
Bilingual Programming System DSSP+Forth Eugenia N.Lyakina, Dr. Sergei A.Sidorov

Bilingual Programming System DSSP+Forth

Eugenia N.Lyakina, Dr. Sergei A.Sidorov
NIISI RAS, Russia

For about 20 years the programming systems Forth and DSSP (Dialogue
System of Structured Programming) existed and developed in parallel ways. Today
they look alike, but inside there are some basic differences. What is the depth of these
differences? Are there fundamental and hardly surmountable misfits in these systems?
The quantitative answer was obtained while creating Bilingual Programming System,
which is capable to understand both languages - Forth and DSSP. We need such a
system as the base for the development of the firmware conforming to IEEE Std 1275-
1994 «Open Firmware».

This paper tells about the reasons of creating Bilingual Programming System.
We analyze concrete differences in the languages and internal mechanisms, describe
way of the system development and give some estimations of coincident and different
parts.

Introduction

DSSP was created as a side branch of Forth, which adopted its best ideas. Then
DSSP developed in its own way. At one of the previous conferences we presented our
paper with comparative analysis of both systems [1]. In spite of long independent
development both systems are close enough. Each of them has merits and demerits, but
we shall not discuss it here. This paper is devoted to the examination of the existing
differences and to the search of way to merge DSSP and Forth.

One of DSSP application sphere is creating firmware for newly workable
universal and embedded computers. We have accumulated wide experience and big
volume of programs. Now there are some traditions and use-proven solutions in this
application. Our firmware system DPROM [2] has been successfully used for more
then 10 years. Forth has also been used for a long time for these purposes. In 1994
Standard IEEE Std 1275-1994 «Open Firmware» [3] was published. It is based on
Forth system with the Forth language as part and parcel. «Open Firmware» is the real
way to easy use wide interface cards collection which follow Standard. We wanted to
build firmware system with «Open Firmware» opportunities and to save DPROM
facilities. The way was to modify and improve DPROM firmware to conform IEEE
Standard.

Some words about fundamental parts of «Open Firmware»:
1. Device tree - the main structure which contains information about computer

configuration. The node of the tree corresponds to the device and keeps the
device properties, methods (procedures) and parameters. Device tree is built
(or, more exactly, is completed) during computer initialization as the result
of probing, that is the search of plugged devices.

2. Device interface, that is the instrument for FCode reading, transforming to
threaded code and executing procedures obtained.

Bilingual Programming System DSSP+Forth Eugenia N.Lyakina, Dr. Sergei A.Sidorov

3. Client interface, that is the support of application calls. Usually this
application is Operating System, which makes calls to get information from
the device tree about actual computer configuration.

4. User interface, which supports interactive mode. By this interface user can
execute firmware commands including Forth, debugger, parameters editing
and so on.

After careful studying of Standard it became clear that all its conceptual and
algorithmic parts could be easily implemented in DSSP. Forth is needed for FCode
supporting and as the user interface. We decided to extend DSSP abilities in such a
way, that DSSP could execute Forth programs. Now we consider our method and
results.

1. Structure and Components of Programming Systems

It is evident that DSSP and Forth are relatives. For our purposes it has meaning
to determine not functional, but structural components of the systems, and to analyze
them one by one. We determine the following components:

• Language
• Threaded code
• Dictionary
• Outer interpreter and compiler
• Data
Let’s compare these components in detail and inspect differences.

2. Language

As the Forth language we considered commands described in Standard ANSI
X3.215-1994 «Programming Languages - Forth» [4] in chapters «Core words»,
«Core extension words» and additional words, listed in «Open Firmware» Std,
excluding ones related to firmware itself. We counted 180 such words. After
comparison of word lists we defined 5 command groups. In some cases this division is
very relative.

Category Number Examples
The same by name and by
function

16 + - 1+ > = max

The same by function but with
different names

36 copy drop over and negate
depth

Resembling by function or easy
to implement

25 move find tuck

Different by function but the
same by name

12 ! ‘ value

Forth words absent in DSSP 91 if loop exit 2* roll

The first category is obvious because it consists mostly of mathematical signs
and standard functions. Unfortunately it is the smallest group.

The second list also natural due to the same structure of stacks, memory and
common language principles. DSSP follows the rule to give short names for reducing

Bilingual Programming System DSSP+Forth Eugenia N.Lyakina, Dr. Sergei A.Sidorov

manual work. For example, copy and drop in DSSP are named C and D, negate -
NEG, over - C2 (Copy 2nd) and so on. Not only primitives are included to this list, but
some more complex words, such as «key» - «TRB», «word» - «WRD», «[‘]» - «‘‘».

Resembling or easy to implement words in most cases are different in
parameters order or number. Here are some examples of such Forth words and their
implementations in DSSP (comments in examples are given in Forth notation to avoid
ambiguity; where possible DSSP words are displaced by Forth words):

Forth DSSP Implementation
move !SB (addr1 addr2 n --)

: move swap !SB ;
tuck (x1 x2 -- x2 x1 x2)

: tuck swap over ;
parse CIWD (char -- addr len)

: parse !DELIM WRD ACURR WLEN ;

The most unpleasant is the word group of the same name with different action.
So, command «!» in Forth means «store subtop at address from top», but in DSSP it
means «store top to variable which name follows the !»; DSSP word VALUE defines
named constant unlike Forth, where it defines a kind of variable. This force us to
separate such words into an additional dictionary.

The lagest category consists of words absent in DSSP. Many of them ought to
be implemented as primitives. Others are implemented by «long» definitions - 5-6 or
more words. Above all there are the control flow words originally different in Forth
and DSSP (22). Next - double precision arithmetic and double-word manipulations in
stack (16). Then, some words related to outer interpreter and compiler (21). At last,
scattered commands for stack manipulations, arithmetic, input/output, number and
string transformations (32).

Thus, DSSP language requires numerous appending because about half of
Forth words are absent in DSSP. At the same time implementation of Forth words is
not difficult and consumes a little space. Common space evaluation will be given at the
end.

3. Threaded code

The Forth Standard does not direct to use any appointed threaded code. The
DSSP version we work with is built as virtual machine (C-written) with linear virtual
address space. In this model two kinds of threaded code are implemented. The first,
direct threaded code is simple direct address references in virtual space (it can be
named relative in actual computer space). The second is based on byte-coding like
FCode with intermediate code-address translation table. According to our estimation
this approach allows to spare some amount of memory in large applications (several
hundreds of definitions). Firmware does not require speed, but compactness.

All actions concerning internal structure of threaded code use special
procedures which hide details. Thus we can choose one kind of threaded code
depending on external conditions.

Bilingual Programming System DSSP+Forth Eugenia N.Lyakina, Dr. Sergei A.Sidorov

4. Dictionary

Dictionaries in Forth and DSSP serve the same purpose, but they are made
differently. DSSP dictionary [6] is the sequence of named sub-dictionaries, each of
them consists of dictionary entries. A dictionary entry keeps the word header: name
and flags, and the pointer to procedure body. Procedure FIND searches word from the
dictionary end, checking sub-dictionaries one by one, except those marked as shut. If
the word is undefined still, it is followed by the table of addresses where this word is
used. The table supports top-down programming technique. DSSP dictionary does not
contain any internal references and its location in memory is defined by pair of pointers
- the beginning and the end. This provides two important features: dictionary can be
easily moved in memory and temporary entries can be deleted from dictionary to avoid
conflicts and reduce memory consumption.

Forth dictionary consists of sub-dictionaries too but the procedure FIND
chooses search order in another way. Necessary sub-dictionaries are arranged to
Context list and this list is used by FIND. Dictionary entries are linked as a list. This
feature allows to grow any sub-dictionary at any time. List-based dictionary supports
various manipulations with the dictionary, but it is difficult to move or clean it.

From the most programmers point of view either DSSP or Forth dictionaries
are good. In fact we usually use dictionary manipulations only when assembling large
programs to avoid name collisions or to form any sub-language for interactive system.
In some cases, however, dictionary internal structure is used in essence. In particular
«Open Firmware» device tree is based on Forth dictionary lists. The best way in this
situation was to choose Forth dictionary as a starting point and add mechanism for
top-down programming. It was easy: if T-flag in word header is set, this word is
followed by the head of list of addresses where this word is referenced. The list itself
contains address and the pointer to the next element.

Thus, we saved one of the main DSSP features - top-down programming in
new system and obtained all Forth dictionary functionality.

We separated words with different functions but the same names into different
sub-dictionaries. In Forth mode system uses one sub-dictionary, in DSSP mode -
another.

5. Outer interpreter and compiler

These two components are the «face» of interactive systems. We found
following distinctions of outer interpreter and compiler in DSSP and Forth.

Comments processing: Forth inputs input stream without filtering and the
comments are processed by word «(». In DSSP comments are sifted out while
reading next string. Interpreter (and compiler) gets «plain» text.

Forth comments DSSP comments

 (x y -- z)

: a ... ;

: A [x,y] ... [z] ;

This problem we solve by analyzing the mode flag: if DSSP mode then comments filter
is ON, otherwise OFF.

Bilingual Programming System DSSP+Forth Eugenia N.Lyakina, Dr. Sergei A.Sidorov

While compilation Forth uses immediate words, i.e. active elements which do
some additional work during compilation process. These words implement
control commands, text processing and some other. This principle allows to
simplify the compiler itself and distribute special jobs among agents. DSSP
keeps to the rule «One word of program text corresponds to one word of
code» and no additional actions are needed. Special processing is required only
for texts; compiler has a branch for these cases.

It is hard to reduce such a considerable difference in one program. We implemented
separate outer interpreter and compiler for Forth. They use already existent DSSP
procedures for input stream reading and text parsing, dictionary search and entries
creation, building of procedure body, memory allocation and so on. In fact, only top
level must be programmed, all infrastructure is ready.

DSSP supports top-down programming unlike Forth.
We extend Forth dictionary with top-down supporting mechanism and now this
problem is solved. Moreover, some modifications of Forth compiler can allow to apply
top-down technique in Forth programs.

6. Data

DSSP data system is based on prefix access methods [5]. Simple Forth
variables are mapped into named number constants with address as its value. Forth
«value» and «defer» with store command «to» are mapped into usual DSSP
variables:

Forth Implementation in DSSP (Forth-style comments)

variable A : variable 4 GET_MEM (addr) CONSTANT ;

(x) value B : value VAR MEMPTR 4- (x addr) !TL ;

defer N : defer ‘‘ UNINIT (proc.addr) ACT value ;

Results

Now we have a hybrid system DSSP+Forth with temporary name BPS -
Bilingual Programming System. It can work in two modes - either DSSP or Forth.
DSSP program can use many words from Forth collection, and vice versa. Mode
switch words «FORTH» and «DSSP» do simple work: set or reset mode flag and
connect one of two alternative sub-dictionaries with words of the same name.

There are some changes in DSSP language concerning dictionary. Now we use
Forth words for these purposes. It is not hard to imitate DSSP dictionary command
set, maybe with some restrictions, but it is not necessary today.

We implemented Forth words from ANSI Standard parts «Core», «Core
extension» and words listed in IEEE Std 1275. It is enough to conform «Open
Firmware».

What is the cost of this result? Programming itself was very easy, most time
was devoted to understanding internal Forth mechanisms, such as immediate words,

Bilingual Programming System DSSP+Forth Eugenia N.Lyakina, Dr. Sergei A.Sidorov

outer interpreter details, «CREATE ... DOES>». Code increase is about 35-40%
relatively to original DSSP, depending on target processor and compiler. Some figures:

CPU Original DSSP
 length

DSSP+Forth
 length

increase

MIPS R3000 77 KB 107 KB 39%
Sparc 69 KB 94 KB 35%
MC68K 65 KB 91 KB 40%

We consider these figures satisfactory enough. Comparatively with full
firmware system which size we evaluate as about 500 KB, these additional 25-30 KB
are the low cost for convenience.

References

1. Sidorov S.A., Shumakov M.N. DSSP and Forth. Compare analysis. //
12th EuroFORTH conference on the FORTH programming language
and FORTH processors. St.Peterburg, Russia. 1996.

2. Ljakina E.N., Sidorov S.A., Shumakov M.N. Applications of DSSP. //
12th EuroFORTH conference on the FORTH programming language
and FORTH processors. St.Peterburg, Russia. 1996.

3. IEEE Std 1275-1994 - IEEE Standard for Boot (Initialization
Configuration) Firmware: Core Requirements and Practices.

4. ANSI X3.215-1994 - Programming Languages - Forth.
5. Sidorov S.A. Data in DSSP - prefix access in postfix language. //

EuroFORTHí97. Conference proceedings.- Oxford, England, 1997.
6. Sidorov S.A. Top-down Thinking and Top-down Writing in DSSP. //

EuroFORTHí98: 14th Euroforth Conference, Schloss Dagstuhl,
Germany, 1998.

