
1

Inside the MPE VFX code generator
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England

Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691
Net: sfp@mpeltd.demon.co.uk
Web: http://www.mpeltd.demon.co.uk

The MPE VFX code generator for Forth produces code similar in quality to that
produced by many C compilers. Previous papers at EuroForth 1998 and Rochester
1999 discussed the genesis of the VFX system. This paper discusses the internal
organisation of the VFX code generator, and the results produced.

Introduction
Over the years, I have increasingly been told that interpreted languages are slow, and Java has
done nothing to reduce this impression. Forth is held to be an interpreted language, but it
would be truer to say that it is an interactive language. Rather than have to justify an
interpreted solution, MPE decided to produce a Forth system which generates good quality
code, while retaining speed of compilation and full interactivity.

The VFX code generator is incorporated in ProForth VFX for Windows and the upcoming
ProForth VFX for Linux, and achieves a performance that is two to three times that of other
commercially available Forth optimising compilers. The VFX code generator is also
incorporated in the MPE Forth 6 VFX cross compilers for ARM/StrongARM, Intel i32
architecture, Hitachi H8/300H, Motorola 68xxx, Coldfire and 68HC12.

Objectives
The objectives are:
1) good code quality
2) low increase in code size over threaded code
3) portability of the code generator
4) maintainability of the code generator

Good code quality is necessary not only as a sales feature, but also because it reduces the
proportion of the Forth kernel that has to be written in assembler, so reducing porting costs.
The MPE VFX kernel typically has fewer than ten code definitions. From the customer’s
point of view, the code quality reduces the amount of assembler code that is needed, and for
the embedded system developer, the code quality is perfectly adequate for all but the heaviest
interrupt loads.

2

The requirement for only a small increase in code size is created by customers with previous
versions of the MPE Forth cross compilers. They will not be pleased by significant increases
in code size. In addition, good code size is important with embedded RISC processors that
tend to have small caches. MPE recently ported 92,000 lines of code from a previous DTC
(direct threaded code) system using the MPE Forth 5.1 68xxx cross compiler to the MPE
Forth v6.1 VFX 68xxx cross compiler. The same hardware was used in both cases. The
resulting code ran several times faster and was slightly smaller than the original code.

Good portability of the code generator to new target processors reduces implementation cost,
both of the code generator itself, and in the reduction of target code that must be rewritten. In
addition it should be easy to update the code generator easily when new features are added.

Maintainability of the code generator affects code reliability, lifetime costs, and ongoing
development costs.

Complexity
Compared with the classical threaded Forth compiler, a code generating compiler is
completely different in scale. However, every time a new target is created, the conventional
code primitives have to be written, tested, and debugged. The tradeoffs are simply whether
the resulting additional performace will attract a good price, and will significant cost
reductions be available when writing a new target for a cross compiler.

After writing a number of targets for both RISC and CISC architectures, as well as for register
limited CPUs such as the 68HC12, we can answer yes to both questions above.

Portability
Compared to writing a naïve subroutine threaded cross compiler with simple inlining, the
MPE VFX code generator takes considerably longer to write, but this is balanced by the
portability of the target code.

The VFX code generator is largely CPU independent, but variations in CPU architecture do
affect it. Overall, the portability of the code generator is heavily dependent on how aggressive
the optimisations are. The VFX code generator is aggressive, and so is affected by variations
in CPU architecture such as
• number of registers available
• presence/absence of autoincrement/autodecrement addressing
• load/store or register/memory architecture
• cache architecture

Internal architecture of VFX
This being a commercial product, the amount of hard information that will be released is
necessarily limited.

The optimiser defers code generation for as long as possible, and then processes the
information, returning the stack at procedure exit to a canonical form. This compromise
permits any optimised Forth word to be used in the same way as an unoptimised one.

3

The code generator is designed as one of number of phases from source to binary code. This
topic is covered adequately in the compiler literature. At the outset, the code generator was
envisaged as the middle of a three phase code generation sequence:
1. Token optimisation, e.g. source rewrite
2. Primary code generation
3. Reordering and peephole optimisations
At present, as will be explained later, the benefits offered by the first and last stages can be
largely obtained by a few simple special cases in the code generator itself.

The VFX code generator can be broken into several major blocks:
Control API – how the system interfaces to the black box
Stack model – tracks the contents of the data stack
Stack shuffle – restoring the stack to a canonical state
Class generators – commutative dyads, monads, special cases
Special cases – literal folding, conditional branches …

Stack Model

Shuffle

Dyads

Monads

Logical

Mul/Div

Branch

...

Compare

Stack

Memory

I/O

Special

...

VFX state

Control API

4

Control API
The control API is the interface between the rest of the Forth system and the VFX code
generator. Apart from the interface through the word’s dictionary header, which includes a
pointer to a code generator, and COMPILE, the other interfaces are concerned with
controlling the level of optimisation and enabling/disabling various optimisations.

In cross compiler VFX code generators, the control API includes selection of the CPU version
for those CPUs such the 68xxx family which have additional instructions in some versions.

Stack Model
The VFX code generator delays code generation until it has to lay code. This removes a vast
amount of state tracking and code removal. Pure stack operations such as SWAP and DUP
simply modify the stack model, keeping track of the resources used. This information is used
by the class code generators to access the actual data. Rip up and retry code generation is
treated as a special case, and for a typical CPU, only about ten such cases are needed.

Stack shuffle
In most processor architectures, it is beneficial to keep items in registers. In most VFX
implementations, there is a canonical stack representation consisting of the top of the data
stack in a register, the other items being indexed from a data stack pointer. This state is
enforced on entry to and exit from a procedure and at other basic block boundaries. It is the
job of the shuffle routine to restore this canonical state.

This routine is complex and the algorithm took several months development to be both
portable and reliable. It affects nearly every other data structure in the VFX code generator.

Class generators
Many of the code generators can be grouped according to their function. For example, there is
a group of operations which can be classed as “commutative dyads”, which means that a op b
is the same as b op a. Providing that the CPU instruction set permits it, all such code
generators can use the same class routine with different parameters. Great use of defining
words is made throughout the VFX code generator.

Several words, such as PICK and ROLL need special code generators. The number of such
special cases is very dependent on the CPU instruction set.

VFX state
Apart from the stack model itself, VFX notes information such as the state of the return stack.
On some CPUs such as the 68HC12 the last use of index registers is tracked. If a data item is
removed from the return stack, the current definition is marked as not able to be inlined. This
allows several run time actions such as for strings to be coded in high level Forth, and permits
code as involved as Michael Gassanenko’s BackForth extensions to compile without error
under ProForth VFX for Windows.

This state information can be used internally within the code generator, and by external
routines. Persistent information such as whether a definition can be inlined is stored in the
dictionary header for the word.

Special cases
There are some special cases which are most easily handled by keeping state information and
relaying new code under special circumstances. Examples of these are the code generation for
the sequence “DOES> >R” and comparisons leading to a conditional branch such as “> IF”.
In the first case, the most efficient code sequence is different to that required if the CREATE

5

address is left on the data stack. In the second case, the code to generate an ANS “well
formed flag” is redundant if a branch is to be used.

Heuristics
After the code generator has been built and tested, we then spend time looking at the code
output under a range of conditions and coding styles. The disassembler is an integral part of
the code generator! Inevitably we come across code sequences in client code that are less than
optimal when compared with the same functionality written in MPE house style.

There are usually two reasons for these inefficiencies. One is because we have neglected a
CPU peculiarity, the other is because a special case was neglected where further optimisation
is available. Such conditions were particularly found with the code generator for the 68HC12,
which has very few registers and limited 16 bit operations. After two or three passes over the
code generator, we reached the state where our client stopped writing port access code in
assembler, and reverted to writing high level code only.

Second level optimisations
Binary inlining
Short definitions can be copied inline under certain conditions. This a simple and widely used
technique that avoids the call and return overhead. There are restrictions in its use, and in the
recent VFX code generators for ProForth VFX for Windows, this technique has been largely
superceded by source inlining.

Source inlining
Forth gains much of its power from very short definitions which are reused. Such definitions
produce can produce dense code but do not avoid the cost of the canonical stack shuffle.
Rergardless of whether or not structure definitions are available, we see a lot of code of the
form:

: foo \ addr n – n’
 2 cells + @ +
;

: boo \ addr n – n’
 4 cells + @ +
;

: bar \ addr – n
 0
 over foo
 swap boo
;

When compiled with only binary inlining under ProForth VFX for Windows v3.22 the results
are as follows:

FOO
(004922A8 8B5B08) MOV EBX, [EBX+08]
(004922AB 035D00) ADD EBX, [EBP]
(004922AE 8D6D04) LEA EBP, [EBP+04]
(004922B1 C3) NEXT,

6

(10 bytes)

BOO
(004922D0 8B5B10) MOV EBX, [EBX+10]
(004922D3 035D00) ADD EBX, [EBP]
(004922D6 8D6D04) LEA EBP, [EBP+04]
(004922D9 C3) NEXT,
(10 bytes)

BAR
(004922F8 8D6DF8) LEA EBP, [EBP+-08]
(004922FB C7450000000000) MOV DWord Ptr [EBP],
00000000
(00492302 895D04) MOV [EBP+04], EBX
(00492305 8B5B08) MOV EBX, [EBX+08]
(00492308 035D00) ADD EBX, [EBP]
(0049230B 8D6D04) LEA EBP, [EBP+04]
(0049230E 8B4500) MOV EAX, [EBP]
(00492311 895D00) MOV [EBP], EBX
(00492314 8BD8) MOV EBX, EAX
(00492316 8B5B10) MOV EBX, [EBX+10]
(00492319 035D00) ADD EBX, [EBP]
(0049231C 8D6D04) LEA EBP, [EBP+04]
(0049231F C3) NEXT,
(40 bytes)

The binary inliner has expanded the code to 40 bytes. When the source inliner is enabled the
results are very different. The definitions for FOO and BOO remain the same, but the code for
BAR has changed completely:

BAR
(004923C8 8BD3) MOV EDX, EBX
(004923CA 8B5B08) MOV EBX, [EBX+08]
(004923CD 83C300) ADD EBX, 00
(004923D0 8B5210) MOV EDX, [EDX+10]
(004923D3 03DA) ADD EBX, EDX
(004923D5 C3) NEXT,
(14 bytes)

Even this can be improved by changing the register allocation strategy and special casing the
code generator for “+”. This example illustrates the problems of special case or general
register allocation on CPUs with a limited number of registers, usually considered to be eight
or fewer. If registers are allocated too freely, the stack will have to be spilled more frequently,
leading to larger and slower code. If they are not allocated too freely, cases such as the above
will occur.

The SourceInline system allows factors to be processed as source code macros. Although it
might be expected that these lead to an increase in code size, this has not been found to be
true, especially when converting legacy code. Many of these small factors do simple things
like add offsets. When compiled, either inline or as a call, the optimiser has to create the
canonical stack form. After the call the optimiser then has to extract the items from the
canonical stack. When processed as SourceInline, the full range of VFX optimisations is
applied through the compilation of the factor.

7

Results
The code generation quality of ProForth VFX for Windows was compared with a number of
optimising Forth compilers on the same machine.

Test time (ms) including overhead VFX iFth SF2.0 bigFor
DO LOOP 17 17 20 10
+ 14 16 15 20
M+ 25 46 45 55
* 19 24 36 25
/ 108 151 104 130
M* 35 43 40 30
M/ 114 110 105 165
/MOD 105 139 105 145
*/ 150 130 145 165
ARRAY fill 35 77 95 110
===
Total: 665 791 720 855

Test time (ms) including overhead
Eratosthenes sieve 1899 Primes 906 1066 1070 1005
Fibonacci recursion (35 -> 9227465) 827 1719 796 1455
Hoare's quick sort (reverse order) 621 2941 1825 3985
Generate random numbers (1024 kb array) 765 5163 4900 5065
LZ77 Comp. (400 kb Random Data Mem>Mem) 1045 5318 5375 5264
Dhrystone (integer) 846 1231 3175 1160
===
Total: 5078 17490 17165 17956

The source code is available in the file BENCHMRK.FTH from the download area of our
web site.

Conclusions
The MPE VFX code generator produces code that is between three and five times faster than
the nearest equivalent commercial offering for integer benchmarks.

The code generator is portable and has been introduced in MPE’s ProForth VFX for Windows
and in the MPE VFX Forth cross compilers.

There is an increase in development costs which is balanced by the performance results and
the increased maintainability and portability of target code.

Acknowledgements
Some of this work has been done under ESPRIT project 25344 PRACTICAL

Papers by and conversations with the following people have been useful:
 Gary Bergstrom, Paul Curtis, Anton Ertl, Peter Knaggs, Thomas Worthington.

