the optimal solution;
what’s worse, even a heuristic suboptimal solution
requires quite a complex program, and takes signif-

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

icant time1.

Therefore, Forth compilers with their need for
compilation speed have not embraced optimizations
beyond basic blocks. E.g., RAFTS [EP96] and
(to our knowledge) VFX perform their optimiza-
tions (e.g., register allocation) only at the basic
block level. Cforth [Alm86] and (to the best of
our knowledge) iForth perform global register al-
location of a kind by continuing the current alloca-
tion across branches and performing reconciliation
at control flow joins (not necessarily in a close-to-
optimal way).

Another reason why loop-level and global opti-
mizations are not very useful for Forth is that the
main cause of basic block boundaries in Forth is
calls and exits (see Fig. 1).

Therefore, if we want to optimize Forth signifi-
cantly beyond basic blocks, it seems that we have to
perform interprocedural optimization, which is even
harder, more complicated and slower than global
optimization, and not as well researched.

Fortunately, there is an alternative: We can re-
place a call to a colon definition with the body of
the called definition (inlining). This eliminates calls
and returns, and their implied optimization bound-
aries.

2 Code generator overview

This section gives some background information
on the Gforth code generator, which is mentioned
throughout the paper.

Figure 2 shows the various parts of Gforth in-
volved in code generation, and the data they are
working on.

One important issue is that there are two paths
to code generation that are united by calling
compile-prim1: One is regular Forth compilation
through find and compile,; the other path is im-
age loading.

The image loader has to run before any piece of
Forth code runs, so it cannot be written in Forth,
and nothing it calls must be written in Forth. So
if we wrote any optimizations in Forth, they could
not be applied at load time.

1Preliminary results for a JVM JIT compiler indicated
8000 cycles per bytecode (personal mail from Cliff Click).

Gregg, Ertl Inlining in Gforth: Early Experiences

calls exits execute BRANCH cond. branches Source
12.21% 11.74% 0.65% 6.34% 1.54% [Koo89]
13.46% 13.46% 1.24% 5.86% 0.93% http://www.complang.tuwien.ac.at/forth/peep/sorted

Figure 1: Dynamic execution frequencies of control flow primitives

Forth source Cross source

gforthmi cross.fsfind

compile,

xts Image file

loader

ITC DTC

optimized DTC

DTC+native code native code

gforth-itc gforth-native

Forth

C

static superinstruction selection
static stack caching

dynamic superinstruction
generation

native code
generation

gforth
gforth-fast

(primitive-centric) ITC (primitive-centric) ITC

compile-prim1

compile_prim1()

Figure 2: Code generation in Gforth

It might be possible to apply optimizations before
image generation (in gforthmi and cross.fs), but this
would require changing the image format with each
optimization we introduce; worse, it would require
implementing the optimizations both in the regular
Forth compiler (which is also used by gforthmi),
and in the cross-compiler, which are not written to
share optimizers.

For these reasons the optimizations were eventu-
ally all applied below compile-prim1. They were
set up in a way that allows optionally enabling or
disabling most of them, leading to a number of en-
gines with different code generation options applied,
and different code generation options enabled by de-
fault. Figure 2 may look just as complicated below
compile-prim1 as above it, but actually the lower
part is more uniform, because the optimizations are

all optional; applying another optimization at that
level requires just one copy of the optimization code,
if done well.

The only unusual part of code generation that
happens at the Forth level is the translation to
primitive-centric code (e.g., a reference to a colon
definition is replaced with an explicit call and the
address to be called).

The optimizations in the current development
version of Gforth are:

static superinstructions Frequent sequences of
primitives are combined into superinstructions
[EG03]. E.g., lit + → lit+.

static stack caching Stack items are kept in reg-
isters, with different allocations of stack items
to registers at different points in the program
[EG04a].

dynamic superinstructions The native code for
the primitives in a sequence of threaded code
is concatenated together, eliminating many of
the NEXTs during execution. Only literal ref-
erences and control flow use the threaded code
[EG03].

native code Similar to dynamic superinstruc-
tions, but literal values and branch targets
are patched into the native code, and nearly
all references to threaded code are eliminated
[EG04b].

3 Basic design

This section discusses a number of different inlining
implementation strategies.

3.1 Inlining native code

BigForth [Pay91] (and probably other systems) per-
forms inlining by copying the native code of the
callee (the called colon definition) into the caller
(strategy A in Fig. 3).

Unfortunately, this inlining strategy eliminates
most optimization opportunities, because the in-
formation used by most optimizations is no longer
present in the native code in a readily-used way, and
would have to be extracted in complicated ways, if
it could be recovered at all; in particular, we can-
not use stack caching. BigForth only uses peephole
optimization on the code.

2

Gregg, Ertl Inlining in Gforth: Early Experiences

Forth source

find

xts

compile,

execute

resolve branches

native code

threaded code

inner interpreter CPU

intermediate
representation

optimizer

A

B

D

C

Figure 3: Various inlining options in a simple Forth
compiler

A benefit of this method is that it is relatively
fast.

One additional complication with inlining na-
tive code is that the code can usually not be just
copied—it needs to be relocated (e.g., on the 386
architecture calls need their target addresses relo-
cated). There are two ways to deal with this prob-
lem: simply don’t allow to inline definitions that
require relocation (just keep a ”no-inline” bit per
definition); or set up a relocation table when gener-
ating code for the definition, and use that table to
perform relocation when inlining (and possibly for
other purposes).

3.2 Inlining source code

VFX Forth inlines a definition by running its source
text through the text interpreter (strategy B in
Fig. 3). The main disadvantage of this method is
that the source code is not interpreted in the orig-
inal context: the search order, the contents of the
wordlists, base and other variables can be different.

One can partially protect against that by sav-
ing the context with the information on the source
text, and setting the context to the original con-
text during inlining; however, this is hard to achieve
for the contents of the wordlists, and impossible
for user-defined context (e.g., user-defined variables
that user-defined immediate words may act upon).

The benefit of this approach is that all the inlined
code goes through all the compilation, and therefore

through all the optimization stages. The drawback
of that is, of course, increased compilation time.

3.3 Inlining pre-optimization

threaded code

One way to perform inlining is to store the code
of each definition in the unoptimized threaded code
form, and upon inlining just feed that into the code
generation interface (strategy C in Fig. 3), getting
all the benefits of the optimizations (which are all
performed beneath this level), without suffering the
correctness problems and all the compile-time dis-
advantages of the source-inlining technique.

An additional benefit (over lower-level ap-
proaches) is that this technique can be used with
both the threaded-code and the native-code engine.
Another benefit is that the threaded code already
exists in Gforth, so we don’t have to develop code
and consume memory for storing the code in an-
other intermediate representation.

This is the approach we have taken in our proto-
type implementation.

One problem with this approach is that the
threaded code already contains target addresses
for branches and calls, so we have to deal with
relocation issues, similar to native code; at least
with threaded code the relocation is machine-
independent.

3.4 Inlining higher-level intermedi-

ate representation

To avoid the relocation issues, one can use a higher-
level intermediate code: It should represent the
state of compilation after the names have been
resolved, and after user-defined immediate words
have been executed, to eliminate all context depen-
dences. At the same time, branch resolution should
be delayed until after inlining, so that we don’t have
to deal with relocation issues (strategy D in Fig. 3).

As a concrete example, a word like

: abs dup 0< if negate endif ;

could have an intermediate representation like

: compile-abs

POSTPONE dup

POSTPONE 0<

POSTPONE if

POSTPONE negate

POSTPONE endif ;

To inline abs, one would just have to execute
compile-abs.

This approach was proposed and partially imple-
mented for RAFTS [EP97, Section 3].

3

Gregg, Ertl Inlining in Gforth: Early Experiences

The example above may mislead you into think-
ing that we can just postpone all words as they
come along, but that does not work:

• It would postpone user-defined immediate
words, which must be executed at compile
time, not later, because they may use (user-
defined) context that changes later.

• It would fail to perform the parsing actions of
words like s" or [’].

So the way to implement it is to generally hook
into compile,, except for some words like if,
cs-roll and sliteral, which should compile a
word-specific action rather than do their usual
thing.

It is not obvious which words need this special
treatment. Words that generate primitives with im-
mediate arguments are definitely among them.

In any case, it is not clear that this approach is
easier than the threaded-code approach. Moreover,
it causes additional complications in the context of
Gforth:

We would have the problems with optimizations
written in Forth that we mentioned in Section 2.

One may be able to avoid these problems by
defining a higher-level code generation interface
(and image file format) between Forth and C. But in
that case we push even more functionality into the
C part, including inlining. Moreover, certain pro-
gramming practices would not work as usual with
such a code generation interface, in particular, cre-
ating or modifying control structures without going
through the interface words of our higher-level in-
terface (these practices are rare and non-standard,
but they still work in traditional-style implementa-
tions).

The current image file format can be changed into
executable (threaded) code by in-place rewriting.
Such a higher-level representation might not have
this advantage, and would be more complicated to
load.

3.5 What to inline?

There are many possible ways to decide whether a
call should be inlined.

The easy way is to leave it to the user: e.g., Big-
Forth allows the user to mark a word as inline,
and every call to such a word will then be inlined.

A relatively obvious strategy is to inline only calls
to words that occur only once; in this case inlining
will also save space, not just time. However, it is not
possible to know in Forth whether a word will be
referenced again when it is compiled the first time.
One way around this problem would be to wait with
the actual code generation and inlining decisions
until the word or one of its callers is executed; then

one would generate code for the executed word,
inlining all the words that have been referenced only
once until then; later references to the same word
will be relatively rare.

An extreme inlining strategy is to inline ev-
erything except recursive calls and indirect calls
(execute). If we apply that to every word, the na-
tive code for the Gforth image grows from 200KB to
7MB; Only generating code for words that are actu-
ally executed should reduce the code growth quite
a bit, however. Still, this strategy has a bad worst-
case behaviour (exponential code growth), and is
therefore not usable as a practical inlining strategy,
but it is useful to produce best/worst-case numbers
for speedup and code growth.

There are lots of other inlining strategies possible.
We intend to use our prototype to explore some of
them.

4 Details

This section reports some of the approaches we have
tried for various problems (including dead-end ap-
proaches), and what we learned from them.

4.1 Do we need to inline threaded

code?

One approach we considered was to use the
threaded code as the basis for inlining, but with-
out generating a threaded-code version of the pro-
gram with inlining applied; the inlining would only
be done on the native code.

One problem with this approach is that it cannot
be used, if the native code still accesses the threaded
code for literals and for control flow, as happens in
the gforth-fast engine.

More precisely, a limited amount of inlining could
be performed: The native code would be straight-
line, but the IP register would need to follow the
control flow in the threaded code (and return ad-
dresses would be pushed on the return stack etc.).
However, as soon as control flow should happen
in the native code (e.g., for a taken conditional
branch), this would terminate the inlining; the na-
tive code would use the original threaded code for
dispatch and execution would continue at the native
code corresponding to a non-inlined version of the
definition; this restricted approach would provide
many of the benefits of inlining (e.g., optimization
across calls).

The pure native-code engine (gforth-native)
would not have these problems, but even there it
is easier to work with the inlined threaded code, for
reasons having to do with implementation details of
Gforth’s native-code compiler.

4

Gregg, Ertl Inlining in Gforth: Early Experiences

4.2 Identifying definitions

In order to be able to inline a colon definition we
need to know where it starts and what code belongs
to it.

The two contexts used in Gforth exhibit big dif-
ferences for this problem:

• In the image it is necessary to track control
flow in order to notice when a colon definition
ends.

• For dynamically-compiled code the call to
finish-code tells us where a definition ends,
and we cannot use control flow earlier, because
the targets of (forward) branches are not yet
determined when our code sees the branches
(as is typical in Forth, they are patched in
later).

Overall, the approach we adopted in our inliner
is too heavy-weight (also in terms of performance:
several passes, unnecessary copying, reanalysis on
every inlining), and we may use a more light-weight
one in the future.

An alternative approach that can treat the image
and dynamically-compiled code in the same way is
to determine the code of a definition only during in-
lining, by just following the control flow at inlining
time. The disadvantages of this approach are: You
do not know much about the definition beforehand
to help inlining decisions (e.g., the size); and you do
not know when the end of the definition will come,
so some optimizations based on that (like partially
inlining the last basic block of the definition) cannot
be performed easily; also, analysing the definition
each time it is inlined might slow compilation.

Some of these problems could be eliminated by
analysing the definition in a separate pass when it
is first considered for inlining.

Another uniform approach would be to have end-
of-definition markers in the image.

4.3 Internal interface

When we started, the interface to the genera-
tor/optimiser of threaded code consisted pretty
much of compile-prim1. This was fine as long as
we were working at the basic block level, rather than
the definition level. All we had to do was detect the
end of basic blocks.

Detecting the end of colon defintions is much
more complicated, not least because we have
two completely separate mechanisms for doing it.
Compile-prim1 quickly turned into a moster: It
worked in one of two modes, depending on whether
we were dealing with image code or code coming
from the Forth compiler; most of the functions it
called also worked in these two modes.

We solved this problem, by adding a richer inter-
face, which consisted of more than just a function
that passes the next primitive. Instead, functions
were added to mark branch targets, to mark the end
of a basic block, and to mark the end of a colon def-
inition. A layer of code was added between the im-
age relocator (in the loader) and the code generator
to keep track of branches and branch targets, and
call the end-of-defintion marker when we reached
the end of a definition.

Another problem with compile-prim1 for our
new purposes was that there was no separation be-
tween building a representation of the code for a
definition and generating code for that definition.
This was a problem, because when we came across
a definition, the main thing we wanted was to get a
representation of it that could be optimised or in-
lined. We also wanted to be able to generate code
from this representation without compile-prim1

thinking it had encountered the definition again.
So we broke link between compile-prim1 and code
generation. Compile-prim1 just builds a data
structure representing the definition. If you want
to compile that, you need to call the new interface
for generating code for a definition. This new in-
terface is, unfortunately, slower, because the data
structure for a definition is more elaborate than the
simple arrays for a basic block.

4.4 Optimizations

Once the inlining framework was in place, vari-
ous additional optimizations (beyond inlining) are
easy: e.g., tail-call optimization and eliminating
unconditional branches around literal data2, opti-
mizing branches to returns or branches to branches
away. Actually, these additional optimizations re-
quire much less infrastructure and can therefore be
implemented with less compile-time cost; building
an optimizer that performs just these optimizations
might be more cost-effective than a full-blown in-
liner.

In some sense, the framework resembles a bi-
nary rewriting system such as ATOM [SE94] or Dy-
namo [BDB00]: It disassembles the threaded code,
optimizes it, then reassembles it; in our case the
reassembly also results in further code generation
steps.

4.5 How to get the new code exe-

cuted

Once we have generated the optimized threaded
code (and, where applicable, the corresponding na-
tive code), how do we make sure it is executed?

2generated by, e.g., sliteral; the literal data stays in the
original threaded code and is not copied to the optimized
version.

5

Gregg, Ertl Inlining in Gforth: Early Experiences

original docol

new docol, no optimization

new docol, with optimization

docol

unused

threaded

code

docol

threaded

code

docol

original

threaded

code

optimized
threaded

code

add edi, # -4 \ rp
mov [edi], ebx \ ip >r
lea ebx, 12[eax] \ new ip
jmp -4[ebx] \ NEXT

add edi, # -4 \ rp
mov [edi], ebx \ ip >r
mov ebx, 4[eax] \ new ip
add 4, ebx
jmp -4[ebx] \ NEXT

Figure 4: Finding the optimized threaded code of a
colon definition

There are the following issues:

direct control flow (branches, calls, etc.) The
target addresses in the optimized code must
point to targets in the optimized code. The un-
optimized version of the same code may be left
alone: it should never be executed, but even if
it is, execution will eventually reach the opti-
mized code through execute and friends (see
below). Moreover, it is not always clear that
an equivalent optimized version of the target
exists (e.g., the return stack contents may dif-
fer because of inlining, making all optimized
versions of the target non-equivalent).

In spite of these explanations, the current in-
liner also changes the target addresses in the
unoptimized code to point to optimized code.

indirect control flow (execute etc.). The xts
are still represented as code field addresses
(CFAs) of two-cell code fields in the middle of
un-optimized code. How do we get execute

to run the optimized code? There are two
cases where execute performs threaded code
(instead of a primitive, a variable, or some-
such): When the xt of a colon definition is
executed, and when the xt of a does>-defined
word is executed.

Let us look at the does> case first: In Gforth
the code field of a does>-defined word contains
the code address dodoes, followed by a pointer
to the threaded code after the does>. We can
ensure that the optimized code is used simply

by storing a pointer to the optimized code in
the second cell (similar to what happens in the
new docol, with optimization case in Fig. 4).

The colon definition case is handled simi-
larly: We modified the docol routine to use
a threaded-code pointer in the second cell of
the code field; originally this threaded-code
pointer points to the body of the word (i.e., the
next cell), which contains the original threaded
code. The optimizer then changes this pointer
to point to the optimized version of the code
(see Fig. 4).

returns When executed in the optimized code, the
call primitive and the docol routine push the
return address in the optimized code on the re-
turn stack, so an unchanged return routine will
just return to the right place in the optimized
code.

entry points There are two entry points into
Gforth’s threaded code from the outside: one
for the boot word, and one for throw (for
converting OS signals into Forth exceptions).
These entry points point to threaded code (not
to code fields). Currently our optimizer does
not change the entry points, so they still point
to unoptimized code, and it is left to indirect or
direct control flow to enter the optimized code.
By changing the entry points to point to opti-
mized code, we could ensure that unoptimized
code is never executed.

5 Preliminary Results

The results in this section were produced on a
2.26GHz Pentium 4 running Linux. We used the
inliner with two engines: both use static stack
caching, static superinstructions, tail call optimiza-
tion, and elimination of superfluous unconditional
branches3; gforth-fast uses dynamic superinstruc-
tions (native code that still uses the threaded code
quite a bit), whereas gforth-native produces native
code that does not use the threaded code (except
for indirect calls). Our current prototype does not
inline recursive definitions, or definitions that con-
tain explicit exits.

We varied the amount of inlining performed: if
the number of (static) primitives in a colon defi-
nition (including the primitives in the definitions
it calls) exceeds the inlining limit, it won’t be in-
lined. So, essentially, leaf definitions are inlined,
then their callers, etc. until a definition exceeds the
inlining size.

3An unconditional branch is superfluous, if its target
would follow right after the branch in the optimized code;
in the original code there is typically some data between the
branch and the target, e.g., the string of S".

6

Gregg, Ertl Inlining in Gforth: Early Experiences

gforth-fast matrix run time *10G cycles

gforth-native matrix run time *10G cycles

gforth-fast native code size *2MB

gforth-native native code size *2MB

gforth-fast startup time *500M cycles
gforth-native startup time *500M cycles

inlining limit
0 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

Figure 5: Preliminary results on a 2.26GHz Pentium 4

Note that even with an inlining limit of 0, the in-
liner produces a copy of the original threaded code,
and for both the original and the “optimized” code
native code will be generated (so in this case we see
twice the native code size that we see without the
inliner).

Figure 5 shows run time, startup time, and code
size for the two engines, with various inlining limits.

The run-time is for a 500 × 500 integer matrix
multiply; we see mostly small slowdowns here, com-
ing from the increased startup time (see below).
Apparently inlining (as implemented in our proto-
type) hardly benefits this benchmark. We have seen
some better results in pre-preliminary testing, but
do not have any systematic data on them.

The native code size grows with the amount of
inlining. Gforth-native enjoys a code size advantage
by a factor of 1.42-1.52; it increases with the amount
of inlining (the reasons for this increase are not yet
clear).

The startup time grows proportionally with the
resulting native code size; it is very similar between
gforth-fast and gforth-native, probably because
they are doing the same thing at the threaded-code
level and the native-code part has similar costs.
Note that even the startup of gforth-fast with an
inlining limit of 256 consumes only 100ms on our
benchmark machine, so if we see speedups from in-
lining, it may well be worth paying that price.

Another interesting result we got was for tail-call
optimization: The combination of the image and
the prims2x benchmark contains a total of 7774
static returns in the code. Of those, 3727 (48%)
were preceeded directly by a call in the optimised
code (there may have been an uncoditional branch
in the original code that got optimised away), allow-

ing us to apply tail call optimisation. There were
an additional 519 calls followed by an unconditional
branch (that had not been optimized away before)
followed by a return (7%).

6 Related work

Many papers have been written about inlining in
the general compiler literature. This section men-
tions a few of them.

Serrano [Ser97] examines a number of heuristics
for determining which calls to inline and presents
his own heuristic. He also discusses how to treat
recursive functions.

Kaser and Ramakrishnan [KR98] discusses
whether the original version should be inlined, or
a version where some inlining has already been ap-
plied. This only makes a difference for recursive
functions, and there the original version should be
inlined. They also present some heuristics for inlin-
ing which uses a hybrid technique (original-version
inlining gets caught in local maxima), and presents
some results for code growth and inlining effective-
ness.

De Bosschere et al. [BDGK94] deal with the prob-
lem of (optimizing away) entry actions (type check-
ing, unboxing) in languages with run-time type
checking. One of the optimizations proposed is
partially inlining the entry actions into the callers
(where they can be optimized away), but the au-
thors report that this leads to significant code bloat.
Goubault [Gou94] also attacks the problem of un-
boxing and boxing with partial inlining.

7

Gregg, Ertl Inlining in Gforth: Early Experiences

7 Conclusion

Calls and returns are the most frequently executed
control flow words in Forth code, and are therefore
the main rason for the short basic block length in
Forth code. In order to increase the effectiveness of
various optimizations, the basic block length has to
be increased, e.g., through inlining.

At what level should inlining be performed? Our
prototype inliner applies inlining at the before-
optimization threaded-code level, and we think that
this is the right decision.

What experiences did we gain when we wrote
our prototype? Even for our native-code compiler,
it was a good idea to perform the inlining on the
threaded code first. Identifying (the end of) defini-
tions proved to be a problem. We had to expand
the simple code generation interface to convey more
control flow information. The framework we devel-
oped for inlining could also be used for other control
flow optimizations. And we identified how to get
the new code executed, in particular, how to deal
with the docol routine.

Our preliminary timings are disappointing, but
we hope to achieve better results in the future.

References

[Alm86] Thomas Almy. Compiling Forth for per-
formance. Journal of Forth Application
and Research, 4(3):379–388, 1986.

[BDB00] Vasanth Bala, Evelyn Duesterwald, and
Sanjeev Banerjia. Dynamo: A transpar-
ent dynamic optimization system. In
SIGPLAN ’00 Conference on Program-
ming Language Design and Implemen-
tation, pages 1–12, 2000.

[BDGK94] Koen De Bosschere, Saumya Debray,
David Gudeman, and Smapath Kan-
nan. Call forwarding: A simple in-
terprocedural optimization technique
for dynamically typed languages. In
Principles of Programming Languages
(POPL ’94), pages 409–420, 1994.

[EG03] M. Anton Ertl and David Gregg. Imple-
mentation issues for superinstructions
in Gforth. In EuroForth 2003 Confer-
ence Proceedings, 2003.

[EG04a] M. Anton Ertl and David Gregg. Com-
bining stack caching with dynamic su-
perinstructions. In Interpreters, Virtual
Machines and Emulators (IVME ’04),
pages 7–14, 2004.

[EG04b] M. Anton Ertl and David Gregg. Re-
targeting JIT compilers by using C-
compiler generated executable code. In
Parallel Architecture and Compilation
Techniques (PACT’ 04), pages 41–50,
2004.

[EP96] M. Anton Ertl and Christian Pirker.
RAFTS for basic blocks: A progress re-
port on Forth native code compilation.
In EuroForth ’96 Conference Proceed-
ings, St. Petersburg, Russia, 1996.

[EP97] M. Anton Ertl and Christian Pirker.
The structure of a Forth native code
compiler. In EuroForth ’97 Confer-
ence Proceedings, pages 107–116, Ox-
ford, 1997.

[Gou94] Jean Goubault. Generalized boxings,
congruences and partial inlining. In
Static Analysis Symposium (SAS ’94),
volume 864 of LNCS, pages 147–161.
Springer, 1994.

[Koo89] Philip J. Koopman, Jr. Stack Comput-
ers. Ellis Horwood Limited, 1989.

[KR98] Owen Kaser and C. R. Ramakrishnan.
Evaluating inlining techniques. Com-
puter Languages, 24:55–72, 1998.

[Pay91] Bernd Paysan. Ein optimierender
Forth-Compiler. Vierte Dimension,
7(3):22–25, September 1991.

[SE94] Amitabh Srivastava and Alan Eustace.
ATOM: A system for building cus-
tomized program analysis tools. In Pro-
ceedings of the SIGPLAN ’94 Confer-
ence on Programming Language Design
and Implementation (PLDI ’94), pages
196–205, June 1994.

[Ser97] Manuel Serrano. Inline expansion:
When and How. In Programming Lan-
guages, Implementation and Logic Pro-
gramming (PLILP), volume 1292 of
LNCS, pages 143–157. Springer, 1997.

8

