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Stand-alone VMs are increasingly used as platforms for code generation and
execution. The most popular, such as the JVM, are functionally complex and rich,
and tend to force their world view on the code they execute. At the other end of the
scale is Machine Forth, whose design is so simple as to be impoverished, and which
lacks several features necessary for efficient portable code. Mite attempts to bridge
this gulf, being simple yet sufficient for the task of portable code generation and
execution. It also attempts to bridge the cultural divide which separates the above-
mentioned systems, by being on the one hand familiar in design and compatible with
conventional ideas on code generation and execution, and on the other hand giving
users a considerable degree of freedom in its use and integration with other systems.

1 Introduction

VMs are increasingly recognised as useful platforms in their own right, rather than just a conve-
nient way of writing language interpreters. The VM du jour is the JVM [3], a complex beast that
encompasses memory management, concurrency, security and an object model. Programs that
run on it must either fit its rules and assumptions, or lose efficiency and functionality. The Forth
world’s nearest relative is PRACTICAL [2], which, though rather more flexible in terms of data
representation and code structure, shares the JVM’s unwillingness to be integrated into larger
systems (unsurprisingly, as it is designed to be used as part of the kernel of secure embedded
systems). At the other end of the scale is Machine Forth [5], a VM which has been implemented
in both hardware and software, and intended to be used as a basis for Forth programming, as its
instruction set closely resembles low-level Forth, though with one or two innovations. However,
a literal reading of its very concrete specification, which fixes the width of stack items and the
size of the data stack, which is defined as a circular buffer, makes it unsuited to software imple-
mentation on other processors (but see [8] for a rather more generous discussion). Similarly, it is
hard to see how Machine Forth code could be generated so that it is both portable and efficient.
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In tandem with this technical range comes a cultural range. The JVM’s design assumes that
its users are happy for it to perform basic resource management, including the memory allocation
and scheduling strategies. On the other hand, Machine Forth’s aggressively simple design is hard
even to generate code for with conventional compiler techniques (again, to be fair, this was not
one of its design goals).

The central assumption of this paper is that the most useful features of virtual machines per se
are to provide a single target for code generation, and the ability to run code portably on multiple
platforms. Mite attempts to provide these features, and these only, while remaining compatible
with existing tools and techniques, and allowing integration with non VM-based systems.

2 History

Mite originally appeared in a more complex design [9] that aimed to allow native code quality
competitive with that of native optimising compilers. This is now referred to as Mite0. While
Mite0 performed well, its implementation was complex, and in particular, implementing a back
end for an optimising compiler was a daunting task. Also, its complexity reduced the speed of
code generation. It therefore seemed reasonable to investigate how well a simpler design could
perform. Since most of Mite0’s complexity centred on its register model, this was discarded in
favour of a fixed register set. This simple change made a whole set of simplifications of the design
and implementation possible, whose results are presented here.

3 Using Mite

Mite’s design is set out in the appendix. Here, we merely list some of the most important high-level
features.

Simplicity The design is simple. It is easy to implement, target, and even hand-code for, with
few pitfalls for the unwary.

Registers The fixed orthogonal register set, which makes it a simple target for conventional
compilers. On the other hand, the number of registers can be varied for different uses,
for example according to the number of registers available on different ranges of target
architectures.

Stack pointer The provision of a stack pointer, push and pop instructions, and a “stack direction”
constant abstracts the stack just enough to allow Mite to use the native stack on most
systems, including non-contiguous stacks. The ability to read and set the stack pointer
directly means that non-local returns can be performed without extra instructions, as was
necessary in Mite0.

Instruction set Most Mite instructions correspond directly to single native instructions on most
architectures. The use of a three-operand format eases code generation and improves effi-
ciency on three-operand machines, while being easy to convert into multiple instructions
where necessary for two, one or zero operand machines. The simple correspondence also
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makes it possible to write in Mite code what would otherwise need to be written in native
code, for example, some parts of device drivers, and make it straightforward to interwork
between Mite and native code.

Definition Mite’s definition is brief but comprehensive: all possible instruction behaviours are
either defined or given as being undefined. It is straightforward to write a “sandboxed”
interpreter that checks all error conditions and does not allow unsafe operations on the host
system.

These features make Mite straightforward to implement, straightforward for compilers to
target, and easy in general for programmers to think about. Its similarity to hardware processors
make it easy to integrate Mite code with native code, and easier to take advantage of.

4 Integration

Unlike the JVM, which needs a special interface, the JNI (Java Native Interface), to interwork
with native code, Mite can simply call native code directly using the calln instruction; in a
native code implementation, this will usually be exactly the same as a call. In a particular
implementation, further knowledge can be used, for example about the mapping between Mite
registers and physical registers.

To allow fully portable code to integrate with native C libraries, however, it is still necessary
to provide special instructions, like Mite0’s (essentially duplicates of call, ret and subroutine
labels). Alternatively, a higher-level solution that maps types dynamically at run-time could be
used. Mite’s openness and flexibility allows a range of solutions to be used.

Of course, it may also be desirable to integrate with libraries written in other languages; it
is simply the case that inter-language working is usually done through the medium of C. More
complex mechanisms, such as .NET’s Common Language Subset [4], could be used just as they
are from native code (again, Mite’s closeness to real processors allows old solutions to be re-used).

5 Implementation

Although Mite was designed to be straightforward to implement, considerable attention has
also been paid to the structure of the implementation. Mite is implemented in C, for speed and
portability, but the C code is itself generated from a series of specifications, for the instructions
and operand types, and one for each input type (assembly and object code) and output type (object
code and each sort of native code. Even the interpreter is implemented by means of special output
types.

A series of translators, for example, from assembly to object code, and from object code to
each sort of native code, is then constructed, each one a combination of an input and an output
module. Thus each translator is customised for the desired type of translation, and runs very fast;
nonetheless, the simplicity of the code means that it is not too large (a typical translator takes
around 6Kb of IA32 code when compiled by GCC -O2).
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6 Future work

To make Mite useful, it needs compiler support. This is the current focus of development effort.
First, explicit size suffixes will be added to existing instructions, and C call and return instructions
adapted from Mite0. Then, the LCC back-end targeting Mite0 will be adapted for Mite. Dynamic
linking support will be added, followed by a floating-point extension to Mite’s design. At this
point it will be possible to compile C programs that will then run on any system supported by
Mite that uses the same type representations. In practice, most systems with a given data width
should be compatible.

Next, native back-ends will be written for various processors, starting with the most difficult
(and also most widespread), the Intel IA32 architecture. Load-time type mapping will be added
to allow code to be compiled portably across all architectures; this however will require support
for each library.

A back-end will then be written for GCC. This will enable Mite’s performance to be accurately
evaluated, and increase the number of languages that can be compiled to Mite. A GCC back-end
opens other doors, too: a Linux port, perhaps?

Mite’s development is taking place on SourceForge, at mite.sourceforge.net.

7 Conclusion

Mite is a general-purpose VM, intended to bridge the complexity gulf that exists between the
all-embracing JVM and the ascetic Machine Forth, as well as the cultural gap between the
philosophies that spawned them. By concentrating on code generation and execution, eschewing
ultimate performance in favour of simplicity, and emphasising integration with existing systems
and the use of conventional compilation techniques, Mite aims to be a compelling choice as a
compiler target and execution engine for a wide range of systems.
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A Introduction

Mite is a general-purpose virtual machine. It is designed to be capable of efficient implementation,
by interpretation or compilation, from a binary-portable object format. It has a flat linear memory,
and single-threaded, non-interruptable execution. The only external access provided is the ability
to call machine code.

B Parameters

Mite is parametrized on the following quantities:

W number of bytes in a word

R the number of registers (R = 2n,2 < n, for some n)

S direction of stack growth (−1 for an ascending stack, 1 for a descending stack)

C Registers and memory

Registers are word-sized. Mite has R registers 1 to R, a program counter P, and a stack pointer
S. The stack is a LIFO stack; S points to the top-most item.

The memory M is an array of bytes. The stack resides in memory. M(a) denotes the word in
memory starting at byte a; a must be a multiple of W . Within a word, bytes may be stored in big
or little-endian order. Two’s complement number representation is used.

D Execution

Mite repeatedly loads the instruction at P, makes P point to the next instruction, and executes the
loaded instruction. Program addresses need not be addresses in M.

E Instructions

In the syntax, each operand is denoted by a letter subscripted by a number. The letter indicates
the sort of operand required, as shown in table 1; the number shows the number of the operand.
{P} has the value 1 if the predicate P is true, and 0 otherwise.
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r register
i immediate constant
t label type
l label
n name

Table 1: Operand types

lab t1 n2 define a type t1 label named n2

Table 2: Label definition

E.1 Labels

Labels are defined by the lab instruction, shown in table 2.

There are three types of label: branch labels, denoted b, subroutine labels, denoted s, and
data labels, denoted d. A label is written as its name. A name is a string of letters, digits and
underscores, and may not start with a digit; names must be unique within a translation unit.

The value of a code or subroutine label is the address of the instruction immediately following
it. A data label’s value is the address of the first datum stored after it by a data instruction.

Branch labels have no effect when they are executed; subroutine and data labels may not be
executed.

E.2 Computation

The computational instructions are shown in table 3.

Immediate constants are of the form [e][s][w]n[>>r]. n (and r, if present) is an integer. If
e (for “endianness”) is present, n is subtracted from W on a big-endian Mite, or left unaltered
otherwise; then if s is present, it is multiplied by S, and if w is present, it is multiplied by W . The
final value is truncated to 8W bits, then if >>r is present, it is rotated by r places, to the right if
positive, and to the left if negative.

E.3 Data

The data instructions, shown in table 4, allow literal data to be included in object code; they may
not be executed. Data between two labels are stored contiguously in M.

lit causes its operand to be truncated to a word and stored in the next word of memory. litl
causes the values of the given label to be stored in the next word of memory.

space causes the given number of zero words to be stored in consecutive locations.
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mov r1 r2 r1← r2

movi r1 i2 r1← i2
ldl r1 l2 r1← syndl2
ld r1 r2 r1←M(r2)
st r1 r2 M(r2)← r1

gets r1 r1← S
sets r1 S← r1

pop r1 r1←M(S); S← S− sw
push r1 S← S+ sw; M(S)← r1

add r1 r2 r3 r1← r2 + r3

sub r1 r2 r3 r1← r2− r3

mul r1 r2 r3 r1← r2× r3

div r1 r2 r3 r1← r2÷ r3 (unsigned)
rem r1 r2 r3 r1← r2 mod r3 (unsigned)
and r1 r2 r3 r1← r2 bitwise and r3

or r1 r2 r3 r1← r2 bitwise or r3

xor r1 r2 r3 r1← r2 bitwise xor r3

sl r1 r2 r3 r1← r2 << r3 (0≤ r3 ≤ 8w)
srl r1 r2 r3 r1← r2 >> r3 (logical, 0≤ r3 ≤ 8w)
sra r1 r2 r3 r1← r2 >> r3 (arithmetic, 0≤ r3 ≤ 8w)
teq r1 r2 r3 r1←{r2 = r3}
tlt r1 r2 r3 r1←{r2 < r3}
tltu r1 r2 r3 r1←{r2 < r3 (unsigned)}
b l1 P← synbl1
br r1 P← r1

bf r1 l2 if r1 = 0, P← synbl2
bt r1 l2 if r1 6= 0, P← synbl2
call l1 S← S+ sw; M(S)← P; P← synsl1
callr r1 S← S+ sw; M(S)← P; P← r1

ret P←M(S); S← S− sw
calln r1 call native code at r1

Table 3: Computational instructions

lit i1 a literal word
litl t1 l2 a literal label
space i1 i1 zero words (i1 > 0)

Table 4: Data instructions
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Instruction Opcode Instruction Opcode Instruction Opcode

lab 01h mul 0dh b 19h
mov 02h div 0eh br 1ah
movi 03h rem 0fh bf 1bh
ldl 04h and 10h bt 1ch
ld 05h or 11h call 1dh
st 06h xor 12h callr 1eh

gets 07h sl 13h ret 1fh
sets 08h srl 14h calln 20h
pop 09h sra 15h lit 21h
push 0ah teq 16h litl 22h
add 0bh tlt 17h space 23h
sub 0ch tltu 18h

Table 5: Instruction opcodes

F Object format

In the description below, hexadecimal numbers are indicated by a leading “0x”.
Object code consists of a series of instructions.

F.1 Instructions

Instructions are encoded as the opcode followed by the operands, in numerical order. Instructions
that do not end on a 4-byte boundary are padded to the next such boundary with zero bytes.

Opcodes, registers and label types are encoded as one byte. The instruction opcodes are shown
in table 5. Opcodes 0x25–0x7f are reserved for future expansion. Registers are encoded by their
number. Label types are encoded as 1 for b, 2 for s, and 3 for d.

Labels are encoded as a long number (see section F.2). Labels of each type are numbered
consecutively from 1 from the start of the translation unit, according to the order in which they
are declared. For a lab instruction, only the label type is encoded (the number is redundant).

Immediate constants are encoded as a byte encoding the modifiers followed by a byte encoding
the rotation (if any), followed by the basic value encoded as a long number. The modifiers are
encoded as binary flags, as shown in table 6; the unused bits are zeroed.

F.2 Long numbers

Long numbers are encoded as follows:

1. Left-truncate the number to the minimum number of bits in which it can be represented.

2. Remove an 8n− 1-bit word from the most significant end of the number, where n is the
number of bytes left in the current instruction word. If there are fewer than 8n−1 bits in
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Modifier Bit position

rotation 0
w 1
s 2
e 3

Table 6: Constant modifiers encoding

the number then sign-extend it to that length first.

3. Add a bit to the most significant end of the word, which should be zero if more bits remain
in the number, and one otherwise.

4. Store the word, with the bytes in big-endian order.

5. While there are still bits in the number, repeat the following steps:

a) Remove a 31-bit word from the most significant end of the number, padding with
zeroes if there are fewer than 31 bits left.

b) Add a bit to the most significant end of the word, which should be zero if more bits
remain in the number, and one otherwise.

c) Store the word, with the bytes in big-endian order.
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