
Implementation Techniques for PrologAndreas KrallInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wienandi@mips.complang.tuwien.ac.atAbstractThis paper is a short survey about currently used im-plementation techniques for Prolog. It gives an intro-duction to uni�cation and resolution in Prolog andpresents the memory model and a basic executionmodel. These models are expanded to the ViennaAbstract Machine (VAM) with its two versions, theVAM2P and the VAM1P, and the most famous ab-stract machine, the Warren Abstract Machine (WAM).The continuation passing style model of Prolog, binaryProlog, leads to the BinWAM. Abstract interpretationcan be applied to gather information about a program.This information is used in the generation of very spe-cialized machine code and in optimizations like clauseindexing and instruction scheduling on each kind ofabstract machine.1 IntroductionThe implementation of Prolog has a long history[Col93]. Early systems were implemented by the grouparound Colmerauer in Marseille. The �rst system wasan interpreter written in Algol by Phillip Roussel in1972. With this experience a more e�cient and us-able system was developed by G�erard Battani, HenryMeloni and Ren�e Bazzoli [BM73]. It was a structuresharing interpreter and had essentially the same built-in predicates as modern Prolog systems. This systemwas reasonably e�cient and convinced others of theusefulness of Prolog. Together with Fernande and LuisPereira David Warren developed the DEC-10 Prolog,the �rst Prolog compiler [War77]. This compiler andthe portable interpreter C-Prolog spread around theworld and contributed to the success of Prolog. Fur-ther developments are described in [Roy94] and partlyin this paper.Section 2 presents a basic execution model for Pro-log. This model helps to understand the Warren Ab-stract Machine described in section 3 and the ViennaAbstract Machine described in section 4. Section 5gives on overview of optimizations.

2 A basic execution model2.1 IntroductionThe two basic parts of a Prolog interpreter are theuni�cation part and the resolution part. The resolu-tion is quite simple. It just implements a simpli�edSLD-resolution mechanism that searches the clausestop-down and evaluates the goals from left to right.This strategy immediately leads to the backtrackingimplementation and the usual layout of the data areasand stacks. Resolution handles stack frame allocation,calling of procedures, and backtracking.Uni�cation in Prolog is de�ned as follows:� two constants unify if they are equal� two structures unify if their functors (name andarity) are equal and all arguments unify� two unbound variables unify and they are boundtogether� an unbound variable and a constant or structureunify and the constant or structure is bound tothe variableThis de�nition of uni�cation determines the datarepresentation. A thorough analysis of the recursiveuni�cation algorithm pays o� because the interpreterspends most of the time in this part.2.2 The representation of dataSince Prolog is not statically typed, the type and valueof a variable can in general be determined only at runtime. Therefore, a variable cell is divided into a valuepart and a tag part which determines the kind of thevalue. Fig. 1 shows a tagged value cell.Basic data objects in Prolog are constants (atomand integer), structures and unbound variables. Sinceunbound variables can be bound together, there are1

functor ./2 int 2 atom []functor ./2 int 1 ref? ref? Figure 2: representation of X = 1.2.[]functor ./2 int 2 atom []functor ./2 int 1 ref? Figure 3: compacted representation of X = 1.2.[]tag valueFigure 1: a tagged value cellreferences between variables which are represented bypointers. To access a variable it can be necessary tofollow the chain of references which is called derefer-encing. Following tagged cells are needed in a Prologsystem:atom unique identi�er of character stringinteger integer numberreference pointer to another tagged cellunbound (self-reference pointer)functor name and arity of a structure followed by atagged cell for each argumentMost Prolog implementations do not use a separatetag for unbound variables. They represent unboundvariables by a self reference. This can eliminate a tagcheck during uni�cation of an unbound variable withanother variable. The comparison can be replaced byan assignment. Since structures need more than onecell the variable cell contains a reference to the functorcell (see �g. 2). If the last cell of a structure is again astructure and the second structure is allocated directlyafter the �rst structure, the reference can be omitted(see �g. 3). This compact allocation can be obtainedeither at the �rst allocation or on garbage collection.Another solution is a special reference tag for struc-tures. The advantage of this method is that the type

of a value cell can be determined without a memoryaccess. Many implementations distinguish further be-tween the empty list (nil) and other atoms, and be-tween lists and other structures in order to allow moree�cient implementations of lists. Big numbers and
oating point numbers are represented as structures.The tag �eld can be represented in di�erent ways. Itcan be an additional memory cell of the standard wordsize, or it can be a small part of a memory cell. If thetag consists of some bits, the tag is either �xed-sizedor variable-sized and uses the most or least signi�cantpart of the word.Useful tag representations try to minimize the tagextraction and insertion overhead. An example is theuse of zeroes in the least signi�cant part of the wordas an integer tag. Addition and subtraction can so bedone without tag manipulation. Another example isto have the stack pointer displaced by the list tag, sothat the allocation of list cells is free. A comprehensivestudy of tag representations can be found in [SH87].Problems arise if a variable occurring inside a struc-ture should be bound to this structure. In theoremprovers in such a case the uni�cation should fail. Thistest for occurrence of the variable in a structure, calledoccur check, is expensive. It is omitted in many uni�-cation algorithms employed by Prolog systems. If sucha structure is assigned to a variable, a recursive struc-ture is created. A simple uni�cation algorithm wouldenter an in�nite loop unifying two in�nite structures.There exist linear time uni�cation algorithms for in-�nite structures [Jaf84], but many Prolog systems dowithout it and create in�nite structures, but cannotunify or print them.2

x(X) :- a(A)a(C) :- b(C), c(C)b(s(0))c(s(0))?fail x(X) :- a(A)?backtracking x(X) :- a(A)a(D) :- b(D), d(D)b(s(0))d(s(0))?successFigure 4: stacks2.3 The data areasVariables in a Prolog clause are stored in a stack framesimilar to variables in a conventional programminglanguage. The SLD-resolution was chosen as the res-olution scheme for Prolog because of its simple stackimplementation and e�cient memory use. An earlydescription of the memory management of Prolog canbe found in [Bru82].The clausea(C) :- b(C), c(C).can be represented by the tree in �g. 5.��a(C)���� HHHH��b(C) ��c(C)Figure 5: clauseSubtrees can be combined to a complete proof tree,also called AND-OR tree. As an example, take thefollowing short Prolog program:x(X) :- x(X).a(C) :- b(C), c(C).a(D) :- b(D), d(D).b(s(0)).c(s(0)).d(s(0)).The AND-OR tree is shown in �g. 6. The thicklines belong to the AND-tree of the last solution, thethin lines belong to the AND-tree of the �rst solution.The AND-tree represents the calls of the di�erent goalsof a clause. The OR-tree represents the alternativesolutions.The AND-OR-tree can be represented in linearizedform by a stack (see �g. 4). Since we are only in-terested in one solution at a time, only an AND-tree

��"!# a(X)a(C)���� HHHH"!# b(C)b(s(0)) "!# c(C)c(s(0))��x(X)@@"!# a(X)a(D)���� HHHH"!# b(D)b(s(0)) "!# d(D)d(s(0))Figure 6: proof treeis stored in the stack. The OR-tree corresponds todi�erent contents of the stack between backtracking.Fig. 4 represents the AND-OR-tree at three di�erentmoments. The left part of the �gure shows the �rst so-lution, the middle shows the stack after backtrackingand the right part shows the second solution.The cells of structures are allocated on a stack. In�g. 4 the cells for the structure s(0) would be allo-cated after the stack frame for b(s(0)). When thestack frame for c(s(0)) is allocated, the stack framefor b(s(0)) can be discarded if there are no referencesinto the discarded stack frame and if there are no struc-ture cells on the stack. In order to allow memory reusethe stack is divided into two parts. The environment(or local) stack holds the stack frames and the copystack (global stack or heap) holds structure cells. Thedangling reference problem can be solved if referenceswithin the environment stack are directed towards thebottom of the stack or to the heap.In order to facilitate the removal of stack frames,there is a distinction between deterministic and inde-terministic stack frames. A stack frame is determinis-tic if no alternative clauses are left for this procedure.An indeterministic stack frame is called choice point.During uni�cation variables in a stack frame maybecome bound. On backtracking they should be reset3

to unbound. An additional stack, the trail, solves thisproblem. During uni�cation the addresses of boundvariables are pushed onto the trail. On backtrackingthese addresses are popped from the trail and the vari-ables are reset to unbound. It is only necessary to trailthe addresses of variables which are closer to the bot-tom of the stack than the last choice point. Testingthis condition is called trail check.variablescallers goalcallers framealternative clausestop of trailtop of copy stackprevious choice pointFigure 7: stack frame with choice pointFig. 7 shows a stack frame with a choice point. A de-terministic stack frame contains the cells for the vari-ables, a pointer to the caller of this clause, comparableto the return address in a conventional stack frame,and a pointer to the stack frame of the caller. Thesetwo pointers are usually called continuation. A choicepoint additionally contains a pointer to the next al-ternative clause, a pointer to the top of trail and apointer to the top of copy stack at the time the choicepoint was created, and a pointer to the previous choicepoint. copy stack?6trailenvironment stack?6code areaFigure 8: data areasFig. 8 shows the stacks and data areas in a Prologsystem. The check for pointer directions is simpli�ed

if copy and environment stack grow in the same di-rection, and the copy stack grows towards the envi-ronment stack. The code area is needed to store theprogram and string representations of the atoms.To enable fast uni�cation, only unique identi�ersof atoms are stored in variables. A hash table orsearch tree is constructed over these strings to enablefast searching when only the string representation isknown. The same concept is applied to functors (nameand arity of structures).2.4 Simple Optimizations2.4.1 The Representation of TermsIn the previous sections we have used a representationof structures known as structure copying. This tech-nique was introduced by Maurice Bruynooghe [Bru82]and Christopher Mellish [Mel82]. Structure copyingis now the standard implementation method becauseit is faster than the previously used structure sharing[BM72]. In general, structure copying also consumesless memory than structure sharing [Mel82].Structure sharing is based on the assumption that alarge part of a structure is constant and contains onlyfew variables. A structure is here divided into the con-stant, part called skeleton, and a variable part, calledenvironment. The skeleton contains the constants andthe o�sets into the environment, the environment con-tains the variables. The skeleton is stored in the codearea, the environment in the global stack. A structureis represented by two pointers, one to the skeleton andone to the environment. Therefore, a variable cell hasto hold a tag and two pointers. On modern machinearchitectures this means that a cell needs two wordsand spends much time in decoding skeletons. Thusonly the �rst Prolog systems [BM73] and David War-rens �rst Prolog compiler [War77] used structure shar-ing. But in conjunction with binary Prolog (see section3.3) structure sharing can gain in interest again.2.4.2 Interpreters and CompilersWe did not yet address the problem of how to rep-resent programs. A simple solution is to directly usethe term representation of the clauses. The interpreterthen has two instructions, the uni�cation which oper-ates on a whole goal and the head of the matchingclause, and the resolution which pushes whole clausesonto the stack and does the backtracking. This simplemodel is called clause or goal stacking model. Usingstructure sharing for the goal level of the term leads tothe classical interpreter model with two term pointersand two environment (frame) pointers.4

Uni�cation in general consists of assignments, condi-tional assignments and comparisons. So it is quite nat-ural to break the uni�cation up into its atomic parts.The program is analysed and instructions specializedfor the argument types of the goals are generated. Theresolution can be divided into stack allocation, clauseindexing and calling instructions. The program is rep-resented as a sequence of such instructions which canbe either executed by an interpreter or compiled tomachine code. Such an instruction set de�nition to-gether with the memory model is called an abstractmachine. Several abstract machines were de�ned, inthis paper only the commonWarren Abstract Machine(WAM) and the Vienna Abstract Machine (VAM) aredealt with.2.4.3 Variable Classi�cationIn the simple execution model presented above it isassumed that during allocation of a stack frame allvariable cells are initialized to unbound. Furthermore,for every variable occurring in a clause a cell is allo-cated.Variables occurring only once in a clause, called voidvariables, can be bound only by a single instruction.The value bound to this variable will never be used.So it is not necessary to reserve space for such vari-ables. Another case are variables which occur onlywithin one subgoal. It is not necessary to reserve thespace over di�erent goals. Space for these temporaryvariables is not reserved in the stack frame but in anadditional �xed area. To avoid dangling pointers, ref-erences must always point from temporary variablesto the environment or copy stack.The initialization of the stack frame and of tempo-rary variables can be eliminated if the �rst occurrenceand further occurrences of a variable are distinguished.The improvement comes not only from the eliminationof some initializations but also from the elimination ofa complex uni�cation for the �rst occurrence.2.4.4 Clause IndexingIndexing of Prolog clauses is an optimization whoseaim is to reduce the number of clauses to be triedand to avoid the creation of choice points if possible.The results are better execution times and memoryconsumption.The most trivial optimization done by every Prologsystem is to try only the clauses of a procedure in-stead of all clauses of a program during the the searchfor a unifying clause. First argument indexing is morecomplicated: Only clauses which unify with the goalin the �rst argument are selected. For this purposean indexing structure is built over the clauses which

di�erentiates the clauses depending on their �rst argu-ments. This indexing structure is either a hash table ora search tree. The search tree has the advantage that iteasily handles variables in the head of the clauses andallows dynamic clause insertion. Sophisticated clauseindexing schemes are presented in section 5.2.2.4.5 Last-call OptimizationIn section 2.3 we noticed that stack frames can bediscarded after the subtree has been proved and noalternatives are left. This check is simple. The stackframe has to be the top-most frame. There can beno choice point left on the stack allocated later. Adeterministic stack frame can be discarded not onlyafter the call of the last subgoal, but also before thiscall. The general solution is to copy the stack frameof the called clause over the stack frame of the clausewith the last call after the uni�cation of the variableshas been done (see �g. 9).6called clauselast call 6called clause?Figure 9: general last-call optimizationThis frame moving is complicated by the fact thatthere could be references to the moved stack frame andreferences to unbound variables in the discarded stackframe. Therefore, the variables have to be checkedand updated prior to the moving of the stack frame.Instead of updating the references, the variables canbe globalized. That means that they are allocated onthe global (copy) stack. The overhead of moving thestack frame can be avoided by copying the discardedstack frame to registers. The new stack frame thenis directly created at the place of the discarded frame(WAM). An other solution is to create the new stackframe in registers and copy the registers to the placeof the discarded frame (VAM).Last-call optimization can be generalized for everycall. A deterministic stack frame can be moved overthis part of a stack frame which is not used at latercalls. For that purpose the variables have to be or-dered on their last occurrence. A simple stack trim-ming without the overhead of generalized last-call op-timization can be achieved by discarding only variableswhich have their last occurrence before the call. Last-call optimization can reduce an in�nite memory con-5

sumption to a �nite one. So it has to be implementedin every Prolog system. Specialized implementationsalso reduce the run time because uni�cations can beeliminated if variables occupy the same location.2.4.6 Garbage CollectionIn Prolog unreferenced data (garbage) can be pro-duced both in the code area and in the copy stack. Butdi�erent kinds of garbage collection algorithms can beapplied to these data areas. At least the copy stackneeds a compacting collector which preserves the orderof the cells. An algorithm which uses pointer reversalhas the best space-time complexity. When the copystack becomes compacted the trail must be updatedtoo. Some Prolog garbage collectors collect only partof the stack due to wrong interpretations of uninitial-ized variables. Unused data in the code area is easilydetected by the retract procedure. If the code is notmoved, no updates of the environment stack are nec-essary.3 The Warren Abstract Ma-chineSix years after the development of his successful com-piler for the DEC-10 David Warren presented a newabstract Prolog instruction set [War83]. This NewProlog Engine has become very popular under thename Warren Abstract Machine (WAM). It has beenthe basis of nearly all Prolog systems developed afterthe year 1983. The aim of the WAM was to serve asa simple and e�cient implementation model for bytecode interpreters as well as machine code generatingcompilers. So the �rst implementation was a structurecopying byte code emulator.3.1 The Original Warren Abstract Ma-chineThe WAM is closer to the execution model of impera-tive languages than all other implementation models.The main idea is the division of the uni�cation intotwo parts, the copying of the arguments of the callinggoal into argument registers and the uni�cation of theargument registers with the arguments of the head ofthe called clause. This is very similar to the parameterpassing in imperative languages like C. The �rst pa-rameters are passed via registers. If the registers areexhausted, the stack can be used for additional param-eters. The partitioning of the uni�cation reduces thenumber of instruction pointers to one and the numberof frame pointers to one, if all parameters can be keptin registers.

This parameter passing is mirrored in the instruc-tion set. put instructions copy the arguments of thegoal into the registers, get instructions unify the reg-isters with the arguments of the head. unify instruc-tions handle the uni�cation of structure arguments.They can be executed in two modes. In write modea new structure is created, in read mode the struc-ture arguments are uni�ed with the arguments of thehead. procedural instructions manage the stack andexecute procedure calls. indexing instructions buildthe indexing structure. The data areas are identicalto the previously presented simple model (see �g. 10),but the choice point is quite di�erent. The originalWAM added a push down list used as a stack for therecursive uni�cation procedure. But in a byte codeemulator this push down list is hidden in the run timestack of the implementation language. In a machinecode generating compiler the environment or the copystack can be used for this purpose.6 � TRtrail6 � A� E� Bstack6 � H� Sheap6 � P� CPcode areaFigure 10: data areas of the WAMSince all variables in the stack frame are copied intothe argument registers before calling a procedure, last-call optimization is simpli�ed. The stack frame of thecalled procedure can be created directly at the placeof the stack frame of a deterministic caller. To avoidthe overhead of recreating the argument registers onbacktracking using put instructions, the argument reg-isters are saved in the choice point. This permits last-call optimization also in these cases where the calledprocedure has alternative clauses. Furthermore, thisleads to a relaxed de�nition of temporary variables.The head, the �rst subgoal and all builtin predicatesbetween head and �rst subgoal count as one subgoal6

for the classi�cation of temporary variables. Unfor-tunately, the problem of dangling references is notsolved. Therefore, there are special versions of putinstructions which check if the last occurrence of avariable in the last subgoal has a reference to the dis-carded stack frame. Such variables are called unsafevariables and are allocated on the copy stack.After this introduction we can present the machineregisters of the WAM:P program counterCP continuation program counterE current environment pointerB most recent choice pointA top of stack (not strictly necessary)TR top of trailH top of heapS structure pointerA1,A2,... argument registersX1,X2,... temporary registersThe continuation program counter is a registerwhich caches the pointer to the continuation goal. Itcan be compared with the return address in an imper-ative language. Holding this value in a register speedsup the execution of the leaf procedures. The environ-ment pointer is comparable to the frame pointer in animperative language. The original WAM contained aHB register (heap backtrack point) which caches thetop of heap corresponding to the most recent choicepoint. It is used to check if a variable has to be trailed.In general it is faster to take this value directly fromthe choice point than to update this register at everychoice point creation and deallocation. The structurepointer S is used during the uni�cation of the argu-ments of structures. Also named di�erent, argumentregisters and temporary registers share the same poolof registers. Register allocation tries to use the regis-ters in such an order that the number of instructionscan be reduced.The environment contains the local variables andthe continuation code pointer CP' and a pointer to theprevious environment E'. The choice point is shown in�g. 11. B', H', TR', CP', E' and the Ai' are copies ofthe values of the machine registers before the creationof the choice point. The value BP of the retry pointeris supplied by the instruction which creates the choicepoint and points to the code of the next alternativeclause.Fig. 12 shows the complete WAM instruction set.Vn describes either temporary or local variables. Ridesignates the argument registers. C is a constant (in-teger or atom) in its internal representation and F isthe functor of a structure which contains the name andthe arity of the structure.

B' previous choice pointH' top of heapTR' top of trailBP retry program pointerCP' continuation program pointerE' environment pointerA1'...An' argument registersFigure 11: choice point in the WAM3.2 Optimizing the basic WAMIn an interpreter the execution mode of unify instruc-tion is hidden in the state of the interpreter. Thereare just two instruction decoding loops, one for theread mode and one for the write mode. In a machinecode generating compiler the mode has to become ex-plicit. The simple solution of a
ag register, which ischecked in every instruction, is not very e�cient. The�rst step is to divide the unify instructions in writeand read instructions. The optimal solution, whichsplits all paths for read and write mode, has exponen-tial code size. Linear space is consumed if the mode
ag is only tested once per structure. This schemecan be improved if write mode is propagated down anested structure and read mode is propagated up. Amore detailed description and further references canbe found in [Roy94].In the WAM it is very common that unbound vari-ables are bound to a value shortly after their initial-ization. This happens e.g. if a variable has its �rst oc-currence in the subgoal which calls a procedure witha constant argument. The variable has to be createdin memory and needs to be dereferenced and trailedbefore being bound. Beer [Bee88] recognized that thisis time consuming and additionally would require anoccur check if implemented. He developed the idea ofan uninitialized variable.An uninitialized variable is de�ned to be an un-bound variable that is unaliased, that means it is notshared with another variable. Such a variable gets aspecial reference tag. Creation of an uninitialized vari-able is simpler, it does not have to be dereferenced ortrailed. Binding reduces to a single store operation.It is necessary to keep track of such variables at runtime. If they remain uninitialized after the executionof the subgoal they have been created, they must beinitialized to unbound.7

3.3 Binary PrologThe key idea of binary Prolog is the transformation ofclauses to binary clauses using a continuation passingstyle. BinProlog, an e�cient emulator for binary Pro-log has been developed by Paul Tarau [Tar91][Tar92].The implementation is based on the WAM which canbe greatly simpli�ed in that case.In binary Prolog a clause has at most one subgoal.A clause can be transformed to a binary clause byrepresenting the call of subgoals explicitely using con-tinuations [App92]. For that purpose the �rst subgoalis given an additional argument containing the suc-cess continuation. The success continuation is the listof subgoals to be executed if the �rst subgoal is ex-ecuted successfully. The head is given an additionalargument which passes on the continuation. A factis transformed to a clause, whose subgoal executes ameta-call of the continuation. For example, the fol-lowing clausesnrev([],[]).nrev([H|T],R) :-nrev(T,L), append(L,[H],R).are transformed intonrev([],[],Cont) :- call(Cont).nrev([H|T],R,Cont) :-nrev(T,L,append(L,[H],R,Cont)).Compiling binary Prolog to the WAM it appearsthat the environment stack is super
uous since all vari-ables are temporary. Therefore, all instruction deal-ing with local variables or managing the stack can beeliminated. So a small and e�cient interpreter can beimplemented. But this simpli�cation has a big prob-lem. The continuation, which contains also the vari-ables previously contained in the stack frame, is storedon the copy stack. This means that there is no last-call optimization. So for a working BinWAM an ef-�cient garbage collector is crucial. In some sense theBinWAM can be seen as mixture of a clause stackingmodel with the WAM.4 The Vienna Abstract Ma-chine4.1 IntroductionThe VAM has been developed at the TU Wien as analternative to the WAM. The WAM divides the uni�-cation process into two steps. During the �rst step thearguments of the calling goal are copied into argument

registers and during the second step the values in theargument registers are uni�ed with the arguments ofthe head of the called predicate. The VAM eliminatesthe register interface by unifying goal and head argu-ments in one step. The VAM can be seen as a partialevaluation of the call. There are two variants of theVAM, the VAM1P and the VAM2P.A complete description of the VAM2P can be foundin [KN90]. Here we give a short introduction to theVAM2P which helps to understand the VAM1P andthe compilation method. The VAM2P (VAM with twoinstruction pointers) is well suited for an intermedi-ate code interpreter implemented in C or in assemblylanguage using direct threaded code [Bel73]. The goalinstruction pointer points to the instructions of thecalling goal, the head instruction pointer points to theinstructions of the head of the called clause. During aninference the VAM2P fetches one instruction from thegoal, one instruction from the head, combines themand executes the combined instruction. Because infor-mation about the calling goal and the called head isavailable at the same time, more optimizations thanin the WAM are possible. The VAM features cheapbacktracking, needs less dereferencing and trailing, hassmaller stack sizes and implements a faster cut.The VAM1P (VAM with one instruction pointer)uses one instruction pointer and is well suited for na-tive code compilation. It combines instructions atcompile time and supports additional optimizationslike instruction elimination, resolving temporary vari-ables during compile time, extended clause indexing,fast last-call optimization, and loop optimization.4.2 The VAM2PLike the WAM, the VAM2P uses three stacks. Stackframes and choice points are allocated on the envi-ronment stack, structures and unbound variables arestored on the copy stack, and bindings of variablesare marked on the trail. The intermediate code of theclauses is held in the code area. The machine registersare the goalptr and headptr (pointer to the code of thecalling goal and of the called clause respectively), thegoalframeptr and the headframeptr (frame pointer ofthe clause containing the calling goal and of the calledclause respectively), the top of the environment stack,the top of the copy stack, the top of the trail, and thepointer to the last choice point.Values are stored together with a tag in one machineword. We distinguish integers, atoms, nil, lists, struc-tures, unbound variables and references. Unboundvariables are allocated on the copy stack to avoid dan-gling references and the unsafe variables of the WAM.Furthermore it simpli�es the check for the trailing ofbindings. Structure copying is used for the represen-tation of structures.8

copy stack � copyptr?6 � trailptrtrailenvironment stack� choicepntptr� goalframeptr� headframeptr?6 � goalptr� headptrcode areaFigure 13: VAM data areasVariables are classi�ed into void, temporary and lo-cal variables. Void variables occur only once in a clauseand need neither storage nor uni�cation instructions.Di�erent to the WAM, temporary variables occur onlyin the head or in one subgoal, counting a group ofbuiltin predicates as one goal. The builtin predicatesfollowing the head are treated as belonging to thehead. Temporary variables need storage only duringone inference and can be held in registers. All othervariables are local and are allocated on the environ-ment stack. During an inference the variables of thehead are held in registers. Prior to the call of the �rstsubgoal the registers are stored in the stack frame. Toavoid initialisation of variables we distinguish betweentheir �rst occurrence and further occurrences.The clauses are translated to the VAM2P abstractmachine code (see �g. 14). This translation is sim-ple due to the direct mapping between source codeand VAM2P code. During run time a goal and a headinstruction are fetched and the two instructions arecombined. Uni�cation instructions are combined withuni�cation instructions and resolution instructions arecombined with termination instructions. A di�erentencoding is used for goal uni�cation instructions andhead uni�cation instructions. To enable fast encod-ing the instruction combination is solved by addingthe instruction codes and, therefore, the sum of twoinstruction codes must be unique.4.3 The VAM1PThe VAM1P has been designed for native code compi-lation. A complete description can be found in [KB92].The main di�erence to the VAM2P is that instructioncombination is done during compile time instead of

variables local variablesgoalptr' continuation code pointergoalframeptr' continuation frame pointerFigure 15: stack frametrailptr' copy of top of trailcopyptr' copy of top of copy stackheadptr' alternative clausesgoalptr' restart code pointer (VAM2P)goalframeptr' restart frame pointerchoicepntptr' previous choice pointFigure 16: choice pointrun time. The representation of data, the stacks andstack frames (see �g. 15) are identical to the VAM2P.The VAM1P has one machine register less than theVAM2P. The two instruction pointers goalptr andheadptr are replaced by one instruction pointer calledcodeptr. Therefore, the choice point (see �g. 16) isalso smaller by one element since there is only oneinstruction pointer. The pointer to the alternativeclauses now directly points to the code of the remain-ing matching clauses.Due to instruction combination during compile timeit is possible to eliminate instructions, to eliminate alltemporary variables and to use an extended clause in-dexing, a fast last-call optimization and loop optimiza-tion. In WAM based compilers abstract interpretationis used to derive information about mode, type andreference chain length. Some of this information is lo-cally available in the VAM1P due to the availability ofthe information of the calling goal.All constants and functors are combined and eval-uated to true or false. For a true result no code isemitted. All clauses which have an argument evalu-ated to false are removed from the list of alternatives.In general no code is emitted for a combination with avoid variable. In a combination of a void variable withthe �rst occurrence of a local variable the next occur-rence of this variable is treated as the �rst occurrence.Temporary variables are eliminated completely. Theuni�cation partner of the �rst occurrence of a tempo-rary variable is uni�ed directly with the uni�cationpartners of the further occurrences of the temporaryvariable. If the uni�cation partners are constants, nocode is emitted at all. Flattened code is generated forstructures. The paths for unifying and copying struc-tures is split and di�erent code is generated for eachpath. This makes it possible to reference each argu-ment of a structure as o�set from the top of the copystack or as o�set from the base pointer of the struc-9

ture. If a temporary variable is contained in morethan one structure, combined uni�cation or copyinginstructions are generated.All necessary information for clause indexing is com-puted during compile time. Some alternatives areeliminated because of failing constant combinations.The remaining alternatives are indexed on the argu-ment that contains the most constants or structures.For compatibility reasons with the VAM2P a balancedbinary tree is used for clause selection.The VAM1P implements two versions of last-calloptimization. The �rst variant (we call it post-optimization) is identical to that of the VAM2P. Ifthe determinacy of a clause can be determined duringrun time, the registers containing the head variablesare stored in the callers stack frame. Head variableswhich reside in the stack frame due to the lack of reg-isters are copied from the head (callee's) stack frameto the goal (caller's) stack frame.If the determinacy of a clause can be detected dur-ing compile time, the caller's and the callee's stackframes are equal. Now all uni�cations between vari-ables with the same o�set can be eliminated. If not allhead variables are held in registers reading and writ-ing variables must be done in the right order. We callthis variant of last-call optimization pre-optimization.Loop optimization is done for a determinate recur-sive call of the last and only subgoal. The restriction toa single subgoal is due to the use of registers for valuepassing and possible aliasing of variables. Uni�cationbetween two structures is performed by unifying thearguments directly. The code for the uni�cation of avariable and a structure is split into uni�cation codeand copy code.5 Optimizations5.1 Abstract InterpretationInformation about types, modes, trailing, referencechain length and aliasing of variables of a programcan be inferred using abstract interpretation. Abstractinterpretation is a technique of describing and imple-menting global
ow analysis of programs. It was in-troduced by [CC77] for data
ow analysis of imperativelanguages. This work was the basis of much of the re-cent work in the �eld of logic programming [AH87][Bru91] [Deb92] [Mel85] [RD92] [Tay89]. Abstract in-terpretation executes programs over an abstract do-main. Recursion is handled by computing �xpoints.To guarantee the termination and completeness of theexecution a suitable choice of the abstract domain isnecessary. Completeness is achieved by iterating theinterpretation until the computed information change.

Termination is assured by bounding the size of thedomain. The previous cited systems all are meta-interpreters written in Prolog and very slow.A practical implementation of abstract interpreta-tion has been done by Tan and Lin [TL92]. They mod-i�ed a WAM emulator implemented in C to executethe abstract operations on the abstract domain. Theyused this abstract emulator to infer mode, type andalias information. They analysed a set of small bench-mark programs in few milliseconds which is about 150times faster than the previous systems.5.2 Sophisticated Clause IndexingThe standard indexing method used in WAM-basedProlog systems can create two choice points. There-fore, this method has been called two-level indexing.Carlson [Car87] introduced one-level indexing by de-laying the creation of a choice point as long as possible.By discriminating �rst on the type of the �rst argu-ment and when appropriate on its principal functor,the set of potentially matching clauses is �ltered out.A choice point is then needed only for non singletonsets. In the worst case the number of indexing instruc-tions can be quadratic to the number of clauses. TheVAM2P uses pointers instead of indexing instructionsto avoid two-level indexing and to enable assert and re-tract [Kra88]. A similar strategy is used in [DMC89].The use of �eld encoded and superimposed codewords for clause indexing was proposed by Wise andPowers [WP84] and was re�ned by Colomb [CJ86][Col91]. The method is based on content addressablememory (CAM). The CAM consists of an array of bitcolumns. Logical operations on columns and lines ofthe CAM can be computed in one cycle. The resultsof operations can be held in result columns or lines.The idea is to hold hash values for the arguments of aclause in the CAM. The encoding scheme is based onm{in{n coding which sets m bits in a word of size n to1. Field encoding uses n/2{in{n coding and gives eachargument some bits of a line. Superimposed codinguses m{in{n coding, where n is the size of a whole lineand m so small that m times number of arguments isn/2. Variables are either represented by a special col-umn or by hash values with all bits set to 1 or 0. TheCAM is fast, but too special and expensive to be usedin general purpose computer systems.In [KS88] Kliger and Shapiro describe an algorithmfor the compilation of an FCP(|,:,?) procedure intoa control-
ow decision tree that analyses the possibledata states in a procedure call. This tree is translatedto a header for the corresponding machine code of thepredicate. At run time the generated instructions con-trol the
ow which �nally reaches the jump instructionpointing to the correct clause. Redundant tests in a10

process reduction attempt are eliminated and the can-didate clause is found e�ciently. The decision treemay need program space exponential in the numberof clauses and argument positions. Consequently in[KS90] they choose decision graphs rather than deci-sion trees to encode the possible traces of each predi-cate.Hickey and Mudambi [HM89] were the �rst who ap-plied decision trees as an indexing structure to Prolog.They compile a program as a whole and apply modeinference to determine which arguments are bound.The decision tree is compiled into switching instruc-tions which can be combined with uni�cation instruc-tions and primitive tests. So equivalent uni�cationswhich occur in di�erent clauses are evaluated onlyonce. Reusing the result of such a uni�cation requiresa consistent register use. A complete indexing schemegenerating algorithm is presented which takes into ac-count e�ects of aliasing and gives a consistent registeruse. They also show that the size of the switchingtree is exponential in the worst case and that �ndingan optimal switching tree is NP-complete. For caseswhere the size of the switching tree is a problem theyalso present a quadratic indexing algorithm. In gen-eral the size is no problem and the speedup is a factorof two.Palmer and Naish [PN91] and Hans [Han92] also no-ticed the potential exponential size of decision trees.They compute the decision tree for each argument sep-arately and store the set of applicable clauses for eachargument. At run time the arguments are evaluatedand the intersection of the applicable clause sets ofeach argument is computed. The disadvantage of thismethod is the high run time overhead. Furthermorethe size of the clause sets is quadratic to the number ofclauses, whereas decision trees are rarely exponentialwith respect to the number of arguments.5.3 Stack CheckingSince a Prolog system has many stacks, the run timechecking of stack over
ow can be very time consum-ing. There are two methods to reduce this overhead.The more e�ective one uses the memory managementunit of the processor to perform the stack check. Awrite protected page of memory is allocated betweenthe stacks. Catching the trap of the operating systemcan be applied to promote a more meaningful errormessage to the user. A problem with this scheme oc-curs in combination with garbage collection. The trapcan occur at a point in the program where the internalstate of the system is unclear so that it is di�cult tostart garbage collection.The second idea is to reduce the scattered over
owchecks to one check per call. It is possible to com-pute at compile time the maximum number of cells

allocated during a single call on the copy and the en-vironment stack. If these stacks grow into one another(possible only if no references are on the environmentstack) both stacks can be tested with a single over
owcheck. The maximumuse of the trail during a call cannot be determined at compile time.5.4 Instruction SchedulingModern processors can issue instructions while pre-ceding instructions are not yet �nished and can issueseveral instructions in each cycle. It can happen thatan instruction has to wait for the results of anotherinstruction. Instruction scheduling tries to reorder in-structions so that they can be executed in the shortestpossible time.The simplest instruction schedulers work on basicblocks. The most common technique is list scheduling[War90]. It is a heuristic method which yields nearlyoptimal results. It encompasses a class of algorithmsthat schedule operations one at a time from a list of op-erations to be scheduled, using priorization to resolvecon
icts. If there is a con
ict between instructions fora processor resource, this con
ict is resolved in favourof the instruction which lies on the longest executingpath to the end of the basic block. A problem withbasic block scheduling is that in Prolog basic blocksare small due to tag checks and dereferencing. So in-struction scheduling relies on global program analysisto eliminate conditional instructions and increase basicblock sizes. Just as important is alias analysis. Loadsand stores can be moved around freely only if they donot address the same memory location.A technique called trace scheduling can be appliedto schedule the instructions for a complete inference[Fis81]. A trace is a possible path through a section ofcode. In general it would be the path from the entryof a call to the exit of a call. Trace scheduling uses listscheduling, starting with the most frequent path andcontinuing with less frequent paths. During schedul-ing it can happen that an instruction has to be movedover a branch or join. In this case compensation codehas to be inserted on the other path. In Prolog the lessfrequent path is often the branch to the backtrackingcode. In such cases it is often not necessary to com-pensate the moved instruction.AcknowledgementWe express our thanks to Alexander Forst, FranzPuntigam and Jian Wang for their comments on ear-lier drafts of this paper.11

References[AH87] Samson Abramsky and Chris Hankin, edi-tors. Abstract Interpretation of DeclarativeLanguages. Ellis Horwood, 1987.[App92] Andrew W. Appel. Compiling with Contin-uations. Cambridge University Press, 1992.[Bee88] Joachim Beer. The occur-check problem re-visited. Journal of Logic programming, 5(3),1988.[Bel73] James R. Bell. Threaded code. CACM,16(6), June 1973.[BM72] Roger S. Boyer and Jay S. Moore. Thesharing of structure in theorem proving pro-grams. In Melzer B. and Michie D., editors,Machine Intelligence 7. Edinburgh Univer-sity Press, New York, 1972.[BM73] G�erard Battani and Henry Meloni. In-terpr�eteur du language PROLOG. Dea re-port, Groupe Intelligence Arti�cielle, Fac-ult�e des Sciences de Luminy, Universit�e deAix-Marseille II, 1973.[Bru82] Maurice Bruynooghe. The memory man-agement of PROLOG implementations. InKeith L. Clark and Sten-�Ake T�arnlund, ed-itors, Logic Programming. Academic Press,1982.[Bru91] Maurice Bruynooghe. A practical frame-work for the abstract interpretation of logicprograms. Journal of Logic programming,10(1), 1991.[Car87] Mats Carlsson. Freeze, indexing and otherimplementation issues in the WAM. InFourth International Conference on LogicProgramming, 1987.[CC77] Patrick Cousot and Radhia Cousot. Ab-stract interpretation: A uni�ed latticemodel for static analysis of programs byconstruction or approximation of �xpoints.In Fourth Symp. Priciples of ProgrammingLanguages. ACM, 1977.[CJ86] Robert M. Colomb and Jayasooriah. Aclause indexing system for prolog based onsuperimposed coding. Australian ComputerJournal, 18(1), 1986.[Col91] Robert M. Colomb. Enhancing uni�cationin Prolog through clause indexing. Journalof Logic programming, 10(1), 1991.

[Col93] Alain Colmerauer. The birth of Prolog.In The Second ACM-SIGPLAN History ofProgramming Languages Conference, SIG-PLAN Notices, pages 37{52. ACM, March1993.[Deb92] Saumya Debray. A simple code improve-ment scheme for Prolog. Journal of LogicProgramming, 13(1), 1992.[DMC89] Bart Demoen, Andre Marien, and AlainCallebaut. Indexing prolog clauses. InNorth American Conference on Logic Pro-gramming, 1989.[Fis81] Joseph A. Fisher. Trace scheduling: Atechnique for global microcode compaction.IEEE Transactions on Computers, C-30,1981.[Han92] Werner Hans. A complete indexing schemefor WAM-based abstract machines. InPLILP'92, LNCS 631. Springer, 1992.[HM89] Timothy Hickey and Shyam Mudambi.Global compilation of Prolog. Journal ofLogic Programming, 7(3), 1989.[Jaf84] Joxan Ja�ar. E�cient uni�cation over in�-nite terms. New Generation Computing, 2,1984.[KB92] Andreas Krall and Thomas Berger. FastProlog with a VAM1P based Prolog com-piler. In PLILP'92, LNCS. Springer 631,1992.[KN90] Andreas Krall and Ulrich Neumerkel. TheVienna abstract machine. In PLILP'90,LNCS. Springer, 1990.[Kra88] Andreas Krall. Analyse und Implemen-tierung von Prologsystemen. PhD thesis,TU Wien, 1988.[KS88] Shmuel Kliger and Ehud Shapiro. A decisiontree compilation algorithm for FCP(|,:,?).In Fifth International Conference and Sym-posium on Logic Programming, Seattle,1988.[KS90] Shmuel Kliger and Ehud Shapiro. From de-cision trees to decision graphs. In NorthAmerican Conference on Logic Program-ming, 1990.[Mel82] Christopher S. Mellish. An alternative tostructure sharing in the implementation ofa Prolog interpreter. In Keith L. Clark andSten-�Ake T�arnlund, editors, Logic Program-ming. Academic Press, 1982.12

[Mel85] Christopher S. Mellish. Some global opti-mizations for a Prolog compiler. Journal ofLogic Programming, 2(1), 1985.[PN91] Doug Palmer and Lee Naish. NUA-Prolog:An extension to the WAM for parallel An-dorra. In Eighth International Conferenceon Logic Programming, 1991.[RD92] Peter Van Roy and Alvin M. Despain. High-performance logic programming with theAquarius Prolog compiler. IEEE Computer,25(1), 1992.[Roy94] Peter Van Roy. 1983{1993: The wonderyears of sequential Prolog implementation.Journal of Logic programming, 19/20, 1994.[SH87] Peter Steenkiste and John Hennessy. Tagsand type checking in LISP: Hardware andsoftware approaches. In Second Interna-tional Conference on Architectural Supportfor Programming Languages and OperatingSystems. ACM/IEEE, October 1987.[Tar91] Paul Tarau. A compiler and a simpli�edabstract machine for the execution of bi-nary metaprograms. In Eighth InternationalConference on Logic Programming, 1991.[Tar92] Paul Tarau. WAM-optimizations in BinPro-log: Towards a realistic continuation passingProlog engine. Technical report, Universit�ede Moncton, Canada, 1992.[Tay89] Andrew Taylor. Removal of dereferencingand trailing in Prolog compilation. In SixthInternational Conference on Logic Program-ming, Lisbon, 1989.[TL92] Jichang Tan and I-Peng Lin. Compilingdata
ow analysis of logic programs. In Con-ference on Programming Language Designand Implementation, volume 27(7) of SIG-PLAN. ACM, 1992.[War77] David H.D. Warren. Applied Logic{ItsUse and Implementation as a ProgrammingTool. DAI Research Reports 39 & 40, Uni-versity of Edingburgh, 1977.[War83] David H.D. Warren. An abstract Prolog in-struction set. Technical Note 309, SRI In-ternational, 1983.[War90] Henry S. Warren. Instruction schedulingfor the IBM RISC System/6000 processor.IBM Journal of Research and Development,34(1), 1990.

[WP84] Michael J. Wise and David M.W. Powers.Indexing Prolog clauses via superimposedcode words and �eld encoded words. In In-ternational Symposium on Logic Program-ming, 1984.

13

goal argument register loading instructionsput variable Vn,Ri create a new variable, put reference into Vn and Riput value Vn,Ri move the content of Vn to Riput unsafe value Vn,Ri move the content of Vn to Ri and globalizeput constant C,Ri move the constant C to Riput nil Ri move the constant nil to Riput structure F,Ri create functor F, put structure pointer into Riput list Ri put a list pointer into Rihead argument register unifying instructionsget variable Vn,Ri move the content of Ri to Vnget value Vn,Ri unify Ri with Vnget constant C,Ri unify Ri with the constant Cget nil Ri unify Ri with the constant nilget structure F,Ri unify Ri with the functor Fget list Ri unify Ri with a list pointerstructure argument unifying instructionsunify variable Vn move next structure argument to Vnunify value Vn unify Vn with next structure argumentunify constant C unify the constant C with next structure argumentunify nil Ri unify the constant nil with next structure argumentunify void N skip next N structure argumentsprocedural instructionscall P,N call procedure P, trim environment size to Nexecute P call procedure P (last subgoal)proceed return (last instruction of fact)allocate create an environmentdeallocate remove an enviromentindexing and backtracking instructionsswitch on term V,C,L,S four-way jump depending on the type of A1switch on constant N,T hashed jump (table T with size N) on constant in A1switch on structure N,T hashed jump (table T with size N) on structure in A1try me else L create choice point to L, then fall throughretry me else L change retry address to L, then fall throughtrust me else fail remove choice point, then fall throughtry L create choice point, then jump to Lretry L change retry address, then jump to Ltrust L remove choice point, then jump to LFigure 12: WAM instruction set
14

uni�cation instructionsconst C integer or atomnil empty listlist list (followed by its arguments)struct F structure (followed by its arguments)void void variablefsttmp Xn �rst occurrence of temporary variablenxttmp Xn subsequent occurrence of temporary variablefxtvar Vn �rst occurrence of local variablenxtvar Vn subsequent occurrence of local variableresolution instructionsgoal P subgoal (followed by arguments and call/lastcall)nogoal termination of a factcut cutbuiltin I builtin predicate (followed by its arguments)termination instructionscall termination of a goallastcall termination of last goalFigure 14: VAM2P instruction set
15

