Implementation Techniques for Prolog

Andreas Krall
Institut fur Computersprachen
Technische Universitat Wien
Argentinierstrafie 8
A-1040 Wien

andi@mips.complang.tuwien.ac.at

Abstract

This paper is a short survey about currently used im-
plementation techniques for Prolog. It gives an intro-
duction to unification and resolution in Prolog and
presents the memory model and a basic execution
model. These models are expanded to the Vienna
Abstract Machine (VAM) with its two versions, the
VAMsp and the VAM;p, and the most famous ab-
stract machine, the Warren Abstract Machine (WAM).
The continuation passing style model of Prolog, binary
Prolog, leads to the BinWAM. Abstract interpretation
can be applied to gather information about a program.
This information is used in the generation of very spe-
cialized machine code and in optimizations like clause
indexing and instruction scheduling on each kind of
abstract machine.

1 Introduction

The implementation of Prolog has a long history
[Col93]. Early systems were implemented by the group
around Colmerauer in Marseille. The first system was
an interpreter written in Algol by Phillip Roussel in
1972. With this experience a more efficient and us-
able system was developed by Gérard Battani, Henry
Meloni and René Bazzoli [BM73]. Tt was a structure
sharing interpreter and had essentially the same built-
in predicates as modern Prolog systems. This system
was reasonably efficient and convinced others of the
usefulness of Prolog. Together with Fernande and Luis
Pereira David Warren developed the DEC-10 Prolog,
the first Prolog compiler [War77]. This compiler and
the portable interpreter C-Prolog spread around the
world and contributed to the success of Prolog. Fur-
ther developments are described in [Roy94] and partly
in this paper.

Section 2 presents a basic execution model for Pro-
log. This model helps to understand the Warren Ab-
stract Machine described in section 3 and the Vienna
Abstract Machine described in section 4. Section 5

gives on overview of optimizations.

2 A basic execution model

2.1 Introduction

The two basic parts of a Prolog interpreter are the
unification part and the resolution part. The resolu-
tion is quite simple. It just implements a simplified
SLD-resolution mechanism that searches the clauses
top-down and evaluates the goals from left to right.
This strategy immediately leads to the backtracking
implementation and the usual layout of the data areas
and stacks. Resolution handles stack frame allocation,
calling of procedures, and backtracking.

Unification in Prolog is defined as follows:

e two constants unify if they are equal

e two structures unify if their functors (name and
arity) are equal and all arguments unify

e two unbound variables unify and they are bound
together

e an unbound variable and a constant or structure
unify and the constant or structure i1s bound to
the variable

This definition of unification determines the data
representation. A thorough analysis of the recursive
unification algorithm pays off because the interpreter
spends most of the time in this part.

2.2 The representation of data

Since Prolog is not statically typed, the type and value
of a variable can in general be determined only at run
time. Therefore, a variable cell is divided into a value
part and a tag part which determines the kind of the
value. Fig. 1 shows a tagged value cell.

Basic data objects in Prolog are constants (atom
and integer), structures and unbound variables. Since
unbound variables can be bound together, there are

ref

functor /2 int

1 ref

functor /2 int

2 atom (]

Figure 2: representation of X = 1.2.]]

ref
functor | ./2 int 1 functor | ./2 int 2 atom (]
Figure 3: compacted representation of X = 1.2.[]
of a value cell can be determined without a memory
‘ tag H value ‘ access. Many implementations distinguish further be-

Figure 1: a tagged value cell

references between variables which are represented by
pointers. To access a variable it can be necessary to
follow the chain of references which 1s called derefer-
encing. Following tagged cells are needed in a Prolog
system:

atom unique identifier of character string

integer integer number

reference pointer to another tagged cell

unbound (self-reference pointer)

functor name and arity of a structure followed by a
tagged cell for each argument

Most Prolog implementations do not use a separate
tag for unbound variables. They represent unbound
variables by a self reference. This can eliminate a tag
check during unification of an unbound variable with
another variable. The comparison can be replaced by
an assignment. Since structures need more than one
cell the variable cell contains a reference to the functor
cell (see fig. 2). If the last cell of a structure is again a
structure and the second structure is allocated directly
after the first structure, the reference can be omitted
(see fig. 3). This compact allocation can be obtained
either at the first allocation or on garbage collection.

Another solution is a special reference tag for struc-
tures. The advantage of this method is that the type

tween the empty list (nil) and other atoms, and be-
tween lists and other structures in order to allow more
efficient implementations of lists. Big numbers and
floating point numbers are represented as structures.

The tag field can be represented in different ways. It
can be an additional memory cell of the standard word
size, or it can be a small part of a memory cell. If the
tag consists of some bits, the tag is either fixed-sized
or variable-sized and uses the most or least significant
part of the word.

Useful tag representations try to minimize the tag
extraction and insertion overhead. An example is the
use of zeroes in the least significant part of the word
as an integer tag. Addition and subtraction can so be
done without tag manipulation. Another example is
to have the stack pointer displaced by the list tag, so
that the allocation of list cells is free. A comprehensive
study of tag representations can be found in [SH87].

Problems arise if a variable occurring inside a struc-
ture should be bound to this structure. In theorem
provers in such a case the unification should fail. This
test for occurrence of the variable in a structure, called
occur check, is expensive. It is omitted in many unifi-
cation algorithms employed by Prolog systems. If such
a structure is assigned to a variable, a recursive struc-
ture is created. A simple unification algorithm would
enter an infinite loop unifying two infinite structures.
There exist linear time unification algorithms for in-
finite structures [Jaf84], but many Prolog systems do
without it and create infinite structures, but cannot
unify or print them.

fail backtracking

s(0

Y

sSuccess

Figure 4: stacks

2.3 The data areas

Variables in a Prolog clause are stored in a stack frame
similar to variables in a conventional programming
language. The SLD-resolution was chosen as the res-
olution scheme for Prolog because of its simple stack
An early
description of the memory management of Prolog can

be found in [Bru82].
The clause

a(c) :- b(C),

implementation and efficient memory use.

c(C).
can be represented by the tree in fig. b.

() AT

Figure 5: clause

Subtrees can be combined to a complete proof tree,
also called AND-OR, tree. As an example, take the
following short Prolog program:

x(X) - x(X).
a(C) :- b(C),
a(D) :- b(D),
b(s(0)).
c(s(0)).
d(s(0)).

c(C).
d(D).

The AND-OR tree is shown in fig. 6. The thick
lines belong to the AND-tree of the last solution, the
thin lines belong to the AND-tree of the first solution.
The AND-tree represents the calls of the different goals
of a clause. The OR-tree represents the alternative
solutions.

The AND-OR-tree can be represented in linearized
form by a stack (see fig. 4). Since we are only in-
terested in one solution at a time, only an AND-tree

DA COACIACD

Figure 6: proof tree

is stored in the stack. The OR-tree corresponds to
different contents of the stack between backtracking.
Fig. 4 represents the AND-OR-tree at three different
moments. The left part of the figure shows the first so-
lution, the middle shows the stack after backtracking
and the right part shows the second solution.

The cells of structures are allocated on a stack. In
fig. 4 the cells for the structure s(0) would be allo-
cated after the stack frame for b(s(0)). When the
stack frame for c¢(s(0)) is allocated, the stack frame
for b(s(0)) can be discarded if there are no references
into the discarded stack frame and if there are no struc-
ture cells on the stack. In order to allow memory reuse
the stack is divided into two parts. The environment
(or local) stack holds the stack frames and the copy
stack (global stack or heap) holds structure cells. The
dangling reference problem can be solved if references
within the environment stack are directed towards the
bottom of the stack or to the heap.

In order to facilitate the removal of stack frames,
there 1s a distinction between deterministic and inde-
terministic stack frames. A stack frame is determinis-
tic if no alternative clauses are left for this procedure.
An indeterministic stack frame is called choice point.

During unification variables in a stack frame may
become bound. On backtracking they should be reset

to unbound. An additional stack, the trail, solves this
problem. During unification the addresses of bound
variables are pushed onto the trail. On backtracking
these addresses are popped from the trail and the vari-
ables are reset to unbound. It is only necessary to trail
the addresses of variables which are closer to the bot-
tom of the stack than the last choice point. Testing
this condition is called trail check.

variables

callers goal

callers frame

alternative clauses

top of trail

top of copy stack

previous choice point

Figure 7: stack frame with choice point

Fig. 7 shows a stack frame with a choice point. A de-
terministic stack frame contains the cells for the vari-
ables, a pointer to the caller of this clause, comparable
to the return address in a conventional stack frame,
and a pointer to the stack frame of the caller. These
two pointers are usually called continuation. A choice
point additionally contains a pointer to the next al-
ternative clause, a pointer to the top of trail and a
pointer to the top of copy stack at the time the choice
point was created, and a pointer to the previous choice
point.

copy stack

!
t

trail

environment stack

!
t

code area

Figure 8: data areas

Fig. 8 shows the stacks and data areas in a Prolog
system. The check for pointer directions is simplified

if copy and environment stack grow in the same di-
rection, and the copy stack grows towards the envi-
ronment stack. The code area i1s needed to store the
program and string representations of the atoms.

To enable fast unification, only unique identifiers
of atoms are stored in variables. A hash table or
search tree is constructed over these strings to enable
fast searching when only the string representation is
known. The same concept is applied to functors (name
and arity of structures).

2.4 Simple Optimizations

2.4.1 The Representation of Terms

In the previous sections we have used a representation
of structures known as structure copying. This tech-
nique was introduced by Maurice Bruynooghe [Bru82]
and Christopher Mellish [Mel82]. Structure copying
1s now the standard implementation method because
it 1s faster than the previously used structure sharing
[BM72]. In general, structure copying also consumes
less memory than structure sharing [Mel82].

Structure sharing is based on the assumption that a
large part of a structure 1s constant and contains only
few variables. A structure is here divided into the con-
stant, part called skeleton, and a variable part, called
environment. The skeleton contains the constants and
the offsets into the environment, the environment con-
tains the variables. The skeleton is stored in the code
area, the environment in the global stack. A structure
is represented by two pointers, one to the skeleton and
one to the environment. Therefore, a variable cell has
to hold a tag and two pointers. On modern machine
architectures this means that a cell needs two words
and spends much time in decoding skeletons. Thus
only the first Prolog systems [BM73] and David War-
rens first Prolog compiler [War77] used structure shar-
ing. But in conjunction with binary Prolog (see section
3.3) structure sharing can gain in interest again.

2.4.2 Interpreters and Compilers

We did not yet address the problem of how to rep-
resent programs. A simple solution 1s to directly use
the term representation of the clauses. The interpreter
then has two instructions, the unification which oper-
ates on a whole goal and the head of the matching
clause, and the resolution which pushes whole clauses
onto the stack and does the backtracking. This simple
model is called clause or goal stacking model. Using
structure sharing for the goal level of the term leads to
the classical interpreter model with two term pointers
and two environment (frame) pointers.

Unification in general consists of assignments, condi-
tional assignments and comparisons. So it is quite nat-
ural to break the unification up into its atomic parts.
The program is analysed and instructions specialized
for the argument types of the goals are generated. The
resolution can be divided into stack allocation, clause
indexing and calling instructions. The program is rep-
resented as a sequence of such instructions which can
be either executed by an interpreter or compiled to
machine code. Such an instruction set definition to-
gether with the memory model is called an abstract
machine. Several abstract machines were defined, in
this paper only the common Warren Abstract Machine
(WAM) and the Vienna Abstract Machine (VAM) are
dealt with.

2.4.3 Varlable Classification

In the simple execution model presented above it is
assumed that during allocation of a stack frame all
variable cells are initialized to unbound. Furthermore,
for every variable occurring in a clause a cell is allo-
cated.

Variables occurring only once in a clause, called void
variables, can be bound only by a single instruction.
The value bound to this variable will never be used.
So 1t is not necessary to reserve space for such vari-
ables. Another case are variables which occur only
within one subgoal. It is not necessary to reserve the
space over different goals. Space for these temporary
variables is not reserved in the stack frame but in an
additional fixed area. To avoid dangling pointers, ref-
erences must always point from temporary variables
to the environment or copy stack.

The initialization of the stack frame and of tempo-
rary variables can be eliminated if the first occurrence
and further occurrences of a variable are distinguished.
The improvement comes not only from the elimination
of some initializations but also from the elimination of
a complex unification for the first occurrence.

2.4.4 Clause Indexing

Indexing of Prolog clauses is an optimization whose
aim 1is to reduce the number of clauses to be tried
and to avoid the creation of choice points if possible.
The results are better execution times and memory
consumption.

The most trivial optimization done by every Prolog
system 1s to try only the clauses of a procedure in-
stead of all clauses of a program during the the search
for a unifying clause. First argument indexing is more
complicated: Only clauses which unify with the goal
in the first argument are selected. For this purpose
an indexing structure is built over the clauses which

differentiates the clauses depending on their first argu-
ments. This indexing structure is either a hash table or
asearch tree. The search tree has the advantage that it
easily handles variables in the head of the clauses and
allows dynamic clause insertion. Sophisticated clause
indexing schemes are presented in section 5.2.

2.4.5 Last-call Optimization

In section 2.3 we noticed that stack frames can be
discarded after the subtree has been proved and no
alternatives are left. This check is simple. The stack
frame has to be the top-most frame. There can be
no choice point left on the stack allocated later. A
deterministic stack frame can be discarded not only
after the call of the last subgoal, but also before this
call. The general solution is to copy the stack frame
of the called clause over the stack frame of the clause
with the last call after the unification of the variables

has been done (see fig. 9).

t

called clause l

t

called clause

last call

Figure 9: general last-call optimization

This frame moving is complicated by the fact that
there could be references to the moved stack frame and
references to unbound variables in the discarded stack
Therefore, the variables have to be checked
and updated prior to the moving of the stack frame.
Instead of updating the references, the variables can
be globalized. That means that they are allocated on
the global (copy) stack. The overhead of moving the
stack frame can be avoided by copying the discarded
stack frame to registers. The new stack frame then
is directly created at the place of the discarded frame
(WAM). An other solution is to create the new stack
frame in registers and copy the registers to the place

of the discarded frame (VAM).

frame.

Last-call optimization can be generalized for every
call. A deterministic stack frame can be moved over
this part of a stack frame which is not used at later
calls. For that purpose the variables have to be or-
dered on their last occurrence. A simple stack trim-
ming without the overhead of generalized last-call op-
timization can be achieved by discarding only variables
which have their last occurrence before the call. Last-
call optimization can reduce an infinite memory con-

sumption to a finite one. So it has to be implemented
in every Prolog system. Specialized implementations
also reduce the run time because unifications can be
eliminated if variables occupy the same location.

2.4.6 Garbage Collection

In Prolog unreferenced data (garbage) can be pro-
duced both in the code area and in the copy stack. But
different kinds of garbage collection algorithms can be
applied to these data areas. At least the copy stack
needs a compacting collector which preserves the order
of the cells. An algorithm which uses pointer reversal
has the best space-time complexity. When the copy
stack becomes compacted the trail must be updated
too. Some Prolog garbage collectors collect only part
of the stack due to wrong interpretations of uninitial-
ized variables. Unused data in the code area is easily
detected by the retract procedure. If the code is not
moved, no updates of the environment stack are nec-
essary.

3 The Warren Abstract Ma-
chine

Six years after the development of his successful com-
piler for the DEC-10 David Warren presented a new
abstract Prolog instruction set [War83]. This New
Prolog Engine has become very popular under the
name Warren Abstract Machine (WAM). Tt has been
the basis of nearly all Prolog systems developed after
the year 1983. The aim of the WAM was to serve as
a simple and efficient implementation model for byte
code interpreters as well as machine code generating
compilers. So the first implementation was a structure
copying byte code emulator.

3.1 The Original Warren Abstract Ma-

chine

The WAM is closer to the execution model of impera-
tive languages than all other implementation models.
The main idea is the division of the unification into
two parts, the copying of the arguments of the calling
goal into argument registers and the unification of the
argument registers with the arguments of the head of
the called clause. This is very similar to the parameter
passing in imperative languages like C. The first pa-
rameters are passed via registers. If the registers are
exhausted, the stack can be used for additional param-
eters. The partitioning of the unification reduces the
number of instruction pointers to one and the number
of frame pointers to one, if all parameters can be kept
in registers.

This parameter passing is mirrored in the instruc-
tion set. put instructions copy the arguments of the
goal into the registers, get instructions unify the reg-
isters with the arguments of the head. unify instruc-
tions handle the unification of structure arguments.
They can be executed in two modes. In write mode
a new structure is created, in read mode the struc-
ture arguments are unified with the arguments of the
head. procedural instructions manage the stack and
execute procedure calls. indering instructions build
the indexing structure. The data areas are identical
to the previously presented simple model (see fig. 10),
but the choice point is quite different. The original
WAM added a push down list used as a stack for the
recursive unification procedure. But in a byte code
emulator this push down list is hidden in the run time
stack of the implementation language. In a machine
code generating compiler the environment or the copy
stack can be used for this purpose.

trail

stack

heap

t

code area

«— CP

Figure 10: data areas of the WAM

Since all variables in the stack frame are copied into
the argument registers before calling a procedure, last-
call optimization is simplified. The stack frame of the
called procedure can be created directly at the place
of the stack frame of a deterministic caller. To avoid
the overhead of recreating the argument registers on
backtracking using put instructions, the argument reg-
isters are saved in the choice point. This permits last-
call optimization also in these cases where the called
procedure has alternative clauses. Furthermore, this
leads to a relaxed definition of temporary variables.
The head, the first subgoal and all builtin predicates
between head and first subgoal count as one subgoal

for the classification of temporary variables. Unfor-
tunately, the problem of dangling references is not
solved. Therefore, there are special versions of put
instructions which check if the last occurrence of a
variable in the last subgoal has a reference to the dis-
carded stack frame. Such variables are called unsafe
variables and are allocated on the copy stack.

After this introduction we can present the machine

registers of the WAM:

P program counter

CP continuation program counter

E current environment pointer

B most recent choice point

A top of stack (not strictly necessary)
TR top of trail

H top of heap

S structure pointer

A1,A2,... argument registers

X1,X2,... temporary registers

The continuation program counter is a register
which caches the pointer to the continuation goal. It
can be compared with the return address in an imper-
ative language. Holding this value in a register speeds
up the execution of the leaf procedures. The environ-
ment pointer is comparable to the frame pointer in an
imperative language. The original WAM contained a
HB register (heap backtrack point) which caches the
top of heap corresponding to the most recent choice
point. It is used to check if a variable has to be trailed.
In general it is faster to take this value directly from
the choice point than to update this register at every
choice point creation and deallocation. The structure
pointer S is used during the unification of the argu-
ments of structures. Also named different, argument
registers and temporary registers share the same pool
of registers. Register allocation tries to use the regis-
ters in such an order that the number of instructions
can be reduced.

The environment contains the local variables and
the continuation code pointer CP’ and a pointer to the
previous environment E’. The choice point is shown in
fig. 11. B>, H’>, TR’, CP’, E’ and the Ai’ are copies of
the values of the machine registers before the creation
of the choice point. The value BP of the retry pointer
is supplied by the instruction which creates the choice
point and points to the code of the next alternative
clause.

Fig. 12 shows the complete WAM instruction set.
Vn describes either temporary or local variables. Ri
designates the argument registers. C is a constant (in-
teger or atom) in its internal representation and F is
the functor of a structure which contains the name and
the arity of the structure.

B’ |previous choice point

v’ top of heap

TR’ |top of trail

BP retry program pointer

CP’ |continuation program pointer
E’ environment pointer
A1’

argument registers

An’

Figure 11: choice point in the WAM

3.2 Optimizing the basic WAM

In an interpreter the execution mode of unify instruc-
tion is hidden in the state of the interpreter. There
are just two instruction decoding loops, one for the
read mode and one for the write mode. In a machine
code generating compiler the mode has to become ex-
plicit. The simple solution of a flag register, which is
checked in every instruction, is not very efficient. The
first step is to divide the unify instructions in write
and read instructions. The optimal solution, which
splits all paths for read and write mode, has exponen-
tial code size. Linear space is consumed if the mode
flag is only tested once per structure. This scheme
can be improved if write mode is propagated down a
nested structure and read mode is propagated up. A
more detailed description and further references can

be found in [Roy94].

In the WAM it is very common that unbound vari-
ables are bound to a value shortly after their initial-
ization. This happens e.g. if a variable has its first oc-
currence in the subgoal which calls a procedure with
a constant argument. The variable has to be created
in memory and needs to be dereferenced and trailed
before being bound. Beer [Bee88] recognized that this
i1s time consuming and additionally would require an
occur check if implemented. He developed the idea of
an uninitialized variable.

An uninitialized variable is defined to be an un-
bound variable that is unaliased, that means it is not
shared with another variable. Such a variable gets a
special reference tag. Creation of an uninitialized vari-
able is simpler, it does not have to be dereferenced or
trailed. Binding reduces to a single store operation.
It 1s necessary to keep track of such variables at run
time. If they remain uninitialized after the execution
of the subgoal they have been created, they must be
initialized to unbound.

3.3 Binary Prolog

The key 1dea of binary Prolog is the transformation of
clauses to binary clauses using a continuation passing
style. BinProlog, an efficient emulator for binary Pro-
log has been developed by Paul Tarau [Tar91][Tar92].
The implementation is based on the WAM which can
be greatly simplified in that case.

In binary Prolog a clause has at most one subgoal.
A clause can be transformed to a binary clause by
representing the call of subgoals explicitely using con-
tinuations [App92]. For that purpose the first subgoal
is given an additional argument containing the suc-
cess continuation. The success continuation is the list
of subgoals to be executed if the first subgoal is ex-
ecuted successfully. The head is given an additional
argument which passes on the continuation. A fact
is transformed to a clause, whose subgoal executes a
meta-call of the continuation. For example, the fol-
lowing clauses

nrev([1,[1).
nrev([HIT],R) :-
nrev(T,L), append(L,[H],R).

are transformed into

nrev([],[],Cont) :- call(Cont).
nrev([H|T],R,Cont) :-
nrev(T,L,append(L, [H],R,Cont)).

Compiling binary Prolog to the WAM it appears
that the environment stack is superfluous since all vari-
ables are temporary. Therefore, all instruction deal-
ing with local variables or managing the stack can be
eliminated. So a small and efficient interpreter can be
implemented. But this simplification has a big prob-
lem. The continuation, which contains also the vari-
ables previously contained in the stack frame, 1s stored
on the copy stack. This means that there is no last-
call optimization. So for a working BinWAM an ef-
ficient garbage collector is crucial. In some sense the
BinWAM can be seen as mixture of a clause stacking

model with the WAM.

4 The Vienna Abstract Ma-
chine

4.1 Introduction

The VAM has been developed at the TU Wien as an
alternative to the WAM. The WAM divides the unifi-
cation process into two steps. During the first step the
arguments of the calling goal are copied into argument

registers and during the second step the values in the
argument registers are unified with the arguments of
the head of the called predicate. The VAM eliminates
the register interface by unifying goal and head argu-
ments in one step. The VAM can be seen as a partial
evaluation of the call. There are two variants of the

VAM, the VAMp and the VAMsp.

A complete description of the VAMyp can be found
in [KN90]. Here we give a short introduction to the
VAMsp which helps to understand the VAMip and
the compilation method. The VAMap (VAM with two
instruction pointers) is well suited for an intermedi-
ate code interpreter implemented in C or in assembly
language using direct threaded code [Bel73]. The goal
instruction pointer points to the instructions of the
calling goal, the head instruction pointer points to the
instructions of the head of the called clause. During an
inference the VAMop fetches one instruction from the
goal, one instruction from the head, combines them
and executes the combined instruction. Because infor-
mation about the calling goal and the called head is
available at the same time, more optimizations than
in the WAM are possible. The VAM features cheap
backtracking, needs less dereferencing and trailing, has
smaller stack sizes and implements a faster cut.

The VAM;p (VAM with one instruction pointer)
uses one instruction pointer and is well suited for na-
tive code compilation. It combines instructions at
compile time and supports additional optimizations
like instruction elimination, resolving temporary vari-
ables during compile time, extended clause indexing,
fast last-call optimization, and loop optimization.

4.2 The VAM,p

Like the WAM, the VAMsp uses three stacks. Stack
frames and choice points are allocated on the envi-
ronment stack, structures and unbound variables are
stored on the copy stack, and bindings of variables
are marked on the trail. The intermediate code of the
clauses is held in the code area. The machine registers
are the goalptr and headptr (pointer to the code of the
calling goal and of the called clause respectively), the
goalframeptr and the headframeptr (frame pointer of
the clause containing the calling goal and of the called
clause respectively), the top of the environment stack,
the top of the copy stack, the top of the trail, and the
pointer to the last choice point.

Values are stored together with a tag in one machine
word. We distinguish integers, atoms, nil, lists, struc-
tures, unbound variables and references. Unbound
variables are allocated on the copy stack to avoid dan-
gling references and the unsafe variables of the WAM.
Furthermore it simplifies the check for the trailing of
bindings. Structure copying is used for the represen-
tation of structures.

copy stack
l copyptr
T trailptr
trail

l«— choicepntptr

environment stack [«— goalframeptr

«— headframeptr

!
t

code area

l«— goalptr

l«— headptr

Figure 13: VAM data areas

Variables are classified into void, temporary and lo-
cal variables. Void variables occur only once in a clause
and need neither storage nor unification instructions.
Different to the WAM, temporary variables occur only
in the head or in one subgoal, counting a group of
builtin predicates as one goal. The builtin predicates
following the head are treated as belonging to the
head. Temporary variables need storage only during
one inference and can be held in registers. All other
variables are local and are allocated on the environ-
ment stack. During an inference the variables of the
head are held in registers. Prior to the call of the first
subgoal the registers are stored in the stack frame. To
avoid initialisation of variables we distinguish between
their first occurrence and further occurrences.

The clauses are translated to the VAMsp abstract
machine code (see fig. 14). This translation is sim-
ple due to the direct mapping between source code
and VAMsp code. During run time a goal and a head
instruction are fetched and the two instructions are
combined. Unification instructions are combined with
unification instructions and resolution instructions are
combined with termination instructions. A different
encoding is used for goal unification instructions and
head unification instructions. To enable fast encod-
ing the instruction combination is solved by adding
the instruction codes and, therefore, the sum of two
instruction codes must be unique.

4.3 The VAM;p

The VAM;p has been designed for native code compi-
lation. A complete description can be found in [KB92].
The main difference to the VAMsp is that instruction
combination is done during compile time instead of

variables local variables
goalptr’ continuation code pointer
goalframeptr’ | continuation frame pointer
Figure 15: stack frame
trailptr’ copy of top of trail
copyptr’ copy of top of copy stack
headptr’ alternative clauses
goalptr’ restart code pointer (VAMyp)
goalframeptr’ | restart frame pointer
choicepntptr’ | previous choice point

Figure 16: choice point

run time. The representation of data, the stacks and
stack frames (see fig. 15) are identical to the VAMgp.
The VAMip has one machine register less than the
VAMyp. The two instruction pointers goalptr and
headptr are replaced by one instruction pointer called
codeptr. Therefore, the choice point (see fig. 16) is
also smaller by one element since there is only one
instruction pointer. The pointer to the alternative
clauses now directly points to the code of the remain-
ing matching clauses.

Due to instruction combination during compile time
it 1s possible to eliminate instructions, to eliminate all
temporary variables and to use an extended clause in-
dexing, a fast last-call optimization and loop optimiza-
tion. In WAM based compilers abstract interpretation
is used to derive information about mode, type and
reference chain length. Some of this information is lo-
cally available in the VAM1p due to the availability of
the information of the calling goal.

All constants and functors are combined and eval-
uated to true or false. For a true result no code is
emitted. All clauses which have an argument evalu-
ated to false are removed from the list of alternatives.
In general no code is emitted for a combination with a
void variable. In a combination of a void variable with
the first occurrence of a local variable the next occur-

rence of this variable is treated as the first occurrence.

Temporary variables are eliminated completely. The
unification partner of the first occurrence of a tempo-
rary variable is unified directly with the unification
partners of the further occurrences of the temporary
variable. If the unification partners are constants, no
code is emitted at all. Flattened code is generated for
structures. The paths for unifying and copying struc-
tures 1s split and different code 1s generated for each
path. This makes it possible to reference each argu-
ment of a structure as offset from the top of the copy
stack or as offset from the base pointer of the struc-

ture. If a temporary variable is contained in more
than one structure, combined unification or copying
instructions are generated.

All necessary information for clause indexing is com-
puted during compile time. Some alternatives are
eliminated because of failing constant combinations.
The remaining alternatives are indexed on the argu-
ment that contains the most constants or structures.
For compatibility reasons with the VAMop a balanced
binary tree is used for clause selection.

The VAMip implements two versions of last-call
optimization. The first variant (we call it post-
optimization) is identical to that of the VAMyp. If
the determinacy of a clause can be determined during
run time, the registers containing the head variables
are stored in the callers stack frame. Head variables
which reside in the stack frame due to the lack of reg-
isters are copied from the head (callee’s) stack frame
to the goal (caller’s) stack frame.

If the determinacy of a clause can be detected dur-
ing compile time, the caller’s and the callee’s stack
frames are equal. Now all unifications between vari-
ables with the same offset can be eliminated. If not all
head variables are held in registers reading and writ-
ing variables must be done in the right order. We call
this variant of last-call optimization pre-optimization.

Loop optimization is done for a determinate recur-
sive call of the last and only subgoal. The restriction to
a single subgoal is due to the use of registers for value
passing and possible aliasing of variables. Unification
between two structures is performed by unifying the
arguments directly. The code for the unification of a
variable and a structure is split into unification code
and copy code.

5 Optimizations

5.1 Abstract Interpretation

Information about types, modes, trailing, reference
chain length and aliasing of variables of a program
can be inferred using abstract interpretation. Abstract
interpretation is a technique of describing and imple-
menting global flow analysis of programs. It was in-
troduced by [CCT7] for dataflow analysis of imperative
languages. This work was the basis of much of the re-
cent work in the field of logic programming [AH87]
[Bru91] [Deb92] [Mel85] [RD92] [Tay89]. Abstract in-
terpretation executes programs over an abstract do-
main. Recursion is handled by computing fixpoints.
To guarantee the termination and completeness of the
execution a suitable choice of the abstract domain is
necessary. Completeness is achieved by iterating the
interpretation until the computed information change.

10

Termination is assured by bounding the size of the
domain. The previous cited systems all are meta-
interpreters written in Prolog and very slow.

A practical implementation of abstract interpreta-
tion has been done by Tan and Lin [TL92]. They mod-
ified a WAM emulator implemented in C to execute
the abstract operations on the abstract domain. They
used this abstract emulator to infer mode, type and
alias information. They analysed a set of small bench-
mark programs in few milliseconds which is about 150
times faster than the previous systems.

5.2 Sophisticated Clause Indexing

The standard indexing method used in WAM-based
Prolog systems can create two choice points. There-
fore, this method has been called two-level indexing.
Carlson [Car87] introduced one-level indexing by de-
laying the creation of a choice point as long as possible.
By discriminating first on the type of the first argu-
ment and when appropriate on its principal functor,
the set of potentially matching clauses is filtered out.
A choice point is then needed only for non singleton
sets. In the worst case the number of indexing instruc-
tions can be quadratic to the number of clauses. The
VAM4p uses pointers instead of indexing instructions
to avoid two-level indexing and to enable assert and re-
tract [Kra88]. A similar strategy is used in [DMC89].

The use of field encoded and superimposed code
words for clause indexing was proposed by Wise and
Powers [WP84] and was refined by Colomb [CJ86]
[Col91]. The method is based on content addressable
memory (CAM). The CAM consists of an array of bit
columns. Logical operations on columns and lines of
the CAM can be computed in one cycle. The results
of operations can be held in result columns or lines.
The idea 1s to hold hash values for the arguments of a
clause in the CAM. The encoding scheme is based on
m-in—n coding which sets m bits in a word of size n to
1. Field encoding uses n/2—in—n coding and gives each
argument some bits of a line. Superimposed coding
uses m—in—n coding, where n is the size of a whole line
and m so small that m times number of arguments is
n/2. Variables are either represented by a special col-
umn or by hash values with all bits set to 1 or 0. The
CAM is fast, but too special and expensive to be used
in general purpose computer systems.

In [KS88] Kliger and Shapiro describe an algorithm
for the compilation of an FCP(—,:,?) procedure into
a control-flow decision tree that analyses the possible
data states in a procedure call. This tree is translated
to a header for the corresponding machine code of the
predicate. At run time the generated instructions con-
trol the flow which finally reaches the jump instruction
pointing to the correct clause. Redundant tests in a

process reduction attempt are eliminated and the can-
didate clause is found efficiently. The decision tree
may need program space exponential in the number
of clauses and argument positions. Consequently in
[KS90] they choose decision graphs rather than deci-
sion trees to encode the possible traces of each predi-
cate.

Hickey and Mudambi [HM89] were the first who ap-
plied decision trees as an indexing structure to Prolog.
They compile a program as a whole and apply mode
inference to determine which arguments are bound.
The decision tree is compiled into switching instruc-
tions which can be combined with unification instruc-
tions and primitive tests. So equivalent unifications
which occur in different clauses are evaluated only
once. Reusing the result of such a unification requires
a consistent register use. A complete indexing scheme
generating algorithm is presented which takes into ac-
count effects of aliasing and gives a consistent register
use. They also show that the size of the switching
tree is exponential in the worst case and that finding
an optimal switching tree is NP-complete. For cases
where the size of the switching tree is a problem they
also present a quadratic indexing algorithm. In gen-
eral the size is no problem and the speedup is a factor
of two.

Palmer and Naish [PN91] and Hans [Han92] also no-
ticed the potential exponential size of decision trees.
They compute the decision tree for each argument sep-
arately and store the set of applicable clauses for each
argument. At run time the arguments are evaluated
and the intersection of the applicable clause sets of
each argument is computed. The disadvantage of this
method is the high run time overhead. Furthermore
the size of the clause sets is quadratic to the number of
clauses, whereas decision trees are rarely exponential
with respect to the number of arguments.

5.3 Stack Checking

Since a Prolog system has many stacks, the run time
checking of stack overflow can be very time consum-
ing. There are two methods to reduce this overhead.
The more effective one uses the memory management
unit of the processor to perform the stack check. A
write protected page of memory is allocated between
the stacks. Catching the trap of the operating system
can be applied to promote a more meaningful error
message to the user. A problem with this scheme oc-
curs in combination with garbage collection. The trap
can occur at a point in the program where the internal
state of the system is unclear so that it is difficult to
start garbage collection.

The second 1dea 1s to reduce the scattered overflow
checks to one check per call. It is possible to com-
pute at compile time the maximum number of cells

11

allocated during a single call on the copy and the en-
vironment stack. If these stacks grow into one another
(possible only if no references are on the environment
stack) both stacks can be tested with a single overflow
check. The maximum use of the trail during a call can
not be determined at compile time.

5.4 Instruction Scheduling

Modern processors can issue instructions while pre-
ceding instructions are not yet finished and can issue
several instructions in each cycle. It can happen that
an instruction has to wait for the results of another
instruction. Instruction scheduling tries to reorder in-
structions so that they can be executed in the shortest
possible time.

The simplest instruction schedulers work on basic
blocks. The most common technique is list scheduling
[War90]. Tt is a heuristic method which yields nearly
optimal results. It encompasses a class of algorithms
that schedule operations one at a time from a list of op-
erations to be scheduled, using priorization to resolve
conflicts. If there is a conflict between instructions for
a processor resource, this conflict is resolved in favour
of the instruction which lies on the longest executing
path to the end of the basic block. A problem with
basic block scheduling is that in Prolog basic blocks
are small due to tag checks and dereferencing. So in-
struction scheduling relies on global program analysis
to eliminate conditional instructions and increase basic
block sizes. Just as important is alias analysis. Loads
and stores can be moved around freely only if they do
not address the same memory location.

A technique called trace scheduling can be applied
to schedule the instructions for a complete inference
[Fis81]. A trace is a possible path through a section of
code. In general it would be the path from the entry
of a call to the exit of a call. Trace scheduling uses list
scheduling, starting with the most frequent path and
continuing with less frequent paths. During schedul-
ing it can happen that an instruction has to be moved
over a branch or join. In this case compensation code
has to be inserted on the other path. In Prolog the less
frequent path is often the branch to the backtracking
code. In such cases it is often not necessary to com-
pensate the moved instruction.

Acknowledgement

We express our thanks to Alexander Forst, Franz
Puntigam and Jian Wang for their comments on ear-
lier drafts of this paper.

References

[AHST]

[App92]

[Beed8]

[Bel73]

[BM72]

[BM73]

[Bru82]

[Bru9l]

[Car87]

[CCTT]

[CI86]

[Col91]

Samson Abramsky and Chris Hankin, edi-
tors. Abstract Interpretation of Declarative
Languages. Ellis Horwood, 1987.

Andrew W. Appel. Compiling with Contin-
uations. Cambridge University Press, 1992.

Joachim Beer. The occur-check problem re-
visited. Journal of Logic programming, 5(3),
1988.

James R. Bell.
16(6), June 1973.

Threaded code. CACM,

Roger S. Boyer and Jay S. Moore. The
sharing of structure in theorem proving pro-
grams. In Melzer B. and Michie D., editors,
Machine Intelligence 7. Edinburgh Univer-
sity Press, New York, 1972.

Gérard Battani and Henry Meloni. In-
terpréteur du language PROLOG. Dea re-
port, Groupe Intelligence Artificielle, Fac-
ulté des Sciences de Luminy, Université de

Aix-Marseille I, 1973.

Maurice Bruynooghe. The memory man-
agement of PROLOG implementations. In
Keith L. Clark and Sten-Ake Tarnlund, ed-
itors, Logic Programming. Academic Press,

1982.

Maurice Bruynooghe. A practical frame-
work for the abstract interpretation of logic
programs. Journal of Logic programming,

10(1), 1991

Mats Carlsson. Freeze, indexing and other
implementation issues in the WAM. In
Fourth International Conference on Logic
Programming, 1987.

Patrick Cousot and Radhia Cousot. Ab-
stract interpretation: A unified lattice
model for static analysis of programs by
construction or approximation of fixpoints.
In Fourth Symp. Priciples of Programming
Languages. ACM, 1977.

Robert M. Colomb and Jayasooriah. A
clause indexing system for prolog based on
superimposed coding. Australian Computer

Journal, 18(1), 1986.

Robert M. Colomb. Enhancing unification
in Prolog through clause indexing. Journal
of Logic programming, 10(1), 1991.

[Col93]

[Deb92]

[DMC89]

[Fis81]

[Han92]

[HM89]

[Jaf84]

[KB92]

[KN9O]

[Kra88]

[KS88]

[KS90]

[Mel82]

Alain Colmerauer. The birth of Prolog.
In The Second ACM-SIGPLAN History of
Programmaing Languages Conference, SIG-
PLAN Notices, pages 37-52. ACM, March
1993.

Saumya Debray. A simple code improve-
ment scheme for Prolog. Journal of Logic
Programming, 13(1), 1992.

Bart Demoen, Andre Marien, and Alain
Callebaut. Indexing prolog clauses. In
North American Conference on Logic Pro-
gramming, 1989.

Joseph A. Fisher. Trace scheduling: A
technique for global microcode compaction.
IEEE Transactions on Computers, C-30,
1981.

Werner Hans. A complete indexing scheme
for WAM-based abstract machines. In
PLILP’92, LNCS 631. Springer, 1992.

Timothy Hickey and Shyam Mudambi.
Global compilation of Prolog. Journal of
Logic Programming, 7(3), 1989.

Joxan Jaffar. Efficient unification over infi-
nite terms. New Generation Computing, 2,

1984.

Andreas Krall and Thomas Berger. Fast
Prolog with a VAM;p based Prolog com-
piler. In PLILP’92 LNCS. Springer 631,
1992.

Andreas Krall and Ulrich Neumerkel. The
Vienna abstract machine. In PLILP’90,
LNCS. Springer, 1990.

Andreas Krall. Analyse und Implemen-
tierung von Prologsystemen. PhD thesis,

TU Wien, 1988.

Shmuel Kliger and Ehud Shapiro. A decision
tree compilation algorithm for FCP(—,:,7).
In Fifth International Conference and Sym-
postum on Logic Programming, Seattle,

1988.

Shmuel Kliger and Ehud Shapiro. From de-
cision trees to decision graphs. In North
American Conference on Logic Program-
ming, 1990.

Christopher S. Mellish. An alternative to
structure sharing in the implementation of
a Prolog interpreter. In Keith L. Clark and
Sten-Ake Tarnlund, editors, Logic Program-
ming. Academic Press, 1982.

[Mel85]

[PNO1]

[RD92]

[Roy94]

[SHS7]

[Tar91]

[Tar92]

[Tay89]

[TL92]

[War77]

[War83]

[War90]

Christopher S. Mellish. Some global opti-
mizations for a Prolog compiler. Journal of
Logic Programming, 2(1), 1985.

Doug Palmer and Lee Naish. NUA-Prolog:
An extension to the WAM for parallel An-
dorra. In FEighth International Conference
on Logic Programming, 1991.

Peter Van Roy and Alvin M. Despain. High-
performance logic programming with the
Aquarius Prolog compiler. ITEEE Computer,
25(1), 1992.

Peter Van Roy. 1983-1993: The wonder
years of sequential Prolog implementation.
Journal of Logic programming, 19/20, 1994.

Peter Steenkiste and John Hennessy. Tags
and type checking in LISP: Hardware and
software approaches. In Second Interna-
tional Conference on Architectural Support
for Programming Languages and Operating

Systems. ACM/IEEE, October 1987.

Paul Tarau. A compiler and a simplified
abstract machine for the execution of bi-
nary metaprograms. In Eighth International

Conference on Logic Programmang, 1991.

Paul Tarau. WAM-optimizationsin BinPro-
log: Towards a realistic continuation passing
Prolog engine. Technical report, Université
de Moncton, Canada, 1992.

Andrew Taylor. Removal of dereferencing
and trailing in Prolog compilation. In Sizth
International Conference on Logic Program-
ming, Lisbon, 1989.

Jichang Tan and I-Peng Lin. Compiling
dataflow analysis of logic programs. In Con-
ference on Programming Language Design
and Implementation, volume 27(7) of SIG-
PLAN. ACM, 1992.

David H.D. Warren. Applied Logic—Its
Use and Implementation as a Programming
Tool. DAI Research Reports 39 & 40, Uni-
versity of Edingburgh, 1977.

David H.D. Warren. An abstract Prolog in-
struction set. Technical Note 309, SRI In-
ternational, 1983.

Henry S. Warren. Instruction scheduling
for the IBM RISC System/6000 processor.
IBM Journal of Research and Development,
34(1), 1990.

13

[WP84]

Michael J. Wise and David M.W. Powers.
Indexing Prolog clauses via superimposed
code words and field encoded words. In In-

ternational Symposium on Logic Program-
ming, 1984.

goal argument register loading instructions

put_variable Vn,Ri

create a new variable, put reference into Vn and Ri

put_value Vn,Ri

move the content of Vn to Ri

put_unsafe_value Vn,Ri

move the content of Vn to Ri and globalize

put_constant C,Ri

move the constant C to Ri

putnil Ri move the constant nil to Ri
put_structure F,Ri create functor F, put structure pointer into Ri
put_list Ri put a list pointer into Ri

head argument register unifying instructions

get_variable Vn,Ri

move the content of Ri to Vn

get_value Vn,Ri

unify Ri with Vn

get_constant C,Ri

unify Ri with the constant C

getnil Ri unify Ri with the constant nil
get_structure F,Ri unify Ri with the functor F
get list Ri unify Ri with a list pointer

structure argument unifying instructions

unify _variable Vn

move next structure argument to Vn

unify value Vn

unify Vn with next structure argument

unify_constant C

unify the constant C with next structure argument

unify nil Ri

unify the constant nil with next structure argument

unify void N

skip next N structure arguments

procedural instructions

call P,N

call procedure P, trim environment size to N

execute P

call procedure P (last subgoal)

proceed return (last instruction of fact)
allocate create an environment
deallocate remove an enviroment

indexing and backtracking instructions

switch_on_term V,C,L,S

four-way jump depending on the type of Al

switch_on_constant N,T

hashed jump (table T with size N) on constant in A1

switch_on_structure N,T

hashed jump (table T with size N) on structure in A1

try me_else L

create choice point to L, then fall through

retryme_else L

change retry address to L, then fall through

trust_me_else fail

remove choice point, then fall through

try L create choice point, then jump to L
retry L change retry address, then jump to L
trust L remove choice point, then jump to L

Figure 12: WAM instruction set

14

unification instructions

const C integer or atom

nil empty list

list list (followed by its arguments)

struct F | structure (followed by its arguments)

void void variable

fsttmp Xn | first occurrence of temporary variable
nxttmp Xn | subsequent occurrence of temporary variable

fxtvar Vn

first occurrence of local variable

nxtvar Vn

subsequent occurrence of local variable

resolution instructions

goal P subgoal (followed by arguments and call/lastcall)

nogoal termination of a fact

cut cut

builtin I | builtin predicate (followed by its arguments)
termination instructions

call termination of a goal

lastcall | termination of last goal

Figure 14: VAMsp instruction set

15

