
Incremental Flow AnalysisAndreas Krall and Thomas BergerInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wienfandi,tbg@mips.complang.tuwien.ac.atAbstractAbstract interpretation is a technique for 
ow analysis widely used in the area oflogic programming. Until now it has been used only for the global compilation ofProlog programs. But the programming language Prolog enables the programmer tochange the program during run time using the built-in predicates assert and retract.To support the generation of e�cient code for programs using these dynamic databasepredicates we extended abstract interpretation to be executed incrementally. The aimof incremental abstract interpretation is to gather program information with minimalreinterpretation at a program change. In this paper we describe the implementationof incremental abstract interpretation and the integration in our VAM1P based Prologcompiler. Preliminary results show that incremental global compilation can achievethe same optimization quality as global compilation with little additional cost.1 IntroductionSince several years we do research in the area of implementation of logic programming lan-guages. To support fast interpretation and compilation of Prolog programs we developedthe VAM2P (Vienna Abstract Machine with two instruction pointers) [Kra87] [KN90] andthe VAM1P (Vienna Abstract Machine with one instruction pointer) [KB92]. Althoughthe VAM manages more information about a program than the WAM (Warren AbstractMachine) [War83], it is necessary to add 
ow analysis for type inference and referencechain length calculation. Extending our global VAM1P compiler by support for dynamicdatabase predicates it became apparent that the data structures necessary for storingthe information for dynamic compilation were su�cient to integrate incremental globalabstract interpretation.In chapter 2 we present our approach to global data 
ow analysis and show how it canbe solved incrementally. Chapter 3 contains details of our prototype implementation andchapter 4 presents some preliminary results.2 Abstract InterpretationAbstract interpretation is a technique of describing and implementing global 
ow analysisof programs. It was introduced by [CC77] for data 
ow analysis of imperative languages.



any

bound

atomic

free

nil atom integer

list struct

Figure 1: Abstract domain for type and mode inferenceThis work was the basis of much of the recent work in the �eld of logic programming [AH87][Bru91] [Deb92] [Mel85] [RD92] [Tay89]. Abstract interpretation executes programs overan abstract domain. Recursion is handled by computing �x points. To guarantee thetermination and completeness of the execution a suitable choice of the abstract domain isnecessary. Usually the elements of this domain form a lattice.2.1 Global Abstract InterpretationWe do gather information about mode, type and reference chain length of variables. Trail-ing information is not handled by the abstract interpreter because the VAM does trail moreseldom than the WAM. Fig. 1 describes the lattice of the abstract domain types. Eachtype represents a set of terms:any is the top element of the domainfree describes an unbound variable and contains a reference to all aliased variablesbound describes non-variable termsatomic is the supertype of nil, atom and integerlist is a non empty list (it contains the types of its arguments)struct is a structure (information about the functor and arguments is contained)nil represents the empty listatom is the set of all atomsinteger is the set of all integer numbersPossible in�nite nesting of compound terms makes the handling of the types list andstruct di�cult. Therefore, interpretation stops after the allowed limit of nested compoundterms is reached. To gather useful information about recursive data structures a recursivetype is introduced which contains also the information about the termination type. Thetype list(int,rec(nil)) describes the type list of integer.Each type of the domain additionally contains information about the reference chainlength. Valid values for this length are 0, 1 and unknown. A length of e.g. 0 will beextracted during the uni�cation of a new variable (the �rst occurrence) and a constant2



term, 1 is typical for the uni�cation of two di�erent new variables (the compiler generatesthe macro �rstvar �rstvar, which generates a free cell on the copy stack and makes bothvariables a reference to that cell). If the length of the reference chain is not decidable, itslength information gets the value unknown.We use a top-down approach for the analysis to extract the desired information. Dif-ferent calls to the same clause are handled separately to get the exact types. The gatheredinformation is a description of the living variables. Recursive calls of a clause are com-puted until a �x point for the gathered information is reached. If a call is computed thesecond time there exists already information about this call. Now the old information iscompared with the new one and the interpretation stops for this clause at this point, ifthe new information is more special, i.e. the union of all the old types and the new typesis equal to the old types. The gathered information has reached a �x point.2.2 Incremental Abstract InterpretationIn most Prolog systems the modi�cation of the database leads to a mixture of interpretedand compiled code. Optimization information is not available for dynamically assertedclauses. In some systems it is not allowed to assert clauses for a predicate which is notdeclared to be dynamic. We wanted to support dynamic database predicates without anyloss of optimization information. The idea of incremental abstract interpretation is toget this information with minimal reinterpretation. Changing the database by assertingor retracting clauses causes a local analysis of all procedures whose variable domains arechanged. In the worst case the assertion of a new clause can take e�ect in the abstractreinterpretation and recompilation of the whole program.To support incremental abstract interpretation it is necessary to store additional in-formation with the compiled code in the code area. This information consists of:� the intermediate code of all clauses� description of variables and their domains� table containing the entry points for the clause codes� table containing the callers (parents) of a clauseIncremental abstract interpretation starts the local analysis with all the callers ofthe modi�ed procedure and interpret the intermediate code of all dependent procedures.Interpretation is stopped if the new domains are equal to the domains derived by theprevious analysis. If the domain has not changed, new code is generated only for thechanged part of the program. If the domain has been changed and the new domain is asubtype of the old domain, the previously generated code �ts for the changed programpart. The information derived for the program before the change is less exact than thepossibly derivable information. Incremental interpretation can stop now. If the newdomain is instead a supertype of the old one, the assertion of the new clause made thepossible information less precise and the old code wrong for the new program. Therefore,incremental abstract interpretation must further analyse the callers of the clause.The retraction of a clause has a similar e�ect as the assertion of a new one. The onlydi�erence is that there cannot be an information loss which makes the previously generated3



code of the callers of the calling clauses wrong. It is su�cient to start the incrementalanalysis with the calling clauses of the changed procedure and interpret top-down untilthe derived information is equal to the previously inferred one.3 ImplementationOur prototype compiler is implemented in Prolog. To make incremental abstract interpre-tation possible some extensions to the Prolog interpreter were necessary. We implementedtwo new builtin-predicates. One assembles a list of symbolic assembly language instruc-tions (produced by the compiler) and saves the machine code in the code area. The secondbuiltin calls an assembled program and after completion returns to the interpreter.The compilation process comprise the following steps:� read a clause and compile it into intermediate code� incrementally execute abstract interpretation� compile all changed clauses to VAM1P code� transform the VAM1P instructions into assembly language instructions� perform instruction scheduling� assemble the instructions and save the instructions in the code area� update branch instructions (connect the new code to the older one)Our intermediate code is based on VAM2P code enriched by information describing theabstract domain of variables. This approach is similar to the compiling data 
ow analysisof [TL92] with the di�erence, that our intermediate code is not based on the WAM andour abstract VAM2P interpreter is implemented in Prolog. The gathered information isused for:� reducing the code for dereferencing variables,� eliminating tag checkings,� eliminating the uni�cation code or the copy code handling structure arguments,� eliminating parts of the code for clause indexing� eliminating unnecessary choice pointsTo perform the incremental interpretation some information about the compiled pro-gram has to be available. The intermediate code is stored in the database at run time sothat it can be used by the incremental interpretation. For the entry points of all possiblecalls to all clauses the following information is stored in a table:� the start address of the compiled code in memory� the addresses of all start points of the procedures� the addresses of all branches to proceduresRecompilation after incremental analysis assembles the new produced code to a freepart in the code area and modi�es the branches of the unchanged code to branch to thestart address of the called recompiled clauses.4



run time compile timebenchmark not optimized optimized static incrementalms scaled ms scaleddet.append 0.0096 1.12 12933 2.8naive reverse 0.2010 1.13 14287 3.2quicksort 0.8073 1.24 19883 4.28-queens 9.5894 1.08 10826 3.1serialize 0.6732 1.09 22219 3.5di�erentiate 0.1655 1.19 34081 4.8query 5.6349 1.39 19754 4.9bucket 49.203 1.22 20712 3.7permutation 790.97 1.29 15931 2.1Table 1: run time and compilation time for the benchmarks4 ResultsPreliminary results show that incremental abstract interpretation can collect the sameinformation as global abstract information.We compiled a set of small benchmarks on a DecStation 5000/200 (25MHz MIPSR3000 processor). A description and the source code of the benchmarks can be foundin [Bee89]. All benchmarks were compiled without abstract interpretation, with staticabstract interpretation and incrementally with abstract interpretation (see Tab. 1).Computation times were measured by executing each benchmark between 100 and30000 times. Tab. 1 shows that abstract interpretation made possible a speedup between10 and 40 percent. E.g. the query benchmark executes 1.39 times faster than withoutabstract interpretation.Tab. 1 compares also the compilation times. Incremental compilation needs betweentwo and �ve times as much time as static compilation for the benchmarks. For incrementalcompilation each clause of the program was read by the compiler, compiled to intermediatecode, incrementally interpreted over the abstract domain, all already compiled clauses ofthe program whose variable domains were changed through the new clause were recom-piled, the code scheduled and assembled into memory. The new intermediate code andthe table containing the branch addresses were asserted as a fact to the database.Tab. 2 compares the code sizes produced by the incremental and the static methods.Due to the reduction of dereferencing and tag checking and re�ned constant indexingthe optimized programs needs only 64 to 92 percent of the size of the unoptimized one.Incremental compilation increases the sizes because we have no garbage collector for thecode area where the incrementally compiled code is placed.5 Further WorkThe prototype implementation has demonstrated that it is feasible to support abstractinterpretation for Prolog programs using dynamic database predicates. To enhance the5



sizebenchmark not optimized static incrementalbyte scaled scaleddet.append 9864 0.92 1.2naive reverse 8536 0.91 1.8quicksort 12792 0.88 1.18-queens 9744 0.76 1.2serialize 16232 0.87 1.8di�erentiate 40320 0.76 2.9query 14128 0.64 2.5bucket 15988 0.69 2.3permutation 8948 0.84 1.7Table 2: sizes of the compiled programsspeed of our incremental compiler and to reduce the size of the data structures we willimplement the incremental compiler in C. The incremental abstract interpreter will exe-cute modi�ed VAM2P code. The integration of the incremental compiler in the run timeenvironment enables the execution of interpreted VAM2P code and incrementally compiledVAM1P code.AcknowledgementWe express our thanks to Anton Ertl, Ulrich Neumerkel and Franz Puntigam for theircomments on earlier drafts of this paper.References[AH87] Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declar-ative Languages. Ellis Horwood, 1987.[Bee89] Joachim Beer. Concepts, Design, and Performance Analysis of a Parallel PrologMachine. Springer, 1989.[Bru91] Maurice Bruynooghe. A practical framework for the abstract interpretation oflogic programs. Journal of Logic programming, 10(1), 1991.[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed latticemodel for static analysis of programs by construction or approximation of �x-points. In Fourth Symp. Priciples of Programming Languages. ACM, 1977.[Deb92] Saumya Debray. A simple code improvement scheme for Prolog. Journal of LogicProgramming, 13(1), 1992.[KB92] Andreas Krall and Thomas Berger. Fast Prolog with a VAM1P based Prologcompiler. In PLILP'92, LNCS. Springer 631, 1992.6



[KN90] Andreas Krall and Ulrich Neumerkel. The Vienna abstract machine. In PLILP'90,LNCS. Springer, 1990.[Kra87] Andreas Krall. Implementation of a high-speed Prolog interpreter. In Conf. onInterpreters and Interpretative Techniques, volume 22(7) of SIGPLAN. ACM,1987.[Mel85] Christopher S. Mellish. Some global optimizations for a Prolog compiler. Journalof Logic Programming, 2(1), 1985.[RD92] Peter Van Roy and Alvin M. Despain. High-performance logic programming withthe Aquarius Prolog compiler. IEEE Computer, 25(1), 1992.[Tay89] Andrew Taylor. Removal of dereferencing and trailing in Prolog compilation. InSixth International Conference on Logic Programming, Lisbon, 1989.[TL92] Jichang Tan and I-Peng Lin. Compiling data
ow analysis of logic programs. InConference on Programming Language Design and Implementation, volume 27(7)of SIGPLAN. ACM, 1992.[War83] David H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRIInternational, 1983.

7


