
Milendorf, M., The Firmware Architecting Process
The Firmware Architecting Process

Michael Milendorf
Sun Microsystems, Inc., Computer Systems Division

One Network Drive, Burlington, MA 01803, USA

Michael.Milendorf@sun.com

Firmware is the ROM-based software that controls a computer between the time it is
turned on and the time the primary Operating Environment takes control of the
machine. This paper describes the Firmware Architecting Process at Sun Microsystems
Company. The process incorporates the sequential stages of firmware project design
and review, firmware architecture review, code design and testing, code review, request
to integrate, putback to the master sources, firmware built verification, firmware
quality assurance, and release to customer. Sun Microsystems firmware, also known as
OpenBoot ROM, is an implementation of IEEE 1275-1994 Standard for Boot Firmware
and is done entirely in the ANSI Forth X3.215-1994.

OpenBoot is a firmware operational environment which is in the boot ROM of every computer

system bearing Sun Microsystems logo. All OpenBoot binaries to support different Sun

Microsystems platforms are built out of the single master source code tree. Forty engineers from

three different engineering groups, located in California and Massachusetts work together to

provide firmware support for all Sun systems from Desktop to Workgroup and High-End
Mainframe-class Servers. The success of such enterprise depends on the use of the carefully

designed firmware architecting process and on the standard Open Architecture for firmware,

implemented in wonderful programming language Forth.

The whole firmware architecting or development process is broken in several sequential

stages: project design and review, firmware architecture review, code design and testing, code review,

request to integrate, putback to the master sources, firmware built verification, firmware quality
assurance and finally release to customer.

Project design and review: During the early stages of the firmware architecting process ideas

are brainstormed and design proposal documents are drafted. When the design proposal and the

schedule for the project delivery are finalized, a design review meeting discusses the design
proposal. At that time, new interfaces and other architectural changes are identified for

submission to the firmware architecture review counsel.



Milendorf, M., The Firmware Architecting Process
Firmware architecture review: The architecture review process is a forum for engineers to get

advise from Sun Microsystems technical leaders and a method to coordinate projects going on

in different departments of the company. The architecture review focuses on the establishment,

maintenance, communication and enforcement of an overall architecture and the creation,

dissemination, and evolution of a compelling technical vision of Sun Microsystems products

several years into the future. Another intention of the architecture review is to provide the

project’s team a consultation service with a group of senior engineers whose expertise is in the

area of their project. This consultation has the benefit of exposing various liabilities that the

project may have in relation to other projects or existing part of the system. The project team is

given advise about what other projects engineers should be worked with, to reconcile any

conflicting architectural issues. The architecture review also attempts to identify any duplication

of effort, over-engineering, quality problems, or dangerous effects on the strategic direction of

the system architecture.

To support the architecture review two organizational structures have been created within

Sun Microsystems Company: The System Architecture Council (SAC) and Architecture Review
Committees (ARCs). Firmware Architecture Review Committee (FWARC) is dealing with firmware
architecture in the company. SAC and FWARC work together to organize and maintain the

definition of the architecture, standards, and interfaces that Sun Microsystems firmware must

confirm to.

Each firmware project goes through several stages for architectural approval. First, a one-
pager is E-mailed to SAC with the short description of the project. When the project is being

assigned to one of subcommittees, in our case FWARC, the project submitter sends additional

materials to FWARC and request an inception review with the FWARC Chair. The FWARC
meeting is scheduled and the project is presented to FWARC. Multiple meetings may occur

ending with the commitment review during which FWARC members vote on the project’s

architecture. The project could be approved unconditionally, approved with changes required

or rejected. The final FWARC opinion is binding on the project. The project is expected to carry

out all required changes and consider all advised changes noted on the opinion.

FWARC is concerned specifically with all new interfaces between OpenBoot and Operational
Environment (Solaris OS). Among interfaces considered are new device tree nodes, new device tree
properties, new user commands, new interfaces between FCode drivers, FCode diagnostics and

OpenBoot. FWARC is also verifying a new project compliance to IEEE 1275-1994 Standard for
Boot Firmware. The committee tries to enforce the coherent consistency in firmware behavior

visible to customers among all Sun Microsystems platforms.

Code Design: Based on FWARC recommendations the project design proposal document is

improved and the code is being developed, written, compiled and tested. OpenBoot firmware

code is written in SPARC Forth Assembly, ANSI Forth or IEEE 1275-1994 FCode programming
languages. All firmware developers at Sun Microsystems are using common OpenBoot sources

under Unix-based Source Code Control System. The system is designed to support teamwork

code development and allows many engineers to share a single common source code tree.

Code Review: When the code is tested by the developer, a code review (inspection) meeting

is called. Firmware group conducts measured code reviews. The following parameters are

recorded and analyzed for each code review: the number of defects or issues identified in the

source code, the number of people participating in the review, the staff hours spent, the

meeting duration, the deliverable size, the lead time given to prepare, and the conclusion of

the reviewers. With a moderator coordinating the review, the source code is walked through,



Milendorf, M., The Firmware Architecting Process
defects are identified, discussed and recorded. The code reviews generally last about an hour

to two hours. Longer meetings found to be unproductive. If a lot of defects are found, the

code re-review meeting may be needed to inspect all incorporated changes based on the first

review. Code reviews are proven to be the most effective way to increase firmware quality

and reliability. Measured code reviews significantly reduce the number of defects found in

software after release.

Request to integrate: After the code is reviewed, the developer prepares his changes to

integration into the common sources. We use bug tracking database and request to integrate
(RTI) Unix-based tools at this stage of the firmware architecting process. Each bug fix, or

enhancement to the existing code is recorded in the bug tracking database. The submitter

assigns priority and severity of the bug (or request for enhancement - RFE), describes the

problem and how it was fixed. The bug tracking database tool automatically assigns a bug

(RFE) identification number and logs in the data. This identification number is later referred

in the RTI tool which is used to coordinate the process of code integration into the common

sources. At the time of RTI submission, a firmware developer selects an advocate for the RTI
from the list of available advocates and a reviewer from the list of available reviewers. Both

lists represent senior level firmware engineers. The developer includes a pointer to the

source tree with the code to be integrated, any associated FWARC case numbers, and bug

(RFE) identification numbers, and the RTI is submitted to the team.

The comment section of the RTI tool allows to type in comments which are recorded for

this RTI. When an RTI is submitted, the RTI tool automatically assigns it a unique number.

The advocate, reviewer and all firmware engineering team members receive an automatic E-

mail announcing that the RTI has been submitted for the review. It is a responsibility of the

reviewer and the advocate to review every RTI assigned to them in a week time frame. They

can use comments section of the RTI tool to communicate any issues to the submitter,

pertaining to the pending RTI. The submitter shall respond to any issues raised by the

reviewer or the advocate by negotiating or fixing the code to the final satisfaction of both the

reviewer and the advocate, at which time the RTI is reviewed by the reviewer and approved by

the advocate.

Putback: When pending RTI is approved, the code submitter contacts the gatekeeper via

E-mail, who opens the master sources for the putback. After the submitter executes the

putback of his sources to the master sources, the gatekeeper closes and re synchronizes the

master sources, and verifies new code by building OpenBoot binaries for all platforms, making

sure the build process was not broken by the putback. The gatekeeper is also updates bug
tracking information to the integrated state for all bugs (RFE) fixed by the putback.

Firmware quality assurance and release to customer: Every official OpenBoot binary

build goes through semi-automatic firmware quality assurance process. The process verifies

compliance of OpenBoot release to the IEEE 1275-1994 Standard for Boot Firmware, platform

specific commands, the device tree and the device tree properties. If problems are found they are

registered through bug tracking database tool. The responsible engineer goes back to the code
design stage of the firmware architecting process to fix the problem.

The Firmware Architecting Process employed at Sun Microsystems allows to meet the

demand of the corporation to develop and deliver robust, portable and reliable firmware

solutions across all Sun platforms in timely fashion. Forth Programming Language fits in the

process as an implementation tool. In this respect, Forth is not different than any other

programming language. The Sun Microsystems firmware architecting process is an example of

how complex software systems written in Forth can be designed and managed between

many individual contributors and even teams.

Copyright (c) 2000 Sun Microsystems, Inc.

.



Milendorf, M., The Firmware Architecting Process


