
A Virtual Machine Architecture for Constraint

Based Programming

Bill Stoddart

October 25, 2000

Abstract

We present a Forth style virtual machine architecture designed to pro-

vide for constriant based programming. We add ?CONTINUE and

CHOICE commands to allow for checking constraints and making ten-

tative choice. A choice which is later seen to be incompatible with a

constraint provokes backtracking, which is implemented by reversible ex-

ecution of the virtual machine.

keywords: Forth, Virtual Machines, Constraint Based Programming, Reversible

Computation.

1 Introduction

In Forth we can use an IF construct to choose which of two sequences of

operations to execute. The choice made depends on the value of a ag taken

from the stack, and the programmer has to arrange the value of this ag so

that the program will make the correct choice. In some cases however, the

information needed to make the right choice might not be readily available, and

it might be useful to leave the program free to make a tentative choice \for

itself" (so to speak), with the possibility of later revising this choice if it turns

out to be inappropriate. We call this form of choice \non-deterministic".

Consider how this technique could be used to provide predictive character

input for a WAP phone, where each key represents up to three letters. To enter

the word "love" we use the keys jkl , mno vwx def . When jkl is pressed at the

start of a new word, the input routine makes a tentative choice of `j` as the

character entered. This is perfectly feasible (for the moment) since there are

dictionay entries that begin with 'j'. When the second key is pressed it tries `m`

as the letter, then tests whether the dictionary contains any words that begin

"jm". This choice is infeasible, since there are no such entries. The program

backtracks and makes a di�erent choice: "jn". Still infeasible. Another back-

track produces "jo" which is feasible. Carrying on in this way we might arrive

at "jove". Now the user must press a button to provoke further backtracking

to obtain "love".

The problems that can usefully be tackled with constraint based program-

ming include timetabling, route planning and resource management.

The backtracking technique we propose is based on reversible execution. We

provide three modes of execution. Normal, Conservative, in which any lost



information is saved on a history stack, and Reverse, which runs back through

a previous conservative execution and undoes its e�ect.

We extend Forth's repertoire of basic commands with a new guarded con-

tinuation command ?CONTINUE . In conservative mode it removes a value

from the stack, and if this is non zero allows execution to continue. If the value

is zero it reverses the direction of execution.

This is used in conjunction with a new choice construct, which could have

the form:

CHOICE <word1> <word2> ... <wordn> ENDCHOICE

At run time the possible continuation addresses are pushed onto the history

stack, and then the top address is selected for execution. If execution returns to

this point in reverse, we choose another continuation and run forwards again. If

there are no more continuation addresses we continue execution backwards to

the previous CHOICE construct.

If execution is returned to the beginning of the program the constraints

imposed were such that no feasible execution path could be found. The whole

program is infeasible, and results in a "ko" message rather than "ok".

Execution becomes a search for a feasible path through the program. Tests

that provide the ags used by the ?CONTINUE commands in out program

express the constraints a potential solution must satisfy.

2 Virtual Machine Architecture, Outline

As a program runs, certain commands discard information whilst others con-

serve it. + loses information since we cannot recover the values of its argu-

ments x and y (say) from its result. To run it in information conserving mode

we must save one of the values, say y , on the history stack.

Then, when we re-encounter the same instance of + when running in re-

verse mode we have x + y on the parameter stack and y on the history stack.

To perform the reverse computation we copy y from the history stack (so the

parameter stack contains x + y and y) perform a subtraction (the stack now

contains x ) and �nally move y from the history stack to the parameter stack.

Each primitive compiled command of our virtual machine may invoke one of

three fragments of machine code of the underlying physical machine, depending

on the execution mode in which it is invoked. These are normal forward mode,

N, in which information is not conserved, conservation forward mode C which

saves discarded information on the history stack, and reverse mode R which

runs backward through the compiled virtual machine code reversing the e�ect

of each command.

3 Execution Modes for Choice Choice

There are three execution modes for choice: �rst feasible, simultaneous and

random.

In �rst feasible mode, we attempt to execute each choice in turn, consuming

the corresponding continuation address on the history stack as we do so. If a

choice proves to be infeasible we try another. If no choices are feasible, the whole

choice construct is infeasible, and sets the virtual machine into reverse execution



mode so that it will backtrack to the previous non-deterministic choice. This

provides a depth �rst search for a feasible path through a computation.

In simultaneous mode the computation is cloned into as many dopplegangers

as there are choices. These run in parallel under a \termination pact". The

�rst to terminate execution survives. The others die, either committing suicide

if their continuation proves infeasible, or killed by a signal from the terminat-

ing clone. This provides a breadth �rst search for a feasible path through a

computation.

In random mode a pseudo-random number generator is used to select a

choice, and a programmer may weight the probability of each choice.

4 Virtual Machine Implementation Details

One requirement of our virtual machine is the ability to interpret the same

sequence of virtual machine instructions in three di�erent modes, and this

prompted us to choose a modi�ed form of \Indirect Threaded Code" which sup-

ports Normal, Conservative and Reverse modes of execution through the use of

three \code �elds" for each word. These point to the code for normal execution,

conservative forward execution and backward execution of the operation.

For each primitive de�nition, these three code �elds contain pointers to sec-

tions of machine code that directly implement the normal, forward and reverse

forms of the operation. Each of these sections of machine code has its own

version of next , with the reverse code version causing execution to thread back-

wards through the threaded code.

For a high level de�nition the three code �elds contain pointers to sections

of machine code that nest into the de�nition. The reverse version of nest must

commence execution of the high level de�nition from the point that de�nition

previously exited. The conservative code for EXIT will have left this address

on the history stack when the de�nition last executed in a forward direction.

When running backwards through a high level de�nition we reverse the e�ect

of each virtual machine instruction until we reach the forward entry point of

the de�nition, but what then? Running backwards into the de�nition's code

�eld pointers has no meaning. We need to insert an extra virtual machine

instruction, which will perform a reverse exit from the de�nition and go back

to the calling location. But where was this location? It can be found on what

is generally called the \return stack", but which in the case of reverse execution

is more appropriately thought of as the \came from" stack.

Fig. 1 shows the threaded code organisation of the virtual machine.

4.1 Reversing Branch Instructions

Fig. 2 illustrates the use of a forward branch instruction in the case of a \nor-

mal" threaded code machine (on the left) with our virtual machine version which

supports reversible execution on the right. First consider forward execution of

the normal code. After executing OP1 execution encounters a branch instruc-

tion. We assume this to be a conditional branch with some unspeci�ed test on

machine state deciding whether the branch will be taken. If taken, the branch

is said to be \active", and execution continues at the location indicated by the



R mode

exit code

N mode

nest code
C mode

nest code

R mode

nest code

S Q U A R E

D U P

E X I T

code for N

mode DUP

N nextcode for C

mode DUP

C next

code for R

mode DUP

R next

Code for C mode

exit: saves reverse

entry point on the

history stack

*

Code for N

mode exit

f

r

Figure 1: Threaded Code Organisation for the Abstract Command Language

Architecture

OP1

branch

destination

OP2

OP3

OP1

branch

destination

departure

OP2

arrival

OP3

Figure 2: Normal (left) and Reversible Instruction Sequences Containing a For-

ward Branch.



OP1

arrival

OP2

branch

destination

departure

OP3

a:

b:

c:

d:

e:

f:

g:

Figure 3: A Reversible Backward Branch

destination �eld of the branch; that is with OP3. If the branch is not taken,

OP2 is executed followed by OP3.

Now consider an attempt at reverse execution of this code. There are basi-

cally two problems. Firstly, after reverse execution has undone the e�ect of OP3

it will move on to OP2. This is incorrect because we do not know that OP2

was ever executed. And secondly, after OP2, reverse execution will encounter

the destination �eld of the branch, and try to interpret this as an instruction.

We deal with the �rst problem by inserting at the destination point of all

jumps an additional instruction called arrival . It works in conjunction with a

\branch active" ag which forms part of the virtual machine state. This ag

is set whenever a branch occurs, and reset by arrival . Its function is to tell

arrival whether it received control by a local or remote arrival. For example

if arrival in �g. 2 is executed immediately after OP2 this constitutes a local

arrival. When an active branch occurs, the executing branch instruction pushes

the \from" address of the branch onto the history stack.1 If the branch is

inactive (execution of branch instruction but no branch) no history is recorded.

Thus when arrival executes there are two possible conditions: either the branch

active ag is set and the \from address" of the branch is on the history stack, or,

the branch active ag is reset and there is no from address on the history stack.

In the second case arrival saves the address of the previous instruction on the

history stack, so that reverse execution of arrival can always �nd its backwards

continuation address on the history stack:

The second problem has a simple solution. We insert a virtual machine

instruction departure after the destination �eld of any branch instruction. This

allows reverse execution to step over this �eld. The departure instruction is

never executed in forward mode, as the branch instruction just steps over it.

In �g. 3 we see these ideas applied to a backward branch. The letters a, b,

c.. are used to label the locations of each virtual machine instruction so we can

represent some forward and reverse traces.

Consider an instance of execution in which the branch is �rst active and

then inactive, so that OP1, OP2, OP3 are performed in the sequence:

1More speci�cally it pushes the address of the last instruction executed before the branch,

which is OP1 in this case.



OP1, OP2, OP2, OP3

Assuming an empty history stack at the start of execution, we have the

following trace of forward execution in C mode, where x is the history recorded

by OP1, y1 and y2 the histories recorded by the two executions of OP2, and z

is the history recorded by OP3.
Location Operation BA ag History Stack

false hi
a OP1 false x

b arrive false x � hai
c OP2 false x � hai � y1
d branch true x � hai � y1 � hci
b arrive false x � hai � y1 � hci
c OP2 false x � hai � y1 � hci � y2
d branch false x � hai � y1 � hci � y2
g OP3 false x � hai � y1 � hci � y2 � z

For the reverse trace the branch active ag is not needed. All jumps in the

reverse execution sequence are handled by the reverse execution of arrival which

�nds its continuation location on the history stack:

Location Operation History stack

x � hai � y1 � hci � y2 � z

g: OP3 x � hai � y1 � hci � y2
f: depart x � hai � y1 � hci � y2
c: OP2 x � hai � y1 � hci
b: arrival x � hai � y1
c: OP2 x � hai
b: arrival x

a: OP1 empty

We �nish our discussion of branch instructions with a note on normal (N

mode) forward execution. The data in the branch destination �eld compiled

immediately following each branch instruction is interpreted slightly di�erently

in N mode and C mode. N mode branch execution jumps to the instruction

following the instruction jumped to by C mode execution of the same instruction.

This means arrival is never executed in N mode and the mechanism for reverse

execution of branches imposes little or no run time penalty on N mode code.

4.2 The Multi-Tasker

We have said that for the execution of certain constructs, execution must be

cloned. The virtual machine provides multi-tasking with a classical Forth syle

non-preemptive round robin scheduler. Creating a clone requires the allocation

of memory for its state space, the copying of the existing state space into that

of the clone, and linking the clone into the round robin as a task. Killing a task

requires unlinking it from the round robin and de-allocating its memory space.

Duplicating the compiled program code is not required as this is re-entrant.



5 Optimisation

Ways of optimising reversible code are not discussed here, but are supported

by some special virtual machine instructions. A simple example is where we

have a sequnce of operations which use the stack to calculate a value, and then

we store this value in a variable. To undo the e�ect of this we only need to

restore the old value of the variable; there is no point in reverse executing every

instruction of the sequence. Possible solutions to such problems are left to the

readers imagination.

6 Implementation

Our implementation environment is Linux running on the i386 architecture, and

our nucleus is coded in i386 gnu assembler. We have written a pre-processor

which adds macros to this assembler. These deal with word headers, control

structures and high level de�nitions. These macros together with the gnu as-

sembler form a crude and limited meta compiler su�cient to create the nucleus

of a reversible Forth.

7 Other Work

An extensive bibliography of work on reversible computing is available at:

ftp://ftp.netcom.com/pub/hb/hbaker/ReverseGC.html

In our own work we use an associated high level language, B-GSL,[1] which

has a simple formal semantics which includes non-deterministic choice and back-

tracking. Direct use of a reversible Forth will let us explore problem solving

techniques that are beyond the current scope of GSL and suggest directions for

its extension.

Acknowledgements

Thanks to Andrew Haley of Cygnus Solutions, Cambridge, and Gordon Charlton

of the Forth Interest Group for sharing their knowledge of reversible computa-

tion.

References

[1] Stoddart W J. An Execution Architecture for B-GSL. In Bowen J and

Dunne S E, editors, ZB2000, Lecture Notes in Computer Science, 2000.


