Incremental Flow Analysis

Andreas Krall and Thomas Berger
Institut fur Computersprachen
Technische Universitat Wien
Argentinierstrafie 8
A-1040 Wien

{andi,tb}@mips.complang.tuwien.ac.at

Abstract

Abstract interpretation is a technique for flow analysis widely used in the area of
logic programming. Until now it has been used only for the global compilation of
Prolog programs. But the programming language Prolog enables the programmer to
change the program during run time using the built-in predicates assert and retract.
To support the generation of efficient code for programs using these dynamic database
predicates we extended abstract interpretation to be executed incrementally. The aim
of incremental abstract interpretation is to gather program information with minimal
reinterpretation at a program change. In this paper we describe the implementation
of incremental abstract interpretation and the integration in our VAMip based Prolog
compiler. Preliminary results show that incremental global compilation can achieve
the same optimization quality as global compilation with little additional cost.

1 Introduction

Since several years we do research in the area of implementation of logic programming lan-
guages. To support fast interpretation and compilation of Prolog programs we developed
the VAMyp (Vienna Abstract Machine with two instruction pointers) [Kra87] [KN90] and
the VAMyp (Vienna Abstract Machine with one instruction pointer) [KB92]. Although
the VAM manages more information about a program than the WAM (Warren Abstract
Machine) [War83], it is necessary to add flow analysis for type inference and reference
chain length calculation. Extending our global VAM;p compiler by support for dynamic
database predicates it became apparent that the data structures necessary for storing
the information for dynamic compilation were sufficient to integrate incremental global
abstract interpretation.

In chapter 2 we present our approach to global data flow analysis and show how it can
be solved incrementally. Chapter 3 contains details of our prototype implementation and
chapter 4 presents some preliminary results.

2 Abstract Interpretation

Abstract interpretation is a technique of describing and implementing global flow analysis
of programs. It was introduced by [CC77] for data flow analysis of imperative languages.



bound free
/ \\
/atom-c\ |ist

nil atom i nt eger

L

Figure 1: Abstract domain for type and mode inference

This work was the basis of much of the recent work in the field of logic programming [AHS&7]
[Bru91] [Deb92] [Mel85] [RD92] [Tay89]. Abstract interpretation executes programs over
an abstract domain. Recursion is handled by computing fix points. To guarantee the
termination and completeness of the execution a suitable choice of the abstract domain is
necessary. Usually the elements of this domain form a lattice.

2.1 Global Abstract Interpretation

We do gather information about mode, type and reference chain length of variables. Trail-
ing information is not handled by the abstract interpreter because the VAM does trail more
seldom than the WAM. Fig. 1 describes the lattice of the abstract domain types. Each
type represents a set of terms:

any is the top element of the domain

free describes an unbound variable and contains a reference to all aliased variables
bound describes non-variable terms

atomic is the supertype of nil, atom and integer

list is a non empty list (it contains the types of its arguments)
struct is a structure (information about the functor and arguments is contained)
nil represents the empty list

atom is the set of all atoms
integer is the set of all integer numbers

Possible infinite nesting of compound terms makes the handling of the types list and
struct difficult. Therefore, interpretation stops after the allowed limit of nested compound
terms is reached. To gather useful information about recursive data structures a recursive
type is introduced which contains also the information about the termination type. The
type list(int,rec(nil)) describes the type list of integer.

Each type of the domain additionally contains information about the reference chain
length. Valid values for this length are 0, 1 and unknown. A length of e.g. 0 will be
extracted during the unification of a new variable (the first occurrence) and a constant



term, 1 is typical for the unification of two different new variables (the compiler generates
the macro firstvar firstvar, which generates a free cell on the copy stack and makes both
variables a reference to that cell). If the length of the reference chain is not decidable, its
length information gets the value unknown.

We use a top-down approach for the analysis to extract the desired information. Dif-
ferent calls to the same clause are handled separately to get the exact types. The gathered
information is a description of the living variables. Recursive calls of a clause are com-
puted until a fix point for the gathered information is reached. If a call is computed the
second time there exists already information about this call. Now the old information is
compared with the new one and the interpretation stops for this clause at this point, if
the new information is more special, i.e. the union of all the old types and the new types
is equal to the old types. The gathered information has reached a fix point.

2.2 Incremental Abstract Interpretation

In most Prolog systems the modification of the database leads to a mixture of interpreted
and compiled code. Optimization information is not available for dynamically asserted
clauses. In some systems it is not allowed to assert clauses for a predicate which is not
declared to be dynamic. We wanted to support dynamic database predicates without any
loss of optimization information. The idea of incremental abstract interpretation is to
get this information with minimal reinterpretation. Changing the database by asserting
or retracting clauses causes a local analysis of all procedures whose variable domains are
changed. In the worst case the assertion of a new clause can take effect in the abstract
reinterpretation and recompilation of the whole program.

To support incremental abstract interpretation it is necessary to store additional in-
formation with the compiled code in the code area. This information consists of:

e the intermediate code of all clauses
e description of variables and their domains
e table containing the entry points for the clause codes

e table containing the callers (parents) of a clause

Incremental abstract interpretation starts the local analysis with all the callers of
the modified procedure and interpret the intermediate code of all dependent procedures.
Interpretation is stopped if the new domains are equal to the domains derived by the
previous analysis. If the domain has not changed, new code is generated only for the
changed part of the program. If the domain has been changed and the new domain is a
subtype of the old domain, the previously generated code fits for the changed program
part. The information derived for the program before the change is less exact than the
possibly derivable information. Incremental interpretation can stop now. If the new
domain is instead a supertype of the old one, the assertion of the new clause made the
possible information less precise and the old code wrong for the new program. Therefore,
incremental abstract interpretation must further analyse the callers of the clause.

The retraction of a clause has a similar effect as the assertion of a new one. The only
difference is that there cannot be an information loss which makes the previously generated



code of the callers of the calling clauses wrong. It is sufficient to start the incremental
analysis with the calling clauses of the changed procedure and interpret top-down until
the derived information is equal to the previously inferred one.

3 Implementation

Our prototype compiler is implemented in Prolog. To make incremental abstract interpre-
tation possible some extensions to the Prolog interpreter were necessary. We implemented
two new builtin-predicates. One assembles a list of symbolic assembly language instruc-
tions (produced by the compiler) and saves the machine code in the code area. The second
builtin calls an assembled program and after completion returns to the interpreter.

The compilation process comprise the following steps:

e read a clause and compile it into intermediate code

e incrementally execute abstract interpretation

e compile all changed clauses to VAMyp code

o transform the VAMp instructions into assembly language instructions
e perform instruction scheduling

e assemble the instructions and save the instructions in the code area

e update branch instructions (connect the new code to the older one)

Our intermediate code is based on VAMsp code enriched by information describing the
abstract domain of variables. This approach is similar to the compiling data flow analysis
of [TL92] with the difference, that our intermediate code is not based on the WAM and
our abstract VAMyp interpreter is implemented in Prolog. The gathered information is
used for:

o reducing the code for dereferencing variables,

e eliminating tag checkings,

¢ eliminating the unification code or the copy code handling structure arguments,
¢ eliminating parts of the code for clause indexing

e eliminating unnecessary choice points

To perform the incremental interpretation some information about the compiled pro-
gram has to be available. The intermediate code is stored in the database at run time so
that it can be used by the incremental interpretation. For the entry points of all possible
calls to all clauses the following information is stored in a table:

e the start address of the compiled code in memory
e the addresses of all start points of the procedures

e the addresses of all branches to procedures

Recompilation after incremental analysis assembles the new produced code to a free
part in the code area and modifies the branches of the unchanged code to branch to the
start address of the called recompiled clauses.



run time compile time
benchmark not optimized | optimized | static | incremental
ms scaled ms scaled
det.append 0.0096 1.12 12933 2.8
naive reverse 0.2010 1.13 14287 3.2
quicksort 0.8073 1.24 19883 4.2
8-queens 9.5894 1.08 10826 3.1
serialize 0.6732 1.09 22219 3.5
differentiate 0.1655 1.19 34081 4.8
query 5.6349 1.39 19754 4.9
bucket 49.203 1.22 20712 3.7
permutation 790.97 1.29 15931 2.1

Table 1: run time and compilation time for the benchmarks

4 Results

Preliminary results show that incremental abstract interpretation can collect the same
information as global abstract information.

We compiled a set of small benchmarks on a DecStation 5000/200 (25MHz MIPS
R3000 processor). A description and the source code of the benchmarks can be found
in [Bee89]. All benchmarks were compiled without abstract interpretation, with static
abstract interpretation and incrementally with abstract interpretation (see Tab. 1).

Computation times were measured by executing each benchmark between 100 and
30000 times. Tab. 1 shows that abstract interpretation made possible a speedup between
10 and 40 percent. E.g. the query benchmark executes 1.39 times faster than without
abstract interpretation.

Tab. 1 compares also the compilation times. Incremental compilation needs between
two and five times as much time as static compilation for the benchmarks. For incremental
compilation each clause of the program was read by the compiler, compiled to intermediate
code, incrementally interpreted over the abstract domain, all already compiled clauses of
the program whose variable domains were changed through the new clause were recom-
piled, the code scheduled and assembled into memory. The new intermediate code and
the table containing the branch addresses were asserted as a fact to the database.

Tab. 2 compares the code sizes produced by the incremental and the static methods.
Due to the reduction of dereferencing and tag checking and refined constant indexing
the optimized programs needs only 64 to 92 percent of the size of the unoptimized one.
Incremental compilation increases the sizes because we have no garbage collector for the
code area where the incrementally compiled code is placed.

5 Further Work

The prototype implementation has demonstrated that it is feasible to support abstract
interpretation for Prolog programs using dynamic database predicates. To enhance the



size
benchmark not optimized | static | incremental
byte scaled scaled
det.append 9864 0.92 1.2
naive reverse 8536 0.91 1.8
quicksort 12792 0.88 1.1
8-queens 9744 0.76 1.2
serialize 16232 0.87 1.8
differentiate 40320 0.76 2.9
query 14128 0.64 2.5
bucket 15988 0.69 2.3
permutation 8948 0.84 1.7

Table 2: sizes of the compiled programs

speed of our incremental compiler and to reduce the size of the data structures we will
implement the incremental compiler in C. The incremental abstract interpreter will exe-
cute modified VAMyp code. The integration of the incremental compiler in the run time
environment enables the execution of interpreted VAMsp code and incrementally compiled

VAM;p code.

Acknowledgement

We express our thanks to Anton Ertl, Ulrich Neumerkel and Franz Puntigam for their

comments on earlier drafts of this paper.

References

[AH87] Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declar-
ative Languages. Ellis Horwood, 1987.

[Bee89] Joachim Beer. Concepts, Design, and Performance Analysis of a Parallel Prolog
Machine. Springer, 1989.

[Bru91l] Maurice Bruynooghe. A practical framework for the abstract interpretation of
logic programs. Journal of Logic programming, 10(1), 1991.

[CCT7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Fourth Symp. Priciples of Programming Languages. ACM, 1977.

[Deb92] Saumya Debray. A simple code improvement scheme for Prolog. Journal of Logic
Programming, 13(1), 1992.

[KB92] Andreas Krall and Thomas Berger. Fast Prolog with a VAM;p based Prolog

compiler. In PLILP’92, LNCS. Springer 631, 1992.



[KN90]

[Kra87]

[Mel85]

[RD92]

[Tay89]

[TL92]

[War83]

Andreas Krall and Ulrich Neumerkel. The Vienna abstract machine. In PLILP 90,
LNCS. Springer, 1990.

Andreas Krall. Implementation of a high-speed Prolog interpreter. In Conf. on
Interpreters and Interpretative Techniques, volume 22(7) of SIGPLAN. ACM,
1987.

Christopher S. Mellish. Some global optimizations for a Prolog compiler. Journal
of Logic Programming, 2(1), 1985.

Peter Van Roy and Alvin M. Despain. High-performance logic programming with
the Aquarius Prolog compiler. IEEE Computer, 25(1), 1992.

Andrew Taylor. Removal of dereferencing and trailing in Prolog compilation. In
Sizth International Conference on Logic Programming, Lisbon, 1989.

Jichang Tan and I-Peng Lin. Compiling dataflow analysis of logic programs. In
Conference on Programming Language Design and Implementation, volume 27(7)

of SIGPLAN. ACM, 1992.

David H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI
International, 1983.



