
EuroForth 2000 CEM Systems Ltd

Page 1/7

Porting Complex Unix Applications to a deeply embedded Forth Environment

Jeremy Moller, Desmond Ward, George Redpath

Controlled Electronic Management Systems Ltd

Introduction

CEM Systems is one of the leading
designers of complex Access Control
Systems world wide. For many years large
sections of the system had been written on
PCs using Unix. With continuous efforts at
reducing the cost it was decided to port the
major control element from Unix to an
embedded forth environment.

This process started approximately 4 years
ago and the first products are now being
shipped. The internal code for the product
family to be developed is the 90X0 and
covers a range of devices. The device
described in this paper is the first
commercially available device the 9040

Application Firmware
This section gives a brief overview of the
S9040 application software.

System Hardware Architecture

Please refer to Figure 1

The S9040 connects to a central database
computer (CDC) via a 10 Base-T Ethernet
connection. All card data and personnel
data entry is performed at the CDC. A
copy of the database is held on the S9040,
which is continuously updated in near real
time.

A maximum of 64 remote devices can be
connected to the S9040 by four RS485
serial ports. The S9040 must be able to
generate and maintain offline card
databases for these devices, respond to
card swipe queries from these devices, and
forward any card swipe transactions and
alarm data from the remote devices onto
the CDC.

Application Firmware

The S9040 Application can be divided into
5 main task types.

1. TCP/IP, Ethernet communications

2. Remote device communications

3. Generation and maintenance of remote
device offline database

4. Forwarding of transaction and alarm
data to the CDC

5. General housekeeping

Remote Device Communication

The S9040 communicates with a
maximum of 64 remote devices over a
serial link using our specific CEM
Multidrop protocol. The remote devices
operate as master devices contacting the
S9040 when necessary. Each device has
it’s own unique address. All remote
devices use a defined set of poll characters
to indicate their current state and the
preferred action from the S9040. The
S9040 acts on the various poll characters
to download device configuration, device
database, device database updates, time
update or receive offline transaction/alarm
data.

In addition to this periodic communication
with the remote devices, the S9040 must
be able to respond to card swipe queries,
buffer both transaction and alarm details
for further processing. All card swipe
queries include processing of Access
Level, Time zone and Holiday permissions
decisions together with verifying anti pass
back permissions. Typical card swipe
query response time is around 35mS, but
must not be greater than 400mS. In
addition, the S9040 must forward

EuroForth 2000 CEM Systems Ltd

Page 2/7

broadcast commands issued from the CDC
onto the remote devices.

Information about the communications
between the S9040 and the remote devices
are logged to disk in real time for
diagnostic purposes.

Remote database operation

The S9040 must be able to generate a
device configuration and database for each
remote device connected to the S9040.
This data is generated from the local
database held on the S9040 which supports
a maximum of 1000 Access Levels and
Timezones in addition to holiday
definitions.

A remote device or user command are
used to initiate the database build
mechanism and the S9040 can service four
separate devices, one on each serial port, at
any one time. The time taken to build a
device database depends on the number of
records for that particular remote device
but as an estimate, a 70,000 card database
can be built in approximately 120 seconds.

In addition to performing a database build
for any remote devices, the S9040 also
continuously maintains the local database.
Database changes received from the CDC
are actioned immediately. Any changes
effecting a remote device database are
buffered and transmitted to the remote
device when it is ready to receive the
updates.

Transaction Processing

All card swipe outcome transactions and
alarm transactions are buffered for prompt
transmission to the CDC. If the link to the
central database computer is down then the
transactions are stored on disk in the
S9040 and transmitted to the CDC
whenever the link has been restored. All
transactions are time stamped and tagged
with the point of origin.

Housekeeping

A number of background tasks are
performed at periodic intervals. These
include checking the integrity of the
program (held in RAM), checking the size
of the diagnostic log files, testing the state
of the TCP/IP sockets link, and
synchronising the disk cache.

Forth environment

Multi tasking scheduler

Our experience over the years with the
UNIX based system, which this is to
replace, was that some polled events could
be missed, as the respective process was
not able to run at the required time. This
was usually solved by throwing large
quantities of memory and a faster
processor at the problem.

The design of the new controller had to
avoid processes running excessively late,
soft real time design as against hard real
time design would suffice for this
particular application.

The MPE FORTH development system
comes with a multi task scheduler built in.
This is a co-operative scheduler, like
UNIX each task will run in turn until it
relinquishes control back to the scheduler.
The scheduler then passes on control to the
next process to be run. There is a danger
with this system, in that a task may need a
large amount of processing for a period.
This then has a knock on affect with other
processes by making them late. This
situation could be avoided by carefully
designing software loops etc.

It was decided to take this a step further by
adding dynamic time slicing to the
scheduler. All processes are initially given
a fixed time window to run in. If a process
for some reason used up more than this
time window, the scheduler would
automatically switch context to the next
process to be run. The process that had

EuroForth 2000 CEM Systems Ltd

Page 3/7

timed out is now given a shorter time
window to run the next time the context
passes on to it. This will continue until the
process finally voluntarily relinquishes
control back to the scheduler.

The up side of implement time slicing is
that the system runs much smoother even
when heavily loaded and polled events
aren’t missed.

There is a down side however, greater use
has to be made of the semaphore
mechanisms in the scheduler. There is a
real chance of two or more processes
requiring access to the same resource at
the same time and causing possible
corruption of data.

Forth TCP/IP

Several components are needed to build up
a system and the Ethernet TCP/IP stack is
one of the vital components that enable us
to implement our system. It gives us
10Mbit access to an Intranet or even
Internet for an embedded controller. The
protocol stack is capable of working across
routers and gateways should that be
necessary.

The protocol stack supplied by MPE Ltd
provides what is known as the BSD socket
layer which provided an API similar to
that available with UNIX and Windows.

The socket layer provides a good platform
for implementing several of the standard
protocols necessary to interface to the rest
of the world. These include an the
following network applications;

• CEM-FTP server/client, for
transferring data files between the
controlling host PC and the embedded
controller similar to the known FTP.

• HTTP server, for remote graphical
monitoring and administration of the
embedded controller by the use of
dynamic HTML web pages.

• SMTP client, for posting alert email
messages.

• BOOTP client, for remotely
configuring the unit’s IP address.

• TELNET server, for remote
diagnostics.

CEM-FTP

It is important for the project that is made
possible to be able to transfer file entities
between the controller and the host. This
application protocol provides most of the
functions that are expected of FTP. We
had to implement our own version of FTP,
as the version of the TCP/IP stack we had
at the time, did not support TCP client
sockets. The application allows a client to
put a file, get a file, obtain a directory
listing and change the current working
directory. This is closely associated with
the capabilities of the embedded
controller, (refer to the section on the file
system).

HTTP server

The HTTP web server is an important
enhancement to system. By using so called
server side includes it is possible for the
server to dynamically change the contents
of a web page, e.g. the voltage and
temperature display of a charging battery
pack. By using a combination of client
side Java and Javascript we are also able to
dynamically update the contents of the
page without the user intervention. This is
sometimes known as “Push technology”.

The biggest problem with web pages is
how to integrate these with a ROM image.
We do have one advantage in the we have
a file system, but in fact decided to
integrate most of the web pages into the
ROM image. A pre-compilation process is
used to convert the various web files to a
Forth compatible file with an index table
to help the server find the location of each
web file in the ROM image.

SMTP client

If the controller has access to an email
server, why not use email to notify some

EuroForth 2000 CEM Systems Ltd

Page 4/7

one of a problem? With this simple email
client it is possible to connect to the email
server and email an alert message, e.g. to a
GSM mobile phone via a SMS gateway.

BOOTP client

With our experience of networking
embedded devices over many years, we
know that installers often have difficulty
sitting four jumper links correctly, so how
would they manage setting a four field
number, the IP address, correctly.

To alleviate this problem it was decided to
implement the BOOTP protocol. With this
the installer has to note the unit’s Ethernet
address, which is unique for every
Ethernet based device, enter that into the
central server and then the server
automatically allocates the device an IP
address appropriate for it.

File system

In order to implement an embedded copy
of the UNIX based application system, a
file system is vital constituent part. The
controller needs to be able to handle over
70,000 card personnel records and other
associated data. In a reasonably stripped
down format, this will require storage
space of around 6Mb, split across many
data files of varying sizes. These data files
are dynamic, records can be changed,
added or deleted. Different users will have
different data sizes so using a fixed format
file system could be restrictive and most
likely wasteful of space. Also to be
considered is that fact that it would be
useful if the files could be grouped in
appropriate directories.

Being an embedded unit, it is considered
advantageous that there are no moving
parts, so a standard IDE hard disk was out
of the question. The SANDISK compact
flash modules can use a IDE type interface
and are available in sizes from 8Mb to
over 96Mb. Other manufacture’s compact
flash modules were tried and rejected as
their performance was pitifully slow,

SANDISK two blocks written in 3mS,
other module 2 blocks write in 48mS. This
is apparently caused by the internal
software

The maximum number of write cycles is
over 100,000 and the modules have
intelligence to automatically handle failing
flash cells. These therefore provide an
ideal solution for the embedded file system
requirements.

After using the system for a while it
became apparent that even with a block
write time of 1.5 ms data caching was
necessary.

Disk format

The disk format was another
consideration. The options include:

• a MS-DOS compatible file system. It is
considered wasteful of space and
relatively slow.

• a UNIX like file system. This was
chosen, as it is quite efficient in space
usage and fast.

There may be a requirement to allow the
disk to be removed from the embedded
platform and used in a DOS PC in order to
allow the transfer or recover data. It was
felt that the efficient space usage and
speed was probably more important.

This format of the disk is divided into 5
sections, the boot area, the root area, the
disk usage area, the file descriptor area and
the data area.

The boot area can be used to allow a boot
loader in ROM to find and load the
application off the file system.

The root area contains the directory listing
for the files and directories in the root
directory.

The disk usage area contains a bitmap of
every sector on the disk. It performs the
vital function of tracking the usage of each
block on the disk. One bit relates to one
disk block, usually 512 bytes. It is used

EuroForth 2000 CEM Systems Ltd

Page 5/7

when a new file is created, an old file is
deleted or a file is extended.

The file descriptor area contains the
information about every file and directory
located on the disk. It contains information
about the size of a file, the locations of the
file, the type of file or directory and the
date it was last modified, amounts other
things.

Finally there is the data area, which
contains all the user files and directories.

File system summary

It was decided that a useful file system
would have the following characteristics:

• Use a Compact Flash module

• Allow creation and deletion of files.

• Allow files to expand.

• Use a hierarchical directory structure

• Have a ‘standard’ API.

• Present a UNIX like disk format.

Database

The system we were intending to
implement as an embedded system
depends on a quick look up database
system. This posed a problem, how to
implement a suitable database engine to
allow record look ups, adds, deletes and
indexing of a supplied by the host
controller, with more than 250,000
records. The data table was the “.dat” part
of an INFORMIX database.

Various look up possibilities were
considered,

• B-tree index, could be quite disk
intensive, using little RAM but
difficult to code.

• Hash index, uses large block of RAM,
around twelve times the number of
records that are to be indexed in bytes,
single disk access for each look up and
quite easy to code.

• Binary lookup, completely out of the
question as it would not be reasonable
to shuffle records about on a block
addressed storage device.

There was no off the shelf solution to this,
not even to reverse engineer some C
source suitable for embedded applications.
After evaluating several solutions, it was
decided to use a hash table with a large
block of RAM, to provide a hash lookup
for each record. A suitable hash function
was found that gave a relatively even
spread of hash values for a 32bit number.

The index that is created has then to be
stored on the disk so that it doesn’t need to
be rebuilt each time the controller is
rebooted.

The structure of the hash record is shown
below. The key_data happens to be a 32bit
number. The disk_offset points to the
location of the record on the disk from the
start of the data file. The *next points to
the next record in the link list for the
associated hash value.

Struct hash_record
4 field key_data
4 field disk_offset
4 field *next

end-struct

There are other database tables in the
system but fortunately, they are not as
extensive as main table, can be indexed in
a much simpler and non-memory intensive
way.

Boot loader

What is an embedded system?

Is this a system were the operating system
and application are blown into a ROM and
then executed as a single entity?

Does it include a system that when booting
up runs from ROM and then the software
in the ROM loads the runtime software to
RAM and executes the application and OS
from the RAM after that?

EuroForth 2000 CEM Systems Ltd

Page 6/7

Our system uses the second option. The
board contains a boot ROM that in
conjunction with the file system and the
embedded Ethernet loads the operating
system, and application into RAM and
starts the application from there. The ROM
is then only accessed for the necessary
vector table for interrupts etc.

The sequence for the boot ROM from reset
is as follows:

1. Test checksum of the program area and
run application if all OK

2. If step 1 fails, Read the BOOT sector
of disk for the location of the primary
application, loads this application to
RAM, and runs it.

3. If step 2 fails, Read the BOOT sector
of disk for the location of backup
application, loads this application to
RAM, and runs it.

4. If step 3 fails, initialise the Ethernet,
ask the operator for a suitable IP
address and start the TFTP (Trivial
File Transfer Protocol) server. The
application can then be loaded from a
PC with a TFTP client application.

The advantage of the boot loader and file
system is that once the simple boot loader
is in ROM the controller can easily be
upgraded later by CEMFTP and stored on
the disk. The system will of course need to
be restarted for the new application to be
used, but this can be done automatically.

Network security

We are implementing a controller that is to
be used for security purposes and it is
capable to being connected to the Internet,
so the cry goes up, “what about network
security?”.

This is a problem especially as customers
require interoperability with standard
applications, but want privacy.

What level of security do we need? Is
login authentication enough? Do we need
data encryption?

Connection authentication is the first step
at least to ensure that unwanted persons
cannot access the controller and change
data records or other parameters,
especially with the Web based and Telnet
interfaces.

Data encryption is usually carried out by
either the symmetric-key encryption
method, were both the sender and receiver
must have the same key to encrypt and
decrypt the data, but how do we distribute
key safely?

After checking various algorithms, we
decided to use the Blowfish algorithm,
with various source codes available,
including Forth, from
www.counterpane.com/blowfish.html and
combine it with the XOR method for
speed. Only part of the key is to be passed
between the two parties, with the rest of
the key being made from common
information know to both parties, like the
IP addresses, etc.

Data encryption can also be carried out by
the Public/Private-key encryption method.
This gets round the key distribution
problem by having a different key to
encrypt the data from the one that decrypts
the data. This is beyond our capabilities
currently. However, the algorithm has just
come out patent by RSA Security Inc., so
we may consider it in the future.

Conclusions

The software described is now being
shipped in products, and has meet all its
design aims. It has also given a very
compact core that can be scaled for a range
of products. The most interesting of which
is a card with and integral web server
inside a UK form factor light switch.

The next phase of work will involve using
the ARM port of Forth and investigating
what can be done with the programmable
cores that are now becoming available.

EuroForth 2000 CEM Systems Ltd

Page 7/7

CDC
Server

WorkstationMimic

RTC

RocketPort

Card
Printer

Scanner VIPPS
Station

Validation
Reader

Camera

Series 9040
(Rack Mounted)

Up to 64 Readers per Series 9040
(16 per Multidrop Loop)

Up to 16 RTCs / Series
9040s Per CDC

Ethernet

Report
Printer

NCN

RS422/Fibre/
Modem

NCN

An NCN may Communicate
with an RTC over Ethernet

RS485

RS485

Any Number of
Workstations

Up to 16 Mimics

LDC

Any Number of
Workstations for an LDC

VIPPS /
Workstation

Up to 16 RTCs / Series
9040s Per LDC

NCN

RS485

RTC

Up to 64 Readers per Series 9040
(16 per Multidrop Loop)

RS485

Series 9040
(Rack Mounted)

InfoProx
Slave Reader

Series 600
Slave Reader

DIU

Report
Printer

InfoProx
Master Reader

Up to 8 NCNs
per RTC

Up to 16 Readers
per NCN

Series 600
Master Reader

Optional LDC Sub-System
(Up to 16 LDC Sub-Networks)

Up to 8 NCNs
per RTC

Up to 16 Readers
per NCN

