
Three Forths Make a Hole
2003 Sep 25

Howerd Oakford howerd@inventio.co.uk
Stephen Pelc stephen@mpeltd.demon.co.uk

Abstract
There are many theories about the best way to program a computer – the
ACE project showed just what can be done with Forth, especially in a
situation which was constantly changing.

Background
Even now, 10 to 20 unexploded WW2 bombs (“air dropped munitions”) are
found and made safe every year in the UK. After the recent Balkan conflicts, it
was estimated that the failure rate (did not explode) of these bombs was
about 10-20%, depending on the supplier, leading to an increasing need for
disposal equipment that could be easily and rapidly set up. Some of the
technology developed for this project is also applicable to landmine
clearance. In some countries, especially in Africa, there are still tens of
millions of uncleared landmines.

The Project
The Abrasive Cutting Equipment (ACE) was developed as a Custom Off The
Shelf (COTS) project. The idea was to buy some easily available pieces, tie
them together with a minimum amount of hardware and software glue, and
create a prototype. The design requirement was for a complete system that
could be used by Armed Forces personnel to cut holes in unexploded bombs.
There must be no electrical circuits within 25m of the target, and the cutting
head must be controlled from up to 500m away. The cutting must be done
using a very fine jet of water and abrasive, powered by a 500 Bar water
pump, and must be controlled in four axes (x, y, z and rotate) to within +/-
0.2mm. Since the “safe distance” for a 1000 pound bomb is 1500m, safety is
a key element in the design.

The People
Carl Moorhouse – Chief Designer at Richmond
Gerry Ede – Chief Mechanical Engineer at Richmond
John Winslow – Chief Engineer at Disarmco
Stephen Pelc – MD of Microprocessor Engineering
Howerd Oakford – MD of Inventio Software
And many others, too numerous to mention.

These people made ACE work. We actually cut holes in a 1000 pound bomb
(albeit one filled with concrete). We all made mistakes in the development
process – but these were wiped out by the chunk of 15mm steel that we
removed so delicately from the side of the bomb. This paper is about how
human fallibility can be accepted as part of the design process, and how it
can be overcome with the help of Forth.

1

The Timescale
Sometime in July 2002, Stephen worked out a timeline with the other
companies involved. This required MPE to have at least a model but
functioning set of mechanics by September 1st 2002, but then MPE was
asked to do a GUI interface to the system on a PC, as well as supply and
program the embedded ARM systems for the motion control and power
management systems.

In early September 2002, Stephen asked Howerd “would you be interested in
two weeks work programming a user interface and communications protocol
on a PC in MPE’s VFX Forth?” Howerd had already ported most of his
MSDOS PPP program to VFX Forth in preparation for adding it to MPE’s
PowerNet TCP/IP stack, so we could use the HDLC transport layer from that,
and the user interface sounded simple. So Howerd said “yes”, and thus
began one of the most challenging projects of our careers.

The demonstration was scheduled for November 11th 2002, and was to
perform a series of cuts on various pieces of metal, including a real, but
defused, 1000 pound bomb. The tests were to be performed at the Ministry of
Defence’s Shoeburyness firing range. Fortunately for us the firing range was
closed down for a week while an unexploded shell was cleared, so our demo
was moved back a week to November 18th. So, about eight weeks to get the
PC program to talk to two ARM based systems, one controlling the cutting
head air valves, the other the diesel engine, air and water pumps….

The system
Mechanics
The mechanics are driven by air motors controlling a water jet. These are
linked by air, water, and optical cables to the service module.

Service Module (SM)
An ARM system containing an MPE ARM Development Kit mounted talking to
motor control boards based around Xilinx FPGAs. The SM also talks to the
Power and Command modules below over RS485 links. Programmed using
MPE’s VFX Forth 6 cross compiler.

Power Module (PM)
Another MPE ARM system that looked after the diesel generator and air and
water pumps. Programmed using MPE’s VFX Forth 6 cross compiler.

Command module (CM)
An industrial PC with a touch screen and an RS485 interface. Programmed
using MPE’s VFX Forth for Windows.

2

The Problems
When we arrived on site, nothing had been tested, nothing worked except the
basic PCs and the ARM systems.

The original design that Howerd had been given used a conventional
keyboard and mouse – he arrived on-site to find that there was now a touch
screen. This meant that he had to re-write the screen layout, to add an on-
screen numeric keypad. This was just the start…

The Sharp ARM processor had an undocumented feature that required the
data cache to be disabled. This cost us maybe five days, trying to debug
interrupt code which was perfectly correct but could never have worked.

The custom made FPGA boards to interface to the pneumatic control valves
and position sensors had the classic two-byte read of a 16 bit counter which
got a wrong reading about once every 30 minutes (but of course only when
the motors were actually running). At this point Howerd stopped programming
the GUI, and started as the hardware consultant with a crash course in VHDL
for FPGAs. We added a begin…while…repeat loop to guarantee two
consecutive readings the same and made a mental note to test it, but never
did. Having spent many days debugging ground loops, and other noise
related crashes, Howerd finally found that he had got the sense of the test
wrong, so that the code waited for the counter to change, then hung until the
watchdog kicked in if one of the readings was wrong. Oops.

At this point, Stephen could start actually testing the interface to the air
motors that made everything move. Over a period of two weeks, we wrote
three completely different sets of motor drivers. The real problem was that the
cutting water leaves the jet at supersonic speed and contains an abrasive
compound. The result is that the whole environment is covered in wet
abrasive powder, including the leadscrews for the motion control system.
Consequently smooth motion is difficult to achieve. The situation is made
worse because most bombs are several feet underground, and the cutting
equipment normally operates in a ditch cut by hand around and below one
end or side of the bomb. Rubber boots and thick jackets were normal wear
while testing. Fortunately, the one piece of equipment that never failed was
the MPE coffee machine.

The RS485 serial lines used the mains supply earth as their ground
reference. Since everything was opto-isolated, serial communications was
only possible because one of the ARM systems had a short between the 0V
of its 24V power supply (which happened to be connected to mains earth
through the chassis) and the +5V of its 5V power supply. Everything worked
fine when both ends of the cable were plugged into the same mains socket,
but failed when installed 500m apart. If you unplugged the power cable
between the PC and ARM units before unplugging the data cable, the opto-
isolators were reverse biased and blew. This only cost one day, but boy, what
a day! There was no schematic, just a bad photocopy of a pencil-drawn
sketch of the sort of thing the circuit should do. The actual wiring had very
little to do with the sketch, which anyway had some fatal design flaws. We
changed the opto-couplers (thankfully in sockets) and soldered in some

3

1N4001’s to stop them blowing again if the cables were changed in the wrong
order.

On the night before the system was due to be delivered to the MOD firing
range we noticed that the velocity control algorithm would not function at low
speeds. It was fine on 10mm plate, but trying to cut 20mm required about a
quarter of the speed, and the movement became jerky. As a temporary fix, we
defined two words, Z and ZZ to make the cutting head move left and right so
that you could cut in both directions.

The user interface lacked a “reverse” button. It had “forward” to cut, and
“rewind” to return to the beginning, but it soon became clear that you needed
to stop and go back over a section of the cut if, for example, the abrasive ran
out. We could program in Forth to do these things, but this was not something
you could expect someone to do whilst actually cutting into a live bomb!

The Service and Power Modules’ control systems allowed you to turn the
abrasive and water on or off, but it was important not to turn the water off until
all of the abrasive has been flushed out of the jet, otherwise it would “set” and
require dismantling to clean it. The original user interface tried to protect the
equipment from the user by holding the water on for 30 seconds before the
water pump could be turned off. All it did, however was force people to use
the emergency stop button to turn the unit off (rather than wait 30 seconds –
you may not have 30 seconds…). This stalled the diesel engine and tended
to snap the drive belts to the air and water pumps.

It was also possible to set up a combination of states that forced abrasive into
the water valve, and forced water back into the bottle of abrasive destroying
them both. Remember that this is 500 Bar (7500 PSI) pressure with water jet
speeds approaching the speed of sound. Apparently walking into the water jet
causes immediate amputation – not an environment where you want to wait
for a timeout. After some changes to the safety task, John repaired the
abrasive feed system, carefully calibrating the high-pressure flow valves to
maximise cutting speed and minimise the amount of abrasive used.

The position of each axis was determined by two pairs of fibre-optic cables
detecting a quadrature signal from a vane on each motor. The 16 optical
fibres were gathered together in a single cable, with 16 way optical connector
so that the cutting head could be disconnected from its control box.
Unfortunately, the manufacturers of this cable had “used the wrong glue” to
fix the fibres into the connector, which made the fibres go slightly opaque.
Also there was not enough slack on the x and y axis fibres on the cutting
head so that when the head was moved to its extreme position the fibres
were bent beyond their recommended curvature and snapped. Carl took on
the job of getting the fibre optics to work, and work they did when glued,
sliced and spliced correctly.

The last bug was wonderfully subtle – and another classic. The pneumatic
control valves were powered by a 4 channel driver chip, each channel could
handle 500mA, so a 350mA valve was fine – until three or four were on at
once. The direction valves were only on when going down, left, away from the

4

bomb or anti-clockwise. When cutting a rectangle starting from the top left
and going right it was fine, going down was fine, but if the cutting head
needed to move away from the bomb as it moved left, at least three direction
valves were on, the driver chip overheated and turned all its outputs off. The
feedback loop panicked and went at full speed, the cutting head moved to the
right instead of left and charged into the bomb. A small heatsink fixed to each
driver chip was all it needed. Note that this failure only occurred after about
45 minutes of cutting, and only when the weather was warm, or the previous
cut had ended in an anti-clockwise direction.

The Solutions
The problems listed above are not that unusual, but what made the ACE
project different was the fact that they all came together, mob handed. The
deadline was (almost) immovable, as it involved two people from each of the
Army, Navy, RAF, MOD and Health & Safety Executive, and the hiring of a
firing range. What also made the ACE project different was working together
with people who were prepared to do what it took to get it to work. And of
course Forth :

The three Forths mentioned in the title were MPE’s VFX Forth for Windows,
VFX Forth for the ARM and Forth, Inc.’s MSDOS polyForth. The latter ran
Howerd’s PPP.com program configured to display the ACE protocol packets.

VFX Forth for Windows provides a tight coupling to the MSDN
documentation. Use the MSDN CD or go to the Microsoft website – find the
Windows function you want, copy and paste the prototype into your Forth
source, a couple of tweaks and you’re done. You can also import resource
scripts in the same way. The PC side took maybe four weeks in total – but it
did have to be re-written twice.

The VFX ARM Forth compiles to optimised native code. This means that you
don’t have to write any assembler to achieve speed. It also means that the
comms protocol file is exactly the same for Windows and ARM – no #ifs. On
the application side, we didn’t write a line of assembler, even for the motion
control timer interrupts.

Both VFX Forths have the DocGen utility so that you document your code as
you go (a good habit to get into), and you can then create a glossy glossary
and user manual in a couple of minutes. Source and documentation are
always in sync.

The service module and mechanics arrived about mid-way through the
development process, then promptly disappeared to have cases re-sprayed.
When it was around Stephen had priority, as he had to get the motor control
side working. So almost all of the protocol development was done using three
PCs. Because Forth is a high-level language the transfer to the real hardware
was trivial. Provided key and emit worked, the protocol worked.

The comms protocol was specified as having to be readable by a dumb
terminal. To do this Howerd changed the HDLC code gleaned from PPP to

5

“escape” everything except one CR-LF pair. This made each packet appear
on a new line, with the message in ASCII text, then some garbage checksum
characters etc. We reserved two of the HDLC channels for text to be
interpreted by a remote Forth interpreter, and text to be sent in reply. If you
only use one channel the two ends chatter endlessly, the one replying to the
other’s “?”.

What this created was extremely useful: from any of the three modules you
can connect either a dumb terminal or a slightly intelligent one that
stripped/added the HDLC wrapper, and then you can run the Forth interpreter
on any of the remote machines.

The ARM systems have three serial ports, and any packet arriving on one of
the two RS485 ports was echoed on the other. This meant that you could
connect the three modules together using any of their serial ports and they
could all talk to each other. Using this technique we were able to program the
“Z” and “ZZ” words mentioned above (from the relative comfort of the “bomb
shelter”) on the Service Module 500m away in an altogether less friendly
place – on a windswept firing range in November, 25 m from a 500 Bar water
jet and an unexploded bomb. We also used the technique to try out various
times between turning off the water valve and reducing the diesel engine
speed to idle. This meant that Gerry did not have to walk the 500m through
sleet and snow to restart the diesel engine when it stalled.

And as for the hardware – running tests from an interpreter as fast as you can
type them, compilation, downloading and Flash programming through the
Ethernet port in seconds – nothing got in the way.

After the first demo, Howerd spent another three weeks, re-designing the user
interface, and trying out a PID loop for the velocity control (which didn’t work)
then a bang-bang loop (which did). We used a “one line digital oscilloscope”
program to display the position of the cutting head :

: scope begin cr @pos 64 mod spaces .” *” key? until ;

This repeatedly displays a ”*”in a column corresponding to the value returned
by @pos . You can see immediately the effect of the feedback loop. This
showed that the simple bang-bang control loop was much better than the
analog control in the original design. This allowed about £1500 worth of
variable flow pneumatic values to be removed from the system, halving the
total power consumption.

Two months later, another demo had been arranged to complete the set of
tests from the first one. This time it was at Richmond Engineering’s site – this
meant that the bomb we used contained 1000lb of concrete instead of TNT.
The ACE equipment cut all sizes and shapes of hole, including chopping
straight through the nose-cone – 42mm of steel followed by about 80mm of
concrete. The user interface was friendly – you could stop, start, reverse and
control the water and abrasive freely, with an indicator showing you where the
abrasive was in the system. The comms protocol and all hardware was rock
solid. In short ACE was working!

6

Russian Front Programming – Howerd’s view
Nobody plans for a five month project to be completed in four, but sometimes
the unexpected happens, the pressure builds, the hours get longer and the
caffeine stronger.

ACE would not have happened without Forth, for three reasons :

1. The software on the ACE project was a relatively minor part of the
work – in any other programming environment I reckon that the
software alone would have taken a year. Perhaps I am exaggerating -
maybe a team of four could have it completed it in 6 months.

2. A large part of the work was debugging hardware. OK, it would have
been nice if that phase had been completed before we started, but
given the urgency of the project there had been no time. Forth allows
interactive testing of hardware. This was crucial to getting the system
going at all.

3. No one had ever built ACE before, therefore no one could have written
a complete specification for it without actually cutting holes. For
example, when the water jet comes within about 0.5mm of a previously
cut hole, such as the start point or corner, the jet tends to take the
easy route and bends around the remaining web of metal rather than
cutting it. To make sure that this tiny piece of metal gets removed, the
jet is made to stop and “wobble” by +/-1.0mm for 5 seconds, then
gradually speed up again. It took maybe one hour to add this
functionality to the code and test interactively the best amount of
wobble, pause time and rate of acceleration. Failure to get this detail
right means that someone has to leave the (relative) comfort of their
bunker, walk 500m to the bomb and attack it with a crowbar. Any
volunteers? When we started the project we didn’t know that this was
necessary, but when we found out that it was, it was easy to add,
calibrate and test it, and explanatory comments in the code appear in
the manual automatically. This is the right direction of information flow:
experience -> code -> documentation -> specification, repeated as
required.

Russian Front Programming – Stephen’s view
When this job started, I knew it was going to be tight.

Most of what caused 100 hour weeks and delays with this project was lack of
mechanical module testing because of the tight timescale and the constantly
changing requirements to overcome unforeseen problems. When the joint
services team came to review the project, the BDOs (bomb disposal officers)
made suggestions and told us how they actually wanted to use the
equipment. This information generated significant changes. The conversation
with the naval people about doing this underwater was memorable.

7

Once you have cut a hole in a bomb, you have to remove the explosive. This
is done with the same water jet used to cut the steel case, but with no
abrasive. The jet is moved around the hole to “wash” away the explosive.
Originally the specification was for circular holes at the nose of the bomb or
rectangular holes along the axis. In reality, the BDO defines a set of points –
a polyline. A quick search revealed a set of graphics algorithms for line
crossing, and these were translated from Java and C (floating point) into
Forth (integer) and tested in a few hours. The specification for the motion
during washing suddenly changed to a random walk and so on. The net is a
lifesaver for a tired and desperate programmer.

What went right was the almost uncanny ability in an interactive environment
to change major system software structure very quickly. At 2am one morning,
we decided that the current air/water interlock just wasn’t going to work, so
the “safety” task was added to look after this, and the cutting task and
washout tasks were cut down. This was another example of how factoring
Forth words saves the job because code reuse is so easy.

Having code and documentation in the same file is wonderful. Looking at
some of the code a few months later, I realise that having a tool such as
DocGen, which automatically generates the documentation encourages the
habit of documenting code, which significantly reduces interruptions from your
co-workers.

Summary
When writing in Forth you test each word interactively, getting to the bedrock
of the requirements, re-writing code and creating a language in which to
describe the system. Anyone who has programmed in Forth knows that this is
the way to write programs that work, quickly.

The ACE project demonstrates this in a way that deserves attention from
anyone confined to “mainstream” programming practices.

Bomb disposal people are special and have our admiration. They are also
completely mad.

8

