The Common Case in Forth Programs

David Gregg *
Trinity College Dublin
David.Gregg@cs.tcd. ie

Abstract

Identifying common features in Forth programs is
important for those designing Forth machines and
optimisers. In this paper we measure the behaviour
of six large Forth programs and four small ones.
We look at the ratio of user to system code, basic
block lengths, common instructions, and common
sequences of instructions. Our most important find-
ing is that for most large programs, many (38.4%—
47.6% statically and 21.8%—-40.9% dynamically) ba-
sic blocks consist of only a single instruction, which
hinders optimisation. We also show static measures
of frequent instructions and sequences of instruc-
tions are more consistent across programs, and may
be a better predictor of the behaviour of other pro-
grams than dynamic measures.

1 Motivation

Perhaps the most important principle of modern
computer architecture is to make the common case
fast [HP96]. In deciding where to devote resources,
favour the frequent case over the infrequent one.
This is the idea behind RISC processors, virtual
memory, caches, and speculative execution. To-
day, general purpose processors and their compil-
ers are primarily designed to run integer C code,
of the type found in SPEC benchmarks, while su-
percomputers are designed to deal with large array
and floating point computations. The design trade-
offs for any computing machine depend on the rel-
ative frequency of different types of computations.
Thus, the designer of a Forth interpreter (a proces-
sor is simply a hardware implementation of an inter-
preter) must consider the common cases in typical
Forth programs.

In this paper we examine the behaviour of a num-
ber of Forth programs. We look at the most com-
monly executed instructions both statically and dy-
namically. We also examine the break-down of ex-
ecuted primitives between user code and system
code. We look at important metrics, such as ba-

*Supported by Enterprise Ireland International Collabo-
ration Programme, Project IC/2001/024

M. Anton Ertl
Technische Universitat Wien
anton@complang.tuwien.ac.at

John Waldron
Trinity College Dublin

John.Waldron@cs.tcd.ie

sic block length. And we find the most commonly
occurring sequences of instructions within a basic
block, and consider how well observations about one
program are applicable to other Forth programs.

We are not the first to make measurements such
as these. As we show in section 2 a number of au-
thors have examined the behaviour of Forth pro-
grams. The work in this paper differs from all ex-
isting work in at least one of three ways, however.
Most importantly, we focus real programs of several
hundred to several thousand lines rather than small
benchmarks. We do measure a number of micro-
benchmarks as well, but only to show that their
behaviour is very different from larger programs.
Secondly, we measure a relatively large number of
programs (ten in total), written by several differ-
ent authors, which helps us to avoid biases from
unrepresentative individual programs. Finally, our
results are presented in a paper that can be cited
by other researchers with confidence that the mea-
surements have been peer reviewed.

The remainder of this paper is organised as fol-
lows. We first describe existing work on the be-
haviour of Forth programs (section 2). In section 3
we describe six large benchmarks and four small
which we use for our measurements. In section 4 we
describe our method of collecting data, and presents
measurements of the benchmarks. Finally, in sec-
tion 5 we draw conclusions.

2 Related Work

In the process of designing Forth machines, a num-
ber of previous authors have examined the be-
haviour of Forth programs. Hayes et al [HFWZ87]
measured the dynamic frequency of a various in-
structions for two large programs and one small
one. They found that calls and returns were very
frequent in the large program, but less frequent in
the small one.

Koopman [Koo89] measured the execution fre-
quency of Forth instructions in six small benchmark
programs. In all benchmarks, CALL and EXIT in-
structions were the most common (at about 12%
each). The frequency of other instructions varied



more widely across benchmarks. This is not sur-
prising, since what is essentially being measured is
which instructions are in the inner loop of these
small programs.

In previous unpublished work Ertl measured
the frequency of instructions, and sequences of
instruction in three large Forth programs. Again
calls and returns were the most common instruc-
tions, but there was more consistency in the other
frequent instructions across programs. The raw
data from these measurements can be found at

http://wuw.complang.tuwien.ac.at/forth/peep/.

3 Benchmarks

This section describes the benchmarks that we use
to measure the behaviour of typical Forth programs.
We have chosen four small benchmarks and six
larger ones. We believe that the results from the
large benchmarks are generally representative of
real programs. We examine the small programs for
comparability with existing work, and to show that
the behaviour of small and large programs can be
very different.

The small benchmarks are those that come with
the publically available Gforth system. Lines of
source code include blank lines and comments, and
are shown in Fig. 1. The programs are:

sieve Sieve of Eratosthenes program which com-
putes all primes between 2 and 8190.

bubble Bubble sort an array of 6000 elements.
matrix Multiplication of 200 by 200 matrices.

fib A naive recursive computation of the first 34
Fibonacci numbers.

The larger benchmarks are real programs from a
variety of application areas. We have been careful
to choose programs from a number of different au-
thors to avoid measuring just a single programming
style. The larger benchmarks are:

prims2x A virtual machine interpreter generator
which forms part of the Gforth system. It ac-
cepts a specification of the virtual machine in-
structions and output a C source interpreter
for the instructions.

grey A parser generator which accepts an LL1
grammar and produces a recursive descent
parser in Forth.

brew An evolutionary programming playground,
which simulates the interaction between crea-
tures.

brainless A chess playing program.

benchgc A conservative garbage collector for
Forth. It was run with a test program which
allocates and collects large amounts of memory.

pentomino A puzzle solving problem that tries to
fit twelve pentominos (shapes constructed from
five squares) together. Pentomino includes a
code generator that produce large numbers of
very similar new routines at run time. Thus,
the run time code size is much larger than
would be suggested by the 511 lines of source.

4 The measurements

The benchmarks were measured with the Gforth
system [Ert93]. Gforth is a complete, product
quality implementation of the ANS Forth standard
which is freely available under the GNU general
public licence. Gforth is an interpreter based imple-
mentation of Forth. This allows the Forth engine
to be simple and portable, while allowing the pro-
grammer to add new words to the system without
recompiling existing code.

We modified the Forth text interpreter (which
compiles Forth source to threaded virtual machine
code) and the engine interpreter (which interprets
the threaded code) to collect information about run-
ning programs. The most important modification
was to add additional code to all control flow in-
structions, so that they record the number of times
that each basic block is entered.

One complication with measuring the behaviour
of Forth code is that there is no “program” as such.
A Forth system consists of a collection of words.
Additional functionality is added by defining new
words, in effect, changing the language. An impor-
tant question when measuring Forth programs is
whether to examine only the user-defined words, or
whether to include both system and user-defined
words. Should statistics for a small bubble sort
benchmark include the entire Forth system or just
the words in the user part of the code? The for-
mer would cause the system code to dominate static
measurements of most programs, whereas the latter
would leave out an important part of dynamic mea-
surements. For this reason we chose a compromise,
which is to include in our measurements those in-
structions from the system and user code which are
executed at least once. The next section shows the
result of these measurements.

4.1 User versus system code

When a Forth program is run, both system and
user-defined words are executed. An important



question is the relative proportion of the two that
make up the running time of the program. For ex-
ample, it is well known that general purpose Java
programs spend much of their time executing code
from the standard Java libraries [Wal99], and that
most programs with a graphical user interface spend
much of their time in graphics libraries.

System code in Gforth is executed for two main
reasons. First, much of Gforth is written in Forth.
For example, when a program is loaded the text
interpreter (which is written in Forth) interprets
the commands and compiles colon definitions. Sec-
ondly, the Forth system provides many words which
can be invoked by user programs. Many of these
system words are not primitives, so they result in
Forth code being called. The question is how much
of the code in a typical run of a program is system
code.

Figure 1 shows the static and dynamic proportion
of system code for each of the benchmarks. For the
small benchmarks the pattern is clear. Statically,
almost all of the code is system code. The Gforth
code to startup and load the benchmark consists
of more than 2000 primitives, which is far larger
than any of the small benchmarks. However, almost
100% of the dynamically executed instructions are
in user code, since these small programs spend al-
most all their time in a simple, tight loop.

The results for large programs are quite different,
demonstrating the danger of assuming that large
programs behave the same as small ones. Not sur-
prisingly, system code makes up a small propor-
tion of the static instructions, since the programs
are larger. More interestingly, the large programs
spend a large proportion of their time in system
code. This can partly be explained by the text in-
terpreter compiling more user code, much of which
will execute only a small number of times. The rest
can be accounted for by the user programs using
system words. This is especially clear in gray and
prims2x, which use string manipulation words for
their parsing and output.

Generally, Forth programs spend relatively little
time in system code, so providing an efficient Forth
execution engine is more important than optimis-
ing system words. Nonetheless, system code is not
insignificant, so its efficiency cannot be entirely ne-
glected.

4.2 Basic block lengths

A basic block is a sequence of instructions where no
instruction but the last is a branch, and no instruc-
tion but the first is the target of a branch. Basic
blocks are important because there is no branching
within them, which greatly simplifies optimisations.
Figure 2 shows the percentage frequency of various
basic block lengths in the static code. Perhaps the

most remarkable result is the very large number of
basic blocks consisting of only a single instruction
(31.6% — 47.6%). The reason for this is the very
large numbers of calls and returns in Forth code.
In addition to the normal control flow instructions,
Forth executes a call or return about one instruc-
tion in every four (see section 4.3). Also notable
are the large number of basic blocks of length 2 or
3. Based on the static frequencies, it appears that
optimisations attempt to improve the code in basic
blocks are unlikely to be very successful; there are
too few instructions to optimise.

Figure 3 shows the basic block length distribu-
tion weighted by execution frequency. For the large
benchmarks, the proportion of very short basic
blocks is smaller than for the static figures, but still
high. For the smaller benchmarks, there are a hand-
full of frequent lengths and almost no others. The
small benchmarks consist primarily of a small loop
which executes many times. The frequent blocks
are those that appear in that loop. Furthermore,
most of the small benchmarks rarely execute basic
blocks of length one. Again, they spend most of
their time in small loops rather than in calls and
returns.

This last finding explains a result from our work
on interpreter optimisation which originally puz-
zled us. We have implemented an optimisation
that combines frequent sequences of instructions
into a single “superinstruction” [Pro95]. Our initial
results show that the optimisation gives excellent
speedups for small programs, but is less successful
for large ones. The reason is now clear. Large Forth
programs contain many very short basic blocks, so
the opportunities for combining are limited.

There are two exceptions to our general observa-
tion about small and large programs. The bench-
mark £ib consists of a small, heavily recursive func-
tion, rather than a tight loop, so it contains many
calls. Secondly, pentomino, spends most of its time
in code generated at run time which contains a basic
block with six instructions. These programs show
the importance of looking at a variety of bench-
marks, rather than depending on a small number of
examples.

4.3 Frequencies of primitives

The most important measure of the behaviour of
a Forth program is which primitives are executed.
The Forth engine should be optimised for the most
frequently occurring instructions. Figure 5 shows
the most frequently statically appearing instruc-
tions for our large benchmarks. The most remark-
able feature is the large number of call and ;s
(which implements the exit word for returning
from calls) instructions. Statically, they account



Benchmark source lines static instrs. static % dynam. instrs. dynamic %
prims2x 1258 6,314 43.27 18,319,272 51.33
gray 1458 4,792 37.92 4,833,582 25.57
brew 7627 6,078 43.43 | 1,312,698,495 93.94
brainless 3755 11,430 72.34 859,030,440 87.73
benchgc 1479 4,105 26.35 559,786,379 91.56
pentomino 511 7,951 63.92 746,097,406 99.26
siev 20 2,325 2.54 150,829,255 99.79
matrix 55 2,283 4.38 139,192,159 99.75
fib 10 2,075 0.96 194,052,085 99.86
bubble 74 2,426 3.59 170,931,912 99.72
Figure 1: User code as a percentage of total code
Benchmark 1 2 3 4 5 6 7 8 9 100 11 12 13 14 >15
prims2x 471 21.2 121 55 45 3.0 20 15 06 0.7 05 02 02 00 0.6
gray 476 220 133 56 41 21 16 13 06 06 01 02 01 01 05
brew 39.0 20.1 154 94 60 30 22 1.7 10 08 02 03 02 03 0.5
brainless 453 170 121 64 50 33 78 13 10 0.7 05 07 03 03 1.1
benchgc 384 185 160 85 64 38 25 21 1.1 09 02 05 01 01 0.7
pentomino | 31.6 13.2 173 6.5 53 96 20 16 1.0 0.7 05 04 0.1 0.1 100
siev 342 196 160 84 70 44 30 26 15 11 01 05 01 03 1.1
matrix 33.7 194 158 82 76 46 31 24 15 09 01 07 03 03 13
fib 342 198 160 79 73 42 30 26 1.7 11 02 05 02 03 09
bubble 36.4 188 153 82 72 41 30 24 14 09 01 06 01 03 1.0
Figure 2: Percentage distribution of static basic block lengths
Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >15
prims2x 409 152 115 69 45 106 23 35 06 18 01 05 13 00 0.0
gray 323 273 180 61 55 42 23 16 10 06 00 1.0 00 00 0.0
brew 274 164 116 123 125 62 86 10 05 1.8 03 01 00 1.3 0.0
brainless 31.7 170 118 86 59 55 56 34 13 12 34 07 05 13 24
benchgc 21.8 179 146 137 53 182 19 10 34 18 0.0 03 0.0 0.0 0.0
pentomino 08 03 121 131 27 506 13.0 0.0 00 0.0 0.0 00 00 0.0 7.2
siev 31 19 483 19 396 00 00 50 00 00 0.0 00 00 0.0 0.0
matrix 1.1 02 06 02 10 06 01 00 00 00 00 09 09 00 942
fib 374 0.0 250 375 00 00 00 00 00 00 00 0.0 00 00 0.0
bubble 0.1 01 400 400 197 00 00 00 00 0.0 0.0 00 0.0 0.0 0.0

Figure 3: Percentage distribution of dynamic basic block lengths

for about one quarter of all instructions in most
benchmarks. Given that calls and returns do no
useful computation, they seem a source of unneces-
sary inefficiency. Forth programs could benefit con-
siderably from procedure inlining. Not only would
it reduce the number of calls and returns; it would
also increase the length of basic blocks, allowing
other optimisations to be more effective.

Another notable feature is the large number of
1lit, @ and useraddr instructions. As with most
machines, at least as much of the time is spent data
shuffling data to where it can be operated up (in this
case the stack) as is spent operating on it. Stack

manipulation operations (such as dup, swap, over,
>r, r>) are also common. Such operations may be
a source of optimisation if the stack can be arranged
in a more efficient way to reduce the number of
manipulations. Procedure inlining might make this
more effective if it exposes more stack manipulation
operations simultaneously to such an optimisation
phase.

Figure 5 shows the twenty dynamically most fre-
quent instructions for the six large benchmarks.
Calls and returns are slightly less frequent than in
the static measurements, which explains why dy-
namic basic block lengths tend to be longer than



prims2x gray brew brainless benchgc pentomino
call 21.73 | call 22.43 | lit 19.00 | lit 23.61 | lit 17.44 | lit 30.81
lit 18.21 | lit 19.22 | call 18.28 | call 17.61 | call 16.10 | + 9.94
@) 9.44 | ;s 10.22 | @ 11.17 | @ 1532 | @ 9.67 | c! 9.58
;S 9.15 | @ 9.01 | ;s 8.35 | ;s 747 | ;s 9.43 | over 8.39
?branch 3.64 | ?branch 4.01 | 7branch 4.33 | ?Tbranch  3.50 | dup 4.80 | call 6.45
+ 2.77 | dup 2.80 | dup 3.95 | dup 2.96 | ?branch 3.7 | @ 4.63
dup 2.77 | ! 2.63 | ! 2.71 | ! 293 | ! 3.36 | ;s 3.74
! 2.39 | execute 2.39 | execute 2.04 | + 2.76 | swap 2.14 | 7branch 3.41
execute 2.33 | >r 1.67 | >r 1.76 | swap 1.37 | >r 2.12 | dup 3.37
swap 1.35 | + 1.63 | + 1.69 | over 1.27 | execute 2.00 | c@ 2.23
>r 1.46 | swap 1.57 | swap 1.58 | and 1.16 | r> 1.83 | execute 1.62
branch 1.43 | branch 1.57 | r> 1.53 | drop 1.09 | drop 1.80 | 0= 1.51
drop 1.35 | r> 1.44 | drop 1.35 | branch 1.06 | + 1.80 | ! 1.28
i 1.27 | drop 1.29 | branch 1.28 | cells 1.05 | over 1.77 | +! 0.97
r> 1.19 | over 1.25 | 0= 1.17 | = 1.03 | useraddr  1.36 | >r 0.89
over 1.17 | useraddr 119 | i 1.17 | execute 0.01 | branch 1.19 | swap 0.74
useraddr 1.11 | 2dup 0.86 | useraddr 1.14 | i 1.00 | 2dup 1.12 | useraddr  0.74
0= 0.95 | 0= 0.79 | over 1.12 | >r 0.91 | 0= 1.09 | r> 0.74
2dup 0.84 | - 0.73 | +! 0.79 | r> 0.86 | - 1.09 | drop 0.65
2@ 0.73 | i 0.73 | = 0.79 | or 0.85 | i 1.08 | 2dup 0.49

Figure 4: Statically frequent instructions for large benchmarks

static ones (see section 4.2).

Generally, the similarity between the lists of
static and dynamic instructions is remarkable. The
same instructions that appear statically frequently
are also strongly represented in the inner loops
of the large programs. Some instructions which
are specific to these programs (such as rshift in
benchge and mod in brew) do not appear in the
static instructions, but in general the lists are much
the same. If one had to identify the most impor-
tant instructions the static and dynamic lists could
be used almost interchangeably.

An exception to this is the (loop) instruction (in
brainless, benchge and pentomino). Not surpris-
ingly, this instruction appears only rarely in static
code, but is executed many times dynamically, be-
cause it is used for looping. This suggests that while
static measures will identify most of the most im-
portant instructions, it is also important to measure
programs dynamically.

Pentomino’s dynamic behaviour is very different
to that of the other programs. Clearly the dynamic
figures for pentomino are dominated by an inner
loop which executes many times. Examining the
list, one can see which instructions appear in its in-
ner loops and how many times they appear. The
top ten instructions account for almost all execu-
tions. While these instructions are mostly the ones
common in other programs, the presence of c! so
high in the list shows that the machine designer
must be prepared for the occasional program which
contains an unusual instruction in its inner loop.

In addition to the instruction frequencies for the
large benchmarks, we made the same measurements
for the four small benchmarks. We found that
the statically frequent instructions are very similar
across all four small benchmarks, and also similar
to the static frequencies for the large benchmarks.
The reason is that most of the statically occurring
code in the small benchmarks is system code (sec-
tion 4.1) which is the same for all four benchmarks,
and also occurs in the large benchmarks. The dy-
namic frequencies are even more extreme than for
pentomino, with just a handfull of primitives ac-
counting for almost all executed instructions.

4.4 Frequencies of sequences

A number of optimisations can be applied to Forth
code which rely on identifying frequent sequences of
instructions. We have already mentioned “superin-
structions” (see section 4.2). Another example is
to base predictors for code compression schemes on
the frequency of instruction sequences [EEF197].
The simplest way to find common sequences of in-
structions up to a given length N is to modify the in-
terpreter to keep a list of the most recent N instruc-
tions executed. After executing each instruction the
list is added to a hash table which records the num-
ber of times that that sequence has occurred. A
weakness of this approach is that the instructions
in the resulting sequences may be from more than
one basic block. Currently, sequence-based opti-
misations work only on instructions within a basic




prims2x gray brew brainless benchgc pentomino
lit 15.26 | ;s 15.08 | lit 22.31 | lit 19.77 | lit 8.20 | lit 24.57
Q@ 12.79 | @ 14.88 | @ 19.13 | @ 15.79 | ;s 8.05 | + 12.07
] 12.18 | call 14.07 | ;s 11.18 | ;s 8.86 | call 7.94 | ?branch 12.05
call 11.13 | lit 12.17 | call 10.00 | call 8.38 | @ 7.09 | dup 11.03
?branch 4.78 | ?branch 3.89 | + 728 | + 7.80 | and 6.14 | cQ 10.24
swap 3.89 | + 3.82 | ?branch  3.94 | ?branch 4.63 | dup 5.90 | 0= 8.89
+ 3.34 | useraddr  3.18 | ! 3.52 | cells 4.18 | over 5.67 | c! 5.93
0= 2.76 | dup 2.44 | dup 3.11 | dup 4.11 | i 5.47 | over 4.96
dup 2.31 | ! 241 | +! 1.61 | and 2.63 | (loop) 4.75 | 1+ 3.64
r> 1.77 | over 2.13 | swap 1.32 | = 243 | = 4.55 | @ 2.27
>r 1.77 | swap 1.73 | execute 1.30 | over 2.17 | c@ 4.40 | > 1.81
= 1.67 | r> 1.71 | over 1.14 | ! 2.15 | ?branch 4.23 | 4! 0.99
c@ 1.60 | >r 1.69 | = 1.12 | swap 1.47 | swap 3.48 | ;s 0.44
and 1.41 | execute 1.49 | cells 1.11 | ?dup 1.46 | >t 3.00 | execute 0.37
>1 1.26 | 0= 1.32 | mod 0.98 | i 1.04 | + 2.72 | drop 0.36
useraddr 1.25 | and 1.12 | i 0.96 | * 0.99 | r> 2.11 | call 0.07
count 1.10 | cell+ 1.11 | drop 0.93 | drop 0.97 | - 1.35 | (loop) 0.04
cells 1.06 | = 1.04 | branch 0.82 | (loop) 0.84 | rshift 1.33 | i 0.02
! 1.04 | 2dup 0.97 | >r 0.78 | or 0.80 | 0= 1.26 | emit-file  0.02
over 1.03 | ?dup 0.84 | r> 0.71 | useraddr  0.72 | drop 1.25 | * 0.02

Figure 5: Dynamically frequent instructions for large benchmarks

block. For this reason, we used a more sophisticated
scheme to measure only those sequences which ap-
pear within basic block boundaries.

Figure 7 shows the twenty-five statically most
common sequences for each of the large bench-
marks. As expected, the most common sequences
are short and consist of combinations of the most
frequent instructions. The combinations are not
random, however. For example, it is interesting to
note the frequency with which a constant is pushed
onto the stack, followed by a call (1it call). It is
also common to store a value just before returning
from a call (! ;s). Another interesting feature
is that although calls, returns and branches form
a very large percentage of statically appearing in-
structions, they are much less frequent in sequences.
The reason is that they terminate basic blocks, so
they can only appear at the end of a sequence.

The results for two programs stand out from the
others. First, brainless, which is the largest of
our benchmarks, contains 193 instances of a single
long sequence (lit @ lit @ 1lit @ call). This
sequence, and all substrings of are responsible for
most of its entries. Secondly, pentomino gener-
ates large amounts of very similar code at run time.
Among this code are 496 instances of the sequence
lit over lit + ¢! 1lit over lit + c!, which
dominate the results. Clearly the Forth goal of code
factoring is not working well for either of these pro-
grams.

Figure 6 shows the twenty-five dynamically most
frequent sequences of instructions. Many of the se-

quences also appear on the static lists (e.g. 1it @,
1lit call). However, many more of the sequences
are clearly program specific. For example, many
of the most common sequences consist of the basic
block in the most frequent inner loop, and all sub-
strings of that block. There is much more variation
among the dynamic sequences for the different pro-
grams than for the static ones. This suggests that
if one wishes to identify which sequences are likely
to be important for Forth programs in general, it
may be better to use static sequences from a basket
of programs rather than dynamic ones.

5 Conclusion

Identifying common features in Forth programs is
important for those designing Forth machines and
optimisers. In this paper we have measured the be-
haviour of six large Forth programs and four small
ones. Forth programs spend most of their time in
user rather than system code, suggesting that ef-
fort should be spent on improving Forth engines
rather than tuning libraries. Large programs exe-
cute large numbers of call and return instructions,
which results in very short basic blocks, which hin-
der optimisation. Procedure inlining may reduce
this problem. We examined the static and dy-
namic frequency of instructions and found that a
handfull of frequent VM instructions account for
most execution. In addition we also looked at the
most frequently appearing sequences of instructions



prims2x gray brew brainless benchgc pentomino
lit @ lit @ lit @ lit @ over i lit 4+
Q@ lit Q ;s @ + lit + = and 0= ?branch
lit call lit call lit @ + cells lit over i c@ = and (loop) | ¢@ 0= ?branch
= 7branch useraddr @ @ lit cells lit + over i c@ = and c@Q 0=
lit @ lit + 38 + 38 @ lit over i cQ = dup lit
lit @ c@Q s Q + ;s + @ over i c@ + c@
@ c@ useraddr @ ;s lit @ + ;s lit + @ i c@ = and (loop) lit + c@
Q lit @ @ + Q lit @ cells lit + @ ic@ = and dup lit +
lit @ lit @ @ lit Q lit @ + lit @ = ic@ = lit + c@ 0= ?branch
Q ;s @ + ;s @lit @ + ;s Q= ic@ lit + c@ 0=
@ = @ call lit ! lit @ and ¢@ = and (loop) dup lit + c@ 0= ?branch
lit @ = ?branch | @ execute lit @ lit @ and c@ = and dup lit 4+ c@ 0=
lit @ = lit @ execute lit @Q lit @ + dup c@ = dup lit + c@
@ = ?branch = ?branch lit call Qlit @ and (loop) + ¢@ 0= 7branch
useraddr @ over = ?branch lit @ lit @ + dup lit = and (loop) + c@ 0=
@ and over = s lit ! lit @ lit over
0= ?branch @ useraddr + lit ?dup ?branch dup lit over lit
0= 0= @ useraddr @ lit ! ;s Q ;s lit call c! lit
swap @ @@ + lit @ lit @ lit + 38 + c!
lit lit ?dup ?branch dup lit and lit lit and lit + c!
and 0= cell+ swap lit @ lit @ + ;s | lit call @ + over lit + ¢!
@ and 0= useraddr @ + ;s @ + lit Q@ + Q@ + ;s over lit +
lit swap @ useraddr @ + ;s | lit @ + lit @ lit @ and dup lit and lit over lit + c!
+ swap useraddr @ + lit @ + lit @ @ ?dup dup @ lit over lit +
swap ;s @ useraddr @ + @ + lit @ @ ?dup ?branch | @ dup lit over lit

Figure 6: Dynamically frequent sequences of instructions for large benchmarks

and found that the same sequences tend to appear

Zaremba.

An architecture for the di-

statically frequently in all large programs. On the
other hand, there is considerable variation in the
frequency of dynamically appearing sequences. In
many cases the dynamic figures simply measure the
contents of the inner loop, suggesting that it would
be better to generalise from the static frequencies.
These measurements are useful for identifying fu-
ture optimisation opportunities for Forth machines.

References

[EEF+97]

[Ert93]

[HFWZ87]

Jens Ernst, William Evans, Christo-
pher W. Fraser, Steven Lucco, and
Todd A. Proebsting. Code compres-
sion. In SIGPLAN ’97 Conference on
Programming Language Design and Im-
plementation, pages 358-365, 1997.

M. Anton Ertl. A portable Forth en-
gine. In FuroFORTH ’93 conference
proceedings, Maridnské Lézne (Marien-
bad), 1993.

John R. Hayes, Martin E. Fraeman,
Robert L. Williams, and Thomas

[HP96]

[Koo89]

[Pro95)

[Wal99]

rect execution of the Forth program-
ming language. In Architectural Support
for Programming Languages and Oper-
ating Systems (ASPLOS-II), pages 42—
48, 1987.

John L. Hennessy and David A. Patter-
son. Computer architecture — a quan-

titative approach, Second Edition. Mac
Graw-Hill, 1996.

Philip J. Koopman, Jr. Stack Comput-
ers. Ellis Horwood Limited, 1989.

Todd A. Proebsting. Optimizing an
ANSI C interpreter with superopera-
tors. In Principles of Programming
Languages (POPL ’95), pages 322-332,
1995.

John Waldron. Dynamic bytecode us-
age by object oriented java programs. In
Proceedings of the Technology of Object-
Oriented Languages and Systems 29th
International Conference and Exhibi-
tion, Nancy, France, June 7-10 1999.



prims2x gray brew brainless benchgc pentomino
lit @ lit @ lit @ lit @ lit @ lit +
lit call lit call lit call @ lit lit call lit over
@ execute @ execute @ lit lit @ lit lit @ execute | + c!
lit @ execute | lit @ execute | @ execute @ lit @ @ execute c! lit
lit + @ lit lit @ execute | lit @ lit @ lit lit over lit
@ lit @ call lit @ lit @ call dup lit lit + !
lit @ lit lit ! lit lit lit call lit ! over lit + c!
Q@ call lit @ lit lit ! lit @ call @ lit over lit +
+ @ lit lit Q@ call lit ! @ call lit over lit + c!
lit lit I'lit dup lit lit @ lit @ lit ! lit lit over lit 4
lit + @ lit @ call Q@ lit @ @ lit @ lit s lit over lit
Q lit + s ! lit lit @ lit @ call lit @ call + c! lit
lit ! dup lit 0= 7branch | @ lit @ call lit @ lit lit + c! lit
I lit @ ;s s lit @ lit @ lit @ dup call over lit + ¢! lit
lit @ lit 4 lit + lit @ call @ lit @ lit @ 0= ?branch | lit over lit + ¢! lit
dup lit lit @ ;s dup call lit @Q lit @ lit @Q call | lit + over lit + ¢! lit over lit + ¢!
s useraddr @ lit @ lit @ @ lit @ lit @ call useraddr @ over lit + ¢! lit over lit +
lit @ call 0= 7branch = ?branch lit + lit ! lit over lit + ¢! lit over lit
0= 7branch lit ! lit Q@ + lit lit dup @ over lit + ¢! lit over
useraddr @ useraddr ! icall dup lit dup ?branch | + ¢! lit over lit +
= 7branch dup ?branch | @ ?branch ! lit useraddr ! c! lit over lit
useraddr ! = 7branch useraddr @ @ execute drop ;s c! lit over lit +
Q ;s dup call dup @ lit @ execute lit lit @ + ¢! lit over lit + ¢!
dup call @ lit @ dup ?branch | lit ! lit @ dup c! lit over lit + c!
dup ?branch | drop ;s lit + @ ?branch = 7branch lit + ¢! lit over

Figure 7: Statically frequent sequences of instructions for large benchmarks




