
An experimental Investigation of Single and Multiple Issue
ILP speedup for stack-based code

Chris Bailey
Dept. of Computer Science,

University of York ,
chrisb@cs.york.ac.uk

Mike Weeks ∗

Dept. of Computer Science,
University of York,

w.weeks@c.york.ac.uk

∗
Visiting RA, Part-funded by University of Teesside

1 Abstract

Stack-processors, which abandon register files
and instead work directly on stack-resident
operands, have recently enjoyed a resurgence
of interest in conjunction with developments
such as Java, and have always retained an
interest for FORTH users, especially in real-
time systems arenas. However, the opportunity
to enhance throughput of stack-based
architectures has received insignificant
attention in recent years. Java, and the recent
interest in low power architectures has
something to owe to this.

In this paper we provide an insight into an
ongoing preliminary study of ILP parallelism
in stack architectures, our approach to the
problem, and some preliminary results from
our work. Whilst this is very much a case of
work in progress, we feel that there are clear
opportunities for further work in this area, and
substantial gains for the stack-processor
paradigm.

Our results show that even in the absence of
the simplest approaches to code optimisation
for parallelism, speed-ups can reach into the
order of 2-fold speed-up. This should be
applicable to FORTH as well as C and Java,
since it is generic to the underlying machine
architecture.

1. Introduction

Whilst stack architectures have enjoyed a
recent increase in interest, largely due to the
rise of Java and proclamations a of set-top-box
revolution, they have failed to adopt any of the
significant advances in mainstream register-
based architectures that have become viable for
microprocessors in the past 10 to 20 years.

Whilst there will always be an interest in stack-
architectures from the real-time-systems and
FORTH community, the application of
advanced stack processor architectures to more
demanding applications has yet to be realised.

There have been some interesting approaches
to parallelism which attempt to execute
multiple instructions per cycle. The SC32
processor employs a long-instruction-word
format which allows multiple internal
operations to be executed simultaneously. It is
claimed that this allows ‘optimisation of up to
seven Forth words into one [memory] word is
possible’, implying up-to 7 instructions per
cycle at peak execution. However typical code
will average far less, perhaps only one or two
instructions per cycle.

The ill-fated T9000 experiment with
parallelism took a different approach, based
upon a dedicated multi-function pipeline. Here
instructions were pre-ordered by the compiler
to comprise groups of instructions which
would (ideally) match the pipeline
configuration of the architecture, and then
achieve a speedup.

However, both of these approaches assume a
single ALU model, and rely upon contriving to
get instruction sequences in the right order,
where often the basic-blocks involved are too
short to fully exploit available parallelism.

Research being conducted at the University of
York, in the Department of Computer Science,
is focussed upon the improvement of stack-
processor architectures in novel ways. Our
most recent activity has centred upon a short-
term project to investigate the feasibility of
applying super-scalar techniques to an
implicitly addressed stack architecture.

The investigation has been achieved by
development of a simulator platform, written
in C++, which emulates a super-scalar stack
execution model. Our simulator is capable of
simulating both single and multiple issue
models of ILP parallelism, and has yielded
important results which not only confirm the
viability of the concept of super-scalar stack
execution, but suggest areas where code
optimisation techniques may well deliver
greater gains.

2. Superscalar issue and execution

An approach to parallelism typically employed
in register-based processors is to employ
multiple and independent functional units, and
to co-ordinate their operation through the use
of reservation stations [Tomasulo 67] and
score-boarding [Thornton 64].

The concept is simple enough : an instruction
requires operands, which are drawn from
registers, computed upon, and written back to
the register file. However, it is often the case
that an operand is not yet available in the
source register, hence the requirement for that
register’s content is reserved by the functional
unit and acquired when available.
Consequently, the result of the operation
cannot be written immediately back to the
destination register, and this must be recorded
in the score-board, so that other functional
units are aware that access to that register must
be delayed (and acquired through reservation).

So far this is a description of a register-based
architecture. However we can read stack-cell
for register in the above description quite
happily, and thus conceive of a stack-based
embodiment of the Thornton/Tomasulo
approach to parallel computation.

This must be refined by the addition of a
special functional unit, the SMU, or stack-
manipulation Unit. Which is responsible for
performing operations such as swap, rot, dup,
and drop. An interesting observation in this
respect is that stack manipulations do not alter
content, rather they move operands from place
to place, and as such they may operate upon
stack contents which are not yet known due to
an earlier delay in computation.

Consider for example, the case of ADD
followed by SWAP. In a normal architecture
the swap cannot proceed until ADD completes.
However in our embodiment, the swap acts
only upon the score-board and not the actual
stack-cells, and so it achieves a transposition of
the stack content without the need to have the
actual values to hand.

There are of course a number of other cases
where execution can proceed in this manner.
An addition which is independent of previous
operations can be issued and executed even if
the preceding operations are stalled due to a
memory bottleneck or data dependency.

3. A model for Stack-Based ILP

We envisage a stack processor paradigm in
which a multiplicity of ALU’s exist, along
with a load-store unit, and an SMU (as
discussed earlier). This can be augmented by
branch unit and so-on, to create more
parallelism in a future expanded design. A
conceptual model of the design is given below
in Fig.1.

Figure 1, A model for ILP stack architectures

This model has been utilised to prepare some
preliminary data in order to investigate the
opportunities for ILP speed-up for stack-based
architectures.

The basic concept of ILP parallelism in a stack
context can be illustrated in the example
shown in Figure 2, where the computation of
an expression “A+B * C+D” takes place. Here
it is assumed that at least 2 ALUs (4 cycles),
and 2 multipliers (6 cyles) are available.

Figure 2 – Example of ILP paralleism

Stack
Registers

ALU 1

ALU 1

ALU 1

Load-Store
Unit

Stack
Manipulation

Unit

Stack-
Buffer

Branch
Unit

Instruction
Issue Unit

Lit A Lit B Add (alu1)

Lit C Lit D Add (alu2)

--- stalled --- Mul

Lit A Lit B Add (alu1)

Lit C Lit D Add

--- stalled --- Mul

ILP for Unrolled loop

Figure 2 illustrates the example of a
computation which contains inherent
parallelism, the addition of A plus B is
independent of the addition of C plus D, and
can therefore be executed in parallel if
resources and mechanisms permit. Here it has
been assumed that a limited multiple
instruction-issue per-cycle mechanism is
available, a point we will return to later.

It can be seen that for a single iteration of the
calculation the total number of cycles, if
executed serially, would be 18 cycles, whereas
the case illustrated assuming an ILP model,
results in an execution time of only 14 cycles.

If the expression is to be repetitively applied to
a data set, then the opportunity to unroll the
iterative loop is one which should be exploited.
The greyed out section illustrates a second
strand of the loop being executed in parallel
with the first, yielding 2 iterations in only 18
cycles, or an average of 9 cycles per iteration.

Translating these figures into execution speed-
up, a familiar measure of ILP performance,
suggests that the single iteration case yields a
speed-up of 1.29, and the case for a one-level
unrolling of the imagined loop yields a speed-
up of 2.00.

Remember that here there has been no attempt
to do anything special to the code to enhance
its parallelism. It is also assumed that the
operands (all literals) are available in one
cycle, which may not be the case if memory
resident local variables were used instead.

Exact speed-up figures also depend on the
relative speed of data references such as LIT
and locals, compare with the ALU latency.
However, with moves toward 32 and 64 bit
computing seeming increasingly likely for
future stack architectures it seems reasonable
to assume that ALU latencies will be relatively
large compared to on-chip data cache, for
instance.

4.The Simulator

This section describes the methodology used to
simulate the super-scalar stack processor
architecture. The simulator evaluates both the
sequential and parallel instruction timings.
The sequential model consists of an instruction
fetch engine that feeds a pending instruction
queue and an issue/execute unit that pulls
opcodes from the queue before executing
them. The instruction must complete before the

next pending instruction may be operated
upon.

The assembler program code passed to the
simulator is in the form of a text file which is
converted to an internal symbolic
representation for simulation purposes.

The following sections describe the model and
simulator implementation used for our studies.

4.1 Instruction Fetch Engine

Retrieves instruction words from memory,
breaks them down into individual instructions
(if packed instructions are used) and places
them onto a ‘‘pending instruction queue’’.
Since a single memory fetch can contain
several instructions, the fetch queue is kept
well ahead of the issue unit. When an issued
instruction causes a change in the program
counter, the following instructions in the
pending instruction queue become invalid and
therefore must be flushed. The simulation
enables the queue depth to be altered, so that
we can study its effect on performance and
instruction fetch traffic.

4.2 Issue Engine

The issue unit perfoms two major tasks. At the
beginning of each clock cycle, the issue unit
interrogates the tag scoreboards of the data
stack and other registers, and those of the
functional units. Any modifications to the
scoreboard tags are then updated. The issuing
unit then pulls instructions from the pending
instruction queue and distributes them to their
respective functional units. If a functional unit
is unavailable the issuing unit must stall the
instruction. The issue unit is also responsible
for the execution of branch and call operations.

4.3 Arithmetic & Logic Unit (ALU)

An ALU management unit allows the issuing
unit to utilise multiple ALU’s in a scalable (up
to 8 ALU’s maximum) and seamless manner.
The issuing engine passes all ALU opcodes
and operands to this intermediary unit, which
in turn passes it to any available idle ALU,
otherwise the issuing engine is stalled.

Each ALU utilises register score-boarding and
reservation tables. Upon receiving an
instruction, the unit places the instructions into
a reservation table and updates the scoreboard

stack. When the required input data is valid,
the ALU places the result of the operation in
its output register and sets its status. On the
next clock cycle this will be interrogated by the
Issue unit and its destination updated with the
result.

4.4 Load/Store Unit (LSU)

The load/store unit must allow instructions to
be issued on consecutive cycles irrespective of
whether it is ready to execute them. Inclusion
of a reservation station queue allows
instructions to be queued until they are ready
to be executed. The size of the queue is
configurable for simulation purposes.

4.5 Stack Manipulation Unit (SMU)

The function of the SMU is to manipulate the
position of the cells in the data stack, for such
operations as dup, swap, rot, drop and so-on.
These operations do not act directly upon stack
data, but act upon the score-board, in order to
signal the new required content of each stack
register without needing to have access to, or
to wait for, the data itself.

5. Simulation Models

In our work to date we have assumed two
models of instruction issue. Single issue allows
a new instruction to be issued on every new
clock cycle, whilst the multiple-issue model
allows a number of instructions to be issued
per cycle.

In each model we have assumed that memory
accesses and instruction fetches all achieve a
100% cache hit ratio, with a split cache
(Program/Data) since the aim here is to
measure efficiency of ILP execution, rather
than interactions with non-ideal memory
configurations.

A third and final consideration is the timing
and latency of functional units. The table
below, Table-1, gives the assumed timings.

Event Cycles
Int ALU 4
Mult/Div 8
Load/Store 1
Stck manip. 1
Logicial op. 1

Table-1, Latency model used for study

Data was produced for a small set of test
programs, including the familiar Bsort
benchmark and a recursive n-factorial
computation. To further test the capabilities of
an ILP mechanism, we developed a simple
benchmark ‘Pcalc1’ which performs a
calculation on array contents in such a way as
to create some parallelism within each loop.
The Pcalc program computes as follows :-

 A[n] = B[n] . (C[n]+D[n]) (n=0 to 10)

This was expanded upon by the use of Pcalc2
which implemented a single-level unrolling of
the critical loop of Pcalc1, in an attempt to
extract more parallelism.

No optimisation of the code to maximise
opportunities for parallelism was attempted. It
is worth noting that overwhelming effort in the
generation of ‘optimal’ stack code has
focussed upon minimising stack depth [Bruno
75], which inherently serialises the code
structure. Therefore our results are more
representative of worst-cases rather than best,
or typical expectations.

6. Preliminary Results

Figure 3 shows the speedup obtained when our
raw compiler-generated code was simulated on
the ILP simulator , assuming ALU latency of 4
cycles, (8 for multiply), and 1 cycle for other
operations.

It is clear that some speedup is obtainable
through the use of a general single-issue per
cycle ILP policy, and although fairly modest
gains are seen, they are fairly significant given
the lack of code optimisation before execution.

Individual results show some not unexpected
effects. Factorial is dominated by short
recursive instruction sequences, with minimal
computation. It is not surprising that there
seems to be little parallelism achieved here.
Conversely, Pcalc1 and Pcalc2 show higher
speed-up, which the unrolled loop of Pcalc2
delivering a small improvement.

In Register-based machines it is well know that
memory and data dependencies are a major
cause of poor ILP performance, and in stack
architectures this is equally applicable. We
believe we have uncovered some useful
findings relating to this issue.

Figure 3, Speedup for Raw Code

Figure 4, Speedup after Optimisations

6.1 Local Variable Optimisation vs. ILP

By applying techniques such as Koopman’s
Intra-Block Scheduling, and the authors newer
Inter-boundary scheduling algorithm, it has
proven possible to significantly reduce these
dependencies as far as memory referencing is
concerned. This impact of this existing
optimisation is quite clear when one examines
the second set of results (figure 4), which show
that the application of Intra-block scheduling
actually increases the ILP speed-up obtainable,
by virtue of removing load-store blockages.

Examination of Figure 4 suggests that the
speed-up obtained for single-issue ILP
execution is roughly doubled by the
application of these optimisation strategies
alone. However it is also apparent that the
Inter-Boundary algorithm adds little, and even
detracts from the obtainable speed-up.
Without more substantial studies we cannot be
certain that it is not a useful addition however.

This is quite an important finding, which
suggests that although architectures such as
PicoJava and PSC1000 [Case 96, Turley 96]
may not gain anything from direct application
of local variable scheduling (since locals are
accessed on chip in a single cycle), they may
well benefit if future versions of these
architectures seek to adopt some form of ILP
parallelism.

6.1 Multiple Issue Experiments

At present, our study is somewhat preliminary,
and multiple-issue execution was considered
beyond the scope of the study. However it
appears that single-issue ILP will never
achieve substantial speed-ups. It has been
possible to derive some hand-calculated speed-
up figures for a multiple issue model however.

For example, the Pcalc1 routine takes 58
cycles for each iteration of the critical loop in a
serial execution architecture. With a single
issue per clock ILP policy, a speed-up of 1.38
is possible, based on the same assumptions as
our earlier whole-benchmark figures.

However, if a model is adopted where multiple
instructions can be issued in a single clock
cycle, then a speed-up of 1.87 seems
obtainable, according to our manual
calculations, even without the benefit of
compiler technology to exploit this mechanism
properly. Our calculation assumed that each
clock cycle consists for 4 micro-cycles, with a
new instruction issue for each micro-cycle
(effectively a super-pipelined issue policy).

Also, we can return to the example of Figure 2,
where the assumption is that ALU operations
can be issues in parallel with some other
operations (such as Lit). As already noted, this
example achieves a speed-up of 2.00 by using

S p e e d u p f a c t o r

1 . 0 0

1 . 1 0

1 . 2 0

1 . 3 0

1 . 4 0

1 . 5 0

1 . 6 0

p c a l c 1 p c a l c 2 f a c t b s o r t a v e r a g e

R a w C o d e I n t r a - B l o c k B o u n d a r y O p t

S p e e d u p f a c t o r

1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

1 . 3 0

p c a l c 1 p c a l c 2 f a c t b s o r t a v e r a g e

a limited super-scalar issue policy and loop-
unrolling.

With a genuine effort to devise new
optimisation strategies for stack-based code, it
may well prove possible to generate stack code
with higher degrees of available parallelism in
the future, and thus seek to design architectures
to exploit this.

7. Conclusions

The field of applications for stack based
computation encompasses an ever growing
area, including FORTH and JAVA. Future
systems may demand higher throughput, and
potentially with lower power consumption. A
super-scalar stack architecture may just be able
to deliver the high throughput these systems
demand whilst keeping silicon and power
budgets under control.

In this study we have presented some very
preliminary ‘work in progress’, and as such the
results are not wholly convincing in terms of
raising the stature of ILP stack architectures
against the well-developed alternatives of
super-scalar register-file machines.

However, the study has shown that there is
clearly a capability within stack architectures
to exploit some Instruction-Level Parallelism
(ILP), and with appropriate and carefully
designed compiler optimisations, there is
potential to greatly enhance that capacity. Such
techniques have yet to be developed, but
counterparts in the register-file domain exist
and have been proven valuable in the overall
goal of higher degrees of parallelism.

The specifics of an ILP super-scalar or ILP
capable stack architecture are also areas where
much work can be done, and where little
established knowledge has been employed.
The choice of single issue, super-pipelined
issue, or true super-scalar issue of instructions
will have a significant impact upon achievable
speed-ups, but not without comprehensive
support from code optimisers yet to be
developed.

Future work in this area would be both
interesting, and potentially important, for the
future of silicon based stack architectures. We
have already begun work on a new simulator to
explore super-scalar schemes and hope to be
able to report more significant findings at a
future conference.

8. References

[Tomasulo 67] Tomasulo, R., M., 1967, “An
efficient Algorithm for exploiting multiple
arithmetic units”, IBM Journal of Research &
Development, Vol 11, No1, p 343.

[Thornton 64] Thornton, J., E., 1964, “Parallel
operation in Control Data 6600”, Proc. of
AFIPS Fall Joint Computer Conference, Vol 2,
Page 33-40.

[Bruno 75] Bruno, J.,L., Lasagne, T., 1975,
“The generation of Optimal Code for Stack
Machines”, Journal of ACM, Vol 22, No. 3, P
382-396.

[Case 96] Case, B., 1996, “Implementing the
Java Virtual Machine”, Microprocessor
Report, March 25, 1996,p 12-17.

[Turley 96] Turley, J., 1996, “New Embedded
CPU goes Shboom”, Microprocessor Report,
April 17, 1996, pages 1, and 6-10.

