
Using Communicating State Machines to Design

an Interrupt Driven Task Schedular

Bill Stoddart

September 11, 2001

Abstract

A number of Forth systems have been equipped with a minimalistic but

extremely e�ective task schedular. Design methods and scheduling theory

seem to inevitably lead to cumbersome and far less elegant solutions. In

this paper we present a mathematical model of the classical Forth multi-

tasker in the form of communicating state machines. The aim is to suggest

that such a technique can lead to the sort of elegant and minimalistic

design which is typical of Forth, whilst also providing the possibility of

formal validation. Our model includes the multi-tasker itself along with

abstract protocol schemas for the behaviour of tasks and hardware devices,

needed to specify the correct behaviour of these with respect to interrupts.

Key words: Forth, Communicating State Machines, Event Based Models.

Introduction

We consider the design of a task switching mechanism for a microprocessor

system which needs to respond to events in its environment. The system is

interfaced to its environment by a number of i/o devices which issue interrupts

when they detect that an event has occurred. Each i/o device is managed

by a separate task. E.g. a particular task might manage the input from a

temperature sensor, receiving an interrupt when a changed reading occurs. The

function of the interrupt routine is to signal that there is some work for the

task which manages the device. When the task is subsequently scheduled the

temperature is read and any necessary action taken. Of course, in our model we

avoid this kind of speci�c detail, and just model the general scenario of interrupt

routines which provoke the subsequent scheduling of the associated task.

The word "design" is used here in the sense of "to indicate, to draw, to

form a plan of" (Chambers 20th C Dictionary) rather than with its alternative

connotation of "to contrive" (ibid.). The discovery of the beautiful mechanism

described here is entirely due to Charles Moore.

Modelling events associated with the task schedu-

lar

The state machines we use to build our models change state on the occurrence

of an "event". We think of events as instantaneous (so to model somethong

with duration we would need start and �nish events).

The tasks run on a single processor and are dispatched by a round robin

scheduler. The system can run any number of tasks (subject to memory and

performance constraints) but we can illustrate its operation with two tasks A

and B .

pause(B)=
stop(B)

pause(A)=
stop(A)

run(A)

skip(B)

skip(A)

run(B)

S3

S2

S1

S0

 S

Figure 1: Task Scheduler running tasks A and B

Figure 1 models the operation of the scheduler. From its initial state S0 it

may either run task A or skip task A. If it skips A, it becomes ready to run

or skip B . If task A is run, it must subsequently either pause or stop to allow

scheduling of the next task.

This view of the schedular leaves out important details, such as what deter-

mines whether a task should run or be skipped. We add these by introducing

additional state machines. Each task is modelled in terms of a status ag, an

i/o device interrupt protocol and an execution protocol. We detail those for

task A.

Modelling the e�ect of the task status ag

The decision as to whether a task will be run or skipped by the scheduler is

made according to the setting of the task's status ag. The status ag for A is

shown in �gure 2.

In its initial state SA0 the status ag permits the event skip(A) but blocks

run(A). In state SA1 the status ag has the opposite e�ect, blocking skip(A)

int(A)=
pause(A)

skip(A)

pause(A)=
int(A)

run(A)

SA0

SA1

 SA

Figure 2: Task A status ag

and allowing run(A). It can change from SA0 to SA1 by the occurrence of either

an interrupt for task A (event int(A)) or by a pause in the execution of task A

(event pause(A)). When task A is run, (event run(A)) its status ag is reset to

state SA0.

Shared events

Communication between state machines is via shared events. The rule is as fol-

lows: where two or more state machines have the same event in their repertoire,

that event can only occur when all such machines are ready to engage in it. So

for skip(A) to occur we need the schedular (machine S) to be in state S0 and

the status ag for A (machine SA) to be in state SA0. The e�ect of the event

skip(A) will be to take machine S to state S3 and to leave machine SA in state

SA0.

A state machine which could, at some point, engage in some event but is

not currently in a state where it can do so at the moment, will block that event

in the sense that it will certainly prevent it being the next event to occur in the

system. We have to be very carefull when using this modelling technique not

to give the such a power of veto to a component which could not realistically

exercise it. For example our task status ag does not have the power to block

the occurrrence of an interrupt. On the other hand it does have the power to

block either the running or the skipping of its associated task. We will return

to this point later on.

From state SA1 the status ag can engage in either pause(A) or int(A)

but will remain in the same state. This pair of transitions is represented with

a dotted line, which represents an expectation that these transitions are not

expected to occur within the context of the overall system, but must be included

here because it is not the job of the status ag to block them, and that would

be the e�ect of their omission under our interpretation of shared events.

AD1

AD0

int(A)

ei(A)

 AD

Figure 3: The i/o device serviced by task A

The interrupt protocol for i/o devices

Figure 3 de�nes the interrupt protocol to be followed by task A's i/o device.

After the event int(A) a further int(A) is impossible until interrupts are enabled

for the device (event ei(A)). On the other hand there is no restriction placed

on the interrupts from other devices (since, for example, we interpret int(B) as

a completely di�erent event from int(A)).

 A

A2

A1

A0

run(A)

ei(A)

pause(A)

stop(A)

Figure 4: Execution schemata for task A

The execution protocol for tasks

Figure 4 de�nes the execution protocol of task A. From its initial non-executing

state A0 the task may be run (event run(A). It returns to the non-executing

state either via a pause (when it has more work still to do but other tasks are to

have access to the processor) or by re-enabling the interrupts for its associated

i/o device and stopping (when it has completed its work).

int(A)
int(B)

ei(B)

ei(A)

run(A) run(B)

int(A)=
pause(A)

int(B)=
pause(B)

skip(A) skip(B)

int(A)=pause(A) int(B)=pause(B)

run(A)

ei(A)stop(A)

run(B)

ei(B)stop(B)

 A B

 AD BD

 BS

pause(A) pause(B)

A0

A1

A2

AD0

AD1

AS0

AS1

B0

B1

B2

BS0

BS1

BD1

BD0

 AS

pause(B)=
stop(B)

pause(A)=
stop(A)

skip(B)

skip(A)

S3

S2

S1

S0

 S

run(A)

run(B)

Figure 5: Tasks A and B with status ags, i/o devices and scheduler

The complete model and example traces

The complete model is shown in �gure 5. The following example trace, in which

a single interrupt from B 's i/o device is handled, will illustrate its operation

under conditions of light loading:

Event Involving State

fA0;AS0;AD0;S0;B0;BS0;BD0g
skip(A) S ;AS fA0;AS0;AD0;S3;B0;BS0;BD0g
skip(B) S ;BS fA0;AS0;AD0;S0;B0;BS0;BD0g
int(B) BS ;BD fA0;AS0;AD0;S0;B0;BS1;BD1g
skip(A) S ;AS fA0;AS0;AD0;S3;B0;BS1;BD1g
run(B) S ;B ;BS fA0;AS0;AD0;S1;B1;BS0;BD1g
ei(B) B ;BD fA0;AS0;AD0;S1;B2;BS0;BD0g
stop(B) S ;B fA0;AS0;AD0;S0;B0;BS0;BD0g

The design becomes critical under conditions of heavy load, i.e. when inter-

rupts occur more or less as soon as they are enabled. In this case an interrupt

may arrive to activate a task which is still running in response to a previous

interrupt. A key design decision here is that when a task is dispatched its status

ag is reset to its initial state, allowing its interrupt routine to register an e�ect

whilst the task is actually running. The following trace gives an illustration:
Event Involving State

fA0;AS0;AD0;S0;B0;BS0;BD0g
skip(A) S ;AS fA0;AS0;AD0;S3;B0;BS0;BD0g
int(A) AS ;AD fA0;AS1;AD1;S3;B0;BS0;BD0g
int(B) BS ;BD fA0;AS1;AD1;S3;B0;BS1;BD1g
run(B) S ;B ;BS fA0;AS1;AD1;S1;B1;BS0;BD1g
ei(B) B ;BD fA0;AS1;AD1;S1;B2;BS0;BD0g
int(B) BS ;BD fA0;AS1;AD1;S1;B2;BS1;BD1g
stop(B) S ;B fA0;AS1;AD1;S0;B0;BS1;BD1g
run(A) S ;A;AS fA1;AS0;AD1;S2;B0;BS1;BD1g
ei(A) A;AD fA2;AS0;AD0;S0;B0;BS1;BD1g
int(A) AS ;AD fA2;AS1;AD1;S0;B0;BS1;BD1g
At this point task A is running and action in response to interrupts is pend-

ing for both tasks. Under the assumption that no further interrupts occur and

that tasks relinquish the processor via stop, the following event trace will sub-

sequently occur:

hstop(A); run(B); ei(B); stop(B); run(A); ei(a); stop(A)i

Now let us return to the unwanted event transitions of machines SA and SB ,

which are marked by dotted lines in our diagrams, and consider exactly why we

do not want them to occur but must nevertheless include them in the behaviour

of our machines. For example consider the transition:

SA1

int(A)
������!SA1

this is unwanted since it fails to register that an interrupt has occurred. It must

be included because it cannot be the business of a status ag, which will be

implemented as a program variable, to control whether an interrupt routine can

occur. On the other hand it can very well be used, in an if statement, to control

a choice, made by the scheduler, between running or skipping a task, and this

is exactly its function in our model.

Conclusions

So what can we claim to achieved by having built an \Event Calculus" model?

Firstly we hope we have expressed some design ideas in a form which is both

formal and, we hope, accessible to a wide range of engineers who are not spe-

cialists in Formal Methods. We have also detailed the protocols required of

interrupt routines and task executions: e.g. a task must enable the interrupts

of its associated device before it does a stop, but must not enable interrupts

before a pause. If we are going to implement a non-preemptive scheduler (in

which stop and pause will be implemented as function calls made from the level

of user code) the level of design detail in our model is not far from that re-

quired for coding. Note however, that at the level of abstraction used here no

actual decision has been taken as to whether per-emptive or non-pre-emptive

scheduling is to be used.

A �nal point is that when moving from design to implementation we will

not seek to \implement" the individual state machines as such. They were just

views relating to di�erent aspects of the model. In other cases where the same

technique is used however, our state machines will represent separate physical or

software entities, possibly encapsulating data and communicating values as well

as engaging in primitive synchronisations. In such cases implementation of a

model may well be based on the state machine representations of its component

parts.

