
Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 1 of 9

Industrial control languages: Forth vs. IEC61131

N.J. Nelson

__

Abstract

Programmable Logic Controllers (PLCs) have traditionally been
programmed in ladder logic, or instruction step list. Each PLC
manufacturer had is own programming language, incompatible with all
others. Anyone able to program a PLC in a structured high-level language
such as Forth, clearly had a huge advantage in terms of program
development time, debugging and maintenance.
Now there is considerable industry pressure to adopt a common PLC
programming language as defined by IEC61131. This paper will compare
the relative merits of programming PLCs in Forth and IEC61131. It will
also look at the possibility of using Forth to generate intermediate
IEC61131 source code.

N.J. Nelson B.Sc., C.Eng., M.I.E.E.
Micross Electronics Ltd.,
Units 4-5, Great Western Court,
Ross-on-Wye, Herefordshire.
HR9 7XP U.K.
Tel. +44 1989 768080
Fax. +44 1989 768163
Email. njn@micross.co.uk

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 2 of 9

Introduction

The software community is constantly striving to improve the reliability
and efficiency of its work. Programmers of industrial control systems
have made relatively little progress in this direction, when compared with
some areas of software study. Most programs for Programmable Logic
Controllers (PLCs) are still written in “Ladder Logic”, a representation in
software of how a control system would look if it were implemented
using physical relays. In the early 1990s the International Electro-
technical Commission (IEC) started an initiative aimed at improving the
standardisation and efficiency of PLCs, including hardware, software and
usage. The result of this is the IEC standard 61131.

Overview of the IEC61131 standard

There are currently eight sections in this standard, which were published
in stages between 1992 and 1999. Revisions of several sections are in
progress. Several sections are of interest to the software engineer (e.g.
section 7 deals with the application of fuzzy techniques), but the principal
software section is 3 – “Programmable languages: PLC software
structure, languages and program execution”.

The IEC61131-3 PLC software standard

The standard contains five different languages, which can be mixed
within an application.

There are three graphical languages:
• Sequential Function Chart (SFC)
• Function Block Diagram (FDB)
• Ladder Diagram (LD)

There are two text based languages
• Structured Text (ST)
• Instruction List (IL)

The standard contains specific encouragement for good programming
practices, for example, it introduces facilities for structuring and code
reuse. As a standard, it claims to be vendor-independent.

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 3 of 9

SFC is a method of representing the key elements of a sequential process,
i.e. the conditions required for passing from one state to another, and the
effects (physical outputs) present while in a particular state.

FDB looks a bit like a circuit diagram of logic elements, which may be
quite primitive (e.g. AND gates) or more sophisticated (RS flip-flops).

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 4 of 9

LD looks like a wiring diagram of a relay control system.

ST looks like a Pascal program.

CASE INT1 OF
1, 5: BOOL1 := TRUE;
BOOL3 := FALSE;
2: BOOL2 := FALSE;
BOOL3 := TRUE;
ELSE
BOOL1 := NOT BOOL1;
BOOL2 := BOOL1 OR BOOL2;
END_CASE;

IL looks like an assembly language program.

LD TRUE (*load TRUE in the accumulator*)
ANDN BOOL1 (*execute AND with the negated value of the
BOOL1 variable*)
JMPC label (*if the result was TRUE, then jump to the label
"label"*)
LDN BOOL2 (*save the negated value of *)
ST ERG (*BOOL2 in ERG*)
label:
LD BOOL2 (*save the value of *)
ST ERG (*BOOL2 in ERG*)

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 5 of 9

The key question

Should anyone who has been accustomed to programming in Forth,
consider moving to IEC61131-3? There are three issues to consider:

• Marketing considerations
• Technical considerations
• Efficiency considerations

Marketing considerations

We must consider whether our sales and marketing staff would benefit
being able to claim “IEC61131-3 compliance” in the systems we sell.

At present, IEC61131 is “flavour of the month”.
Forth, on the other hand, has a reputation of being more of an enthusiasts’
toy rather than a professional language.

IEC61131 is a proper international standard.
ANSI Forth is a proper international standard.

The customer’s own staff are familiar with IEC61131 and can make
program modifications.
So it is often claimed. In fact, in all our installations, there is not a single
site where there is a programmer capable of making code modifications
to highly complex systems, whether in IEC61131-3 or in Forth. Also,
should a programmable component of the control system need
replacement, the backup code which we hold will not be up to date.
Finally, if a parameter really needs changing from time to time, it should
not be hard coded anyway, but should be enterable through a user
interface.

In any case, we are very rarely asked nowadays about which language we
use for programming.

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 6 of 9

Technical considerations

We must consider whether there are useful features in IEC61131-3 which
are not present in Forth.

According to the standards, programs written in IEC61131-3 are vendor-
independent and portable across platforms.
That is the theory. In practice, this cannot happen, because the user
interfaces and methods of storing source code (particularly in the graphics
languages) differ between implementations. Not all implementations
support all the five languages. The languages themselves are very basic,
and all but the most elementary programs will need to use additional
function blocks provided by the vendor. Since these are outside the
standard, they differ between implementations.
Much the same can be said of ANSI forth – but at least the source code is
always (nowadays) in the same file format.

The IEC61131-3 standard encourages well structured program
development.
So does Forth. But IEC61131 allows unstructured programs too, whereas
Forth programs are at least constrained by the need to segment the
application into Forth words.

The IEC61131 standard encourages strong data typing.
Whereas Forth does not have any data type checking at all. Our practical
experience indicates that lack of type checking in Forth causes very few
real bugs. All strongly typed languages must necessarily allow some form
of type casting, so data typing errors can still occur. Data type errors in
Forth are limited by having very few different types. In 32 bit Forths
Windows for example, there are really only five types upon which
functions operate – bytes, words, integers, floats and strings – and of
these, only integers can be passed as parameters into and out of functions.
By contrast, many PLC have dozens of different “types”, which makes it
extremely hard for the programmer to remember all their details.

The IEC61131-3 standard allows different sections of an application to
execute at different times, and at different rates.
In other words, the standard encourages you to write multi-threaded
applications. Most large applications require segmentation between time-
critical and non-time-critical sections. But synchronisation between
threads is always a difficult issue for programmers, and encouraging the
writing of programs containing lots of asynchronous threads is simply
asking for trouble.

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 7 of 9

The IEC61131-3 standard has proper support for describing sequences.
In a paper to this conference in 1997, Jonathan Morrish introduced a
technique for describing sequences in Forth in a most concise and clear
manner. We have used this technique with complete success ever since.

The IEC61131-3 standard supports data structures.
Although data structures are not explicitly described in the ANSI Forth
standard, they can be implemented with the greatest ease.

Efficiency considerations

We must consider whether we could produce results faster using
IEC61131-3 compared with Forth.

The IEC61131-3 standard allows for code reuse.
This is true for applications using the same platform. ANSI Forth is easier
to port across platforms.

The IEC61131-3 standard allows graphical programming.
There are two considerations here. The first is the quality of the graphical
design environment. The ease with which graphical elements can be
created, manipulated and connected is crucial to the speed of
programming. It must be remembered that text is still required in the
graphical languages, for defining the names of the input and output
connections. So (in a simplistic example) we must ask whether it is
quicker to place a graphical symbol for an AND gate, or to simply type
the Forth word AND.

Availability of language implementations

Most PLC manufacturers now provide at least a partial implementation of
IEC61131-3. Forth is available only on PLCs over which we have some
form of hardware control, either because the PLC is our own in-house
design, or because we have sufficient knowledge of its architecture to
create a Forth implementation.

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 8 of 9

Providing a Forth interface to an IEC61131-3 system

A much wider choice of PLCs would be available to the Forth
programmer, if it were possible to generate IEC61131-3 using Forth.
There are three possible ways in which this might be achieved, and we
have examined these methods in conjunction with the implementation of
IEC61131-3 provided by Beckhoff (Beckhoff Industrie Elektronik,
Eiserstrasse 5 D-33415 Verl). A free 30-day limited copy of this
implementation, which is called TwinCAT, can be downloaded from
www.beckhoff.com.

The first, and simplest method, would be to generate source code in IL
form. Some implementations actually store IL source code as plain text
files; others at least allow IL text files to be imported. Since IL is very
similar to a generic assembly language, and methods of using Forth to
generate assembly language source code have been demonstrated before,
this implementation is quite straightforward. However, the standard
defines a rather restricted list of IL “opcodes”, therefore the functionality
of applications written solely using this method would be quite restricted.

A similar method would be to generate ST source code. This is quite
similar to Pascal, and although we have never seen a Forth-to-Pascal
generator, it would seem to be possible.

Finally, the standard allows the code definitions for FDB to be expressed
in ANSI “C”, compiled using a standard external compiler. In the
Beckhoff implementation, the Microsoft VC++ compiler is used to
produce an object file that can be linked to the IEC61131-3 project.
Forth-to-C generator programs have been described before, therefore, in a
somewhat convoluted way, Forth could be used to generate IEC61131-3
function blocks. This method would only allow the internal descriptions
of the FDB functions to be defined in Forth. A complete application
would need a section in graphical FDB language to link the function
blocks together.

So far, we have investigated only the first of these possible techniques.

Industrial control languages: Forth vs. IEC61131 – Euroforth 2000 - Page 9 of 9

Conclusion

To anyone who was accustomed to programming in ladder logic, moving
to IEC61131-3 would represent a huge improvement. To anyone who was
accustomed to programming in Forth, and who has access to Forth on the
required platform, moving to IEC61131-3 would be a retrograde step.

References

1. The IEC61131-3 standard can be purchased online from the
International Electro-technical Commission at www.iec.ch, price Swiss
Francs 110.

2. “Programming industrial control systems using IEC 61131-3”,
 R.W. Lewis, IEE 1988, ISBN 0 85296 950 3

3. “Rapid development of real-time multi-sequence controls
programmes”, J.H. Morrish, EuroForth 1997

