vanHelsing: A Fast Theorem Prover for
Debuggable Compiler Verification

Roland Lezuo*, Ioan Dragan', Gerg Barany*, Andreas Krall*
*Institute of Computer Languages
Vienna University of Technology
{rlezuo,gergo,andi}@complang.tuwien.ac.at
Tnstitute e-Austria
Timisoara, Romania
idragan@ieat.ro

Abstract—In this paper we present vanHelsing, a fully auto-
matic first-order theorem prover aimed especially at the class of
problems that arise in compiler verification. vanHelsing accepts
input problems formulated in a subset of the TPTP language
and is specially tailored to efficiently solve expression equivalence
problems formulated in first-order logic. Besides solving these
problems, vanHelsing provides also graphical debugging help
which makes the visualization of problems and localization of
failed proofs much easier. From our experiments we noticed
that using this specialized tool one can gain up to factor 3 in
performance when compared to the non-specific theorem provers.

I. INTRODUCTION

Correct compilers are essential tools for the development
of safety-critical systems. However, real-world compilers can
contain hundreds of bugs that lead to the generation of wrong
code [1], [2]. The formal verification of compilers is therefore
an important research area.

Typical problems that arise in compiler verification can
be effectively formulated in first-order logic. The problem of
automated or interactive theorem proving in first-order logic
is a well studied field. For solving problems in first-order
logic several mature automatic theorem provers are available.
However, we have found that these are surprisingly inefficient
for solving compiler verification problems.

Additionally, off-the-shelf provers provide no feedback
describing the reason why a particular proof attempt failed.
This means that a failing proof attempt only shows that there
is some bug in the compiler or in the problem formulation,
but there is no indication how to identify the underlying issue.
This paper describes vanHelsing, a theorem prover that is
particularly efficient at solving compiler verification problems.
The prover includes a debug mode which minimizes failing
inputs to the bare essentials and makes it easy to recognize
the reason for the failing proof.

We have implemented translation validation [3] tools for
various back-end passes of our research compiler. The (un-
trusted) compiler emits translation facts and our (trusted) tools
generate proof obligations. Translation facts are encoded as
first-order predicates describing the semantics of the program
before and after a compiler pass. The proof obligations are
properties that must hold (depending on program and compiler
pass) so that the translation is correct. Proof obligations are

formulated as conjectures. A library of axioms is provided
for each compiler pass defining which transformations are
allowed. Combination of the translation facts, the axioms and
the proof obligations result in first-order problems which are
handed off to a theorem prover.

A majority of problems in the context of translation vali-
dation are proving equivalence of expressions [4]. A compiler
commonly splits programs into basic blocks (instruction se-
quences without branches). Basic blocks have live-in and live-
out values and apply arithmetic operations to those values.
A correct translation of a program preserves the semantics
of those expressions (and the control flow and memory side-
effects, but that is beyond the scope of this paper). We call
them data flows of a basic block.

In the first attempt we decided to use for the verification
purpose the best performing theorem provers available. In
order to choose the best performing first-order theorem provers
we turned to the CASC competition [5]. And from there we
picked the best performing ones, Vampire [6], [7] and E [8].
Because both provers are based on various resolution and
superposition calculi, for more details see [9], we encountered
the following problem. The expected outcome of each problem
is that the prover finds a refutation. In this case the compilation
was performed correctly and the refutation is an evidence. In
case the prover does not find a refutation proof for a problem
two results are possible. Either that the problem is satisfiable,
in this case we get no further information from the prover,
or the prover times out. Such results are not useful for our
purposes as they provide no clue for the cause of the problem
(i.e. the erroneous compilation).

Another problem that arises in using an off-the-shelf prover
is that even in case refutation is found, there is still no
guarantee that the found contradiction proves the intended
goal. This can happen if a contradiction can be found directly
in the axioms or clauses that are passed to the prover, in this
case spurious proof of refutation is found.

After studying these problems, the observation we made is
that many proofs in our problem domain have a very similar
tree-like structure. As they are derived from the data-flow of
the compiled programs we call them data-flow equivalence
problems (DFE) [4]. The motivation to develop the vanHelsing
prover was to exploit the special structure of this proofs to
i) improve the performance and ii) overcome the described

R N R S

o

shortcomings.

The remainder of this paper is structured as follows. At first
we give an overview of what motivated our tool and introduce
the notions that are used trough the paper (see Section II).
A more formal description of the problem we are addressing
with the help of vanHelsing is presented (see Section III).
Next implementation details and optimisations used in order
to obtain these results are presented (see Section IV). In
Section V we preset the debugging capabilities of vanHelsing.
We thoroughly evaluated the vanHelsing tool and compared its
performance against best off-the-shelf provers (see Section VI).

II. MOTIVATION AND PRELIMINARIES

Let us first start by giving an example. In Listing 1 we
can observe the structure of problems that are emitted by our
research compiler. The output is in TPTP [10] format and
encodes three independent data flows. Written as expressions,
these are:

syms = ((symi+1)+1)+ symy
symg = (symg +2) + syms
symiz = Ssymii1 + symio

Live-in variables are symi, symg, symg, Syms, SYmio
and symgii, while syms, symg and symqo are live-out.
(syme, syms and symsr are intermediate values and neither
live-in nor live-out).

fof (1d0, hypothesis, add (syml, 1, sym2)) .

fof (idl, hypothesis, add (sym2, 1, sym3)) .
fof (id2, hypothesis, add (sym3, sym4, sym5)) .

fof (id3, hypothesis, add (sym6, 2, sym7)) .
fof (id4, hypothesis, add (sym7, sym8, sym9)) .

fof (id5, hypothesis, unrelated(syml0, symll, syml2)).
Listing 1: Translation facts with three data flows

Note the similarity between the expressions for syms and
symy. If the symbols in corresponding operand positions stand
for equivalent expressions, a compiler’s constant folding pass
may have converted the first of these expressions into the other.
The corresponding translation validation problem could then
be formulated as a first-order formula expressing the following
question: Assuming symi = symg and symy = syms, does
syms = symyg hold? If it does, then this particular instance of
this program transformation is proved correct.

With superposition [11] based provers like Vampire [6],
[7] and E-prover [8] there are two problems that arise in
our application domain: i) if the translation facts produced
by the (untrusted) compiler contain a contradiction a spurious
refutation will be found and ii) if the translation was erroneous
the prover states satisfiability, but gives no hint about the nature
of the problem. In our experience, the first problem can occur
in the early stages of implementing translation validation in
an existing compiler. Bugs can occur in the generation of
translation facts but masquerade as wrong-code bugs. This
problem can be solved by running the prover on the translation
facts and axiom set without the conjecture; they must be
satisfiable.

For the second problem, we are not aware of a good
previously proposed solution. For repairing such problems a
domain expert has to manually check the proof to locate the

reason why the proof failed (and locate the compiler bug).
This is a tedious and time-consuming task. Ideally, it should
be guided by a minimal model (an example of wrong code)
produced by the prover that suggests to the compiler writer
where to look for the bug.

Satisfiability modulo theories (SMT) [12] is a major branch
in automated theorem proving that could theoretically help
with this issue. Using the same problem formulation SMT
produces a model for erroneous translation (they are satisfi-
able) which helps in identifying the bug in the compiler. For
more complex problems finding a model seems to be a very
time consuming task. From our experiments we noticed a big
degradation in performance of the Z3 solver, more details about
this are presented in Section VI. Another issue is the fact that
in case the SMT solver finds the problem to be unsatisfiable
then no further information about reason of unsatisfiability is
given.

In the case of superposition based theorem provers evidence
is created. The problem can be formulated in a different
fashion so a model is found as evidence, losing the models for
erroneous translations, though. A missing evidence weakens
the strength of the argument that the compilation is proven to
be correct (proof can not be retraced independently).

In our application, generated problems are commonly
larger than 10.000 lines of TPTP. Therefore our tool should
also provide a debug mode to analyze failing proofs. A
representation of the encoded data-flow represented as a graph
helps to catch the interrelation of predicates and values, but
also creates the connection to the problem domain. vanHelsing
can print a graph representation of the problem utilizing the
widely used DOT language [13]. More details about how
vanHelsing can be used in order to find failing proofs can
be found in Section V.

III. THE PROBLEM CLASS

In the following we are going to briefly present the sup-
ported input language, features and restrictions imposed by
vanHelsing. As input language the vanHelsing prover uses a
subset of TPTP v6.0 [10].

As top-level elements Typed First-Order Formulas (TFF),
containing type information for predicates and variables and
First-Order Formulas (FOF) are accepted. Due to the way
vanHelsing is designed, the TFF formulas are accepted but
it does not keep track of the type specified in the formula but
rather assumes integer types for all values. Nonetheless correct
type information should be added to achieve compatibility
with other provers (i.e. Vampire). All TPTP formulas have the
generic form language (id, role, formula) . with
language being fof or t ££. The role of a FOF formula is one
of axiom, hypothesis or conjecture (formula to be proven). The
subset of accepted FOF formulas is tailored to model data-flow
equivalence (DFE) problems. We first list the supported subset
of TPTP and establish some terminology before defining the
DFE problem itself (section III-B).

A. Input Language

e Values / Variables — $true, 1, -4, sym2
The values $true and $false encode the boolean

constants frue and false. Integer constants represent
the corresponding integer value. Boolean and Integer
constants are called well-defined values (that is: their
semantic value is known). All other values (e.g. sym2
are supposed to be (unknown) integer values. Vari-
ables starting with an upper case letter are universally
quantified free variables used in patterns.

e Functor Application — pred (x,y, z)

In the context of vanHelsing, all functions must be
treated as predicates. Although the formalization ex-
clusively uses predicates the problem domain exclu-
sively uses functions. In order to address these issues,
by convention we map a n-ary function f of the
problem domain to a n+1-ary predicate f in the DFE.
The addition z = add(z,y) in the problem domain
would be mapped to the predicate add(x,y,z). If a
functor application is also be part of the conjecture,
the corresponding fact must eventually be derived for
the proof to succeed.

o FEquality —x =y
Assuming x and y are both well-defined but have
different values this implies that the problem contains
a contradiction. If equality is used in the conjecture
the values x and y must eventually be unified for the
proof to succeed.

o Inequality — x '= vy
In case x and y are both well-defined but have the
same value it implies that the problem contains a
contradiction. If inequality is used in the conjecture
the values x and y must not be unified for the proof
to succeed.

e [mplication — 1hs => rhs

If lhs (the pattern) evaluates to true rhs (the action)
will be performed. An action may either be a function
application, in that case a new fact will be added to
the proof or an equality, which triggers an unification.
No unbound free variables must occur in the action.
An example usage is the implication (add (A, B, X)
& add(A,B,Y)) => X=Y). In the context of our
work, implications drive the unification used to solve
the DFE.

e Conjunction - formulal & formula?2
Informally introduced in above example. Let us define
conjunction to be similar to the notion used in first-
order logic, as a remark we note that conjunctions can
be also used in the context of terms. Important appli-
cations of the conjunction is a conjecture consisting
of multiple clauses and of course in complex patterns
of implications.

e FEquivalence — 1hs <=> rhs
The equivalence pattern will be translated into two
implications (lhs => rhs and rhs => Llhs).

B. Data-flow Equivalence Problems

The vanHelsing prover is designed and optimized to solve a
specific problem class very efficiently. In this section we define
the data-flow equivalence problems and give an example.

fof (1d0, hypothesis, add (syml, 1, sym2)) .
fof (idl, hypothesis, add (sym2, 1, sym3)) .
fof (1id2, hypothesis, add (sym3, sym4, sym5)) .

fof (id3, hypothesis, add (sym6, 2, sym7)) .
fof (id4, hypothesis, add (sym7, sym8, sym9)) .

fof (1id5, hypothesis, unrelated(syml0, symll, syml2)).

fof (ax1l,axiom, (add(A,B,X) & add(A,B,Y)) => X=Y).

Listing 2: A TPTP file containing three data-flow trees

Given a set of functions F' = {f; : i € 0...n} (each
with a fixed arity) and a set of variables V = {v; : j €
0...m} a data-flow (DF) is a set of function applications
v; = filag,...):v; € V, fi € F,ap,... € V. A variable v,
which is the result of applying a function f; (v; = f;(ao,...))
is called to be defined by this function application. A variable
a; appearing as an argument in a function application is called
to be used by this function application. The DF is free of cycles
meaning that a variable defined by a function application is
never used by in that function or any other function defining
the arguments (recursive).

There are two distinct sets of variables in a DF. The set of
all variables which are only defined but not used is called the
live-out set, the set of variables only used but never defined is
called the live-in set.

Given a defined variable v; its data-flow tree (expression)
can be constructed by recursively replacing all variables not
in the live-in set with their defining function applications.

A DFE consists of two DF (DF, and DF;) and two
mappings M; and Mp. M is a bijective function associating
each variable v? of the live-in set of DF, with a variable v} of
live-in set of DF;. M also is a bijective function associating
the variables in the live-out sets.

The syntactic DFE problem can now be formulated as
follows. Let DFy and DF; be data-flows, M a live-in mapping
and M a live-out mapping. Is the data-flow tree of each live-
out variable v9 of DFy equal to the data-flow tree of Mg (v9)
(respecting the equality of live-in variables defined by M7)?

The semantic DFE does not ask for syntactic equality of
the data-flow trees but semantic equality. A set of semantic
equivalent transformations must be given then. In this paper
we implicitly mean semantic DFE problems unless stated
otherwise. The key observation here is that the conjecture of a
DFE is a conjunction of equalities. To prove those equalities
a prover must not derive any new clauses, unification is
sufficient. In the case of vanHelsing prover we decided that
it is interesting to also handle conjunction of functor patterns.

We encode semantic DFE in first-order logic. All n-ary
function applications are mapped to n + l-ary predicates
(with the function result being the last argument). Variables
of the DFE are mapped to (TPTP) values. The (syntactic and
semantic) equivalence of data-flow trees needs to be encoded
by axioms. Listing 2 shows an example. The two data-flows are
formed by the predicates id0, idl, id2 and id3, id4. (Actually
there is a third data-flow formed by predicate id5). Axiom
axl encodes syntactic equivalence. The mappings I and F' are
missing in this listing and will be added later.

add

syml

1 add

sym2 _’ sym2
1

ot s f—~Com =D

z =
sym

sym10 sym9

amiz = Comt2=>

Fig. 1: Initial Data Flow Trees

In order to better visualize how the input problem looks
like, we have added to vanHelsing an option that prints the
internal representation of the problem, proof graph, using DOT
language [13]. Figure 1 shows the initial graph built from
the example given in Listing 2. Function applications are
printed as structured rectangular boxes. The first field contains
the predicate’s name while the following fields contain the
predicate arguments. And we use, as a convention, the last
argument to represent the result. All arguments are linked to
the referenced value nodes and are printed in ellipses. In case
of the unified values, values that are equal, are printed as a list
after the equal sign, in our example there are none.

IV. IMPLEMENTATION

vanHelsing is a command line tool for POSIX systems
written in C++. It is used as part of our translation validation
tools and we consider the implementation as stable and mature.
During the development of the validation tools we have verified
vanHelsing’s soundness by using Vampire. We did this by
running both tools on the same set of problems and both
tools provided the same outcome. As input language it accepts
a subset of the FOF language specified in TPTP (including
all-quantified variables, negation, conjunction, implication and
equality).

Internally the problem is represented as a graph with two
basic node types. Value nodes represent constants, variables
and symbols while functor nodes represent basic boolean
operators and user defined predicates. Implications of the form
P(X)ANPY) = X =Y drive the unification engine.
The antecedent is treated as a pattern and matched against
the graph. If a match is found the equality described by the
consequent is used to rewrite the graph, i.e. to unify value
nodes. The value node with the smaller degree is removed
from the graph and edges are inserted from all its adjacent
nodes to the unified node.

This matching is repeated in a round-wise manner until a
fixed point is found. Thus vanHelsing implements a forward-
chaining strategy.

Whether two data flows (expressions) are semantically
equivalent is reduced to the question whether the value nodes

representing their result have been unified or not. In case
they have been unified vanHelsing can create an evidence
file summarizing all performed unifications together with the
matching patterns. vanHelsing therefore never finds spurious
proofs and always provides an evidence.

In order to further improve performance of vanHelsing we
have also implemented a number of of optimisations inside
vanHelsing. These optimizations in conjunction with the way
we represent the problem proves to perform best in the context
of compiler back-end verification.

1) Dead patterns: As first optimization we make sure
that vanHelsing does not try to match a function application
pattern if there are no terms it could match, e.g. in case of
add (A, 2, B) no matching should be done for add predicate
name. This optimization becomes effective if conjecture pat-
terns inherit this property from their clauses. A generic set of
axioms can then be used for each proof as they don’t impact
the execution time.

2) Term Indexing: The unification process is driven by
implications. Many of the axioms describe the syntactic equiv-
alence of the data-flow trees. They all have the generic form

pred(A, B, X) Apred(A,B,Y) = X =Y

We match the first predicate and get concrete values for the
free variables A and B. Matching the second predicate can now
be accelerated if A or B are well-defined, meaning that their
values are known. vanHelsing stores all functors of a specific
type in a hash-map (for fast look-up) and maintains hash-
maps for functors with well-defined arguments. In the current
implementation we consider the first three arguments. Term
indexing proves to be a key feature and can be considered as
the most important among optimisations added to vanHelsing.

3) Functor freezing: We call a sort of functors frozen if no
functor of their name has been modified in the current round.
A pattern is called frozen if it matches a functor which is
frozen itself. The conjecture pattern inherits its frozen status
from its clauses. Initially there are no frozen functors, assuring
that each pattern is matched at least once. Frozen pattern may
be skipped during the pattern matching phase as they can not

[NN I S USRS

add
symoé

sym2 —’.—’ sym2

| _add | sym3
sym6
2 add

sym7 —’ sym?7 | add |

add

1

sym3

sym8

s |— D

sym8
o f—~Com =D

sym5=sym9

Fig. 2: A failing proof

produce any new unifications. A functor sort must be unfrozen
when a new fact involving this sort is added to the proof.

V. DEBUGGING A FAILING PROOF

The final problem graph is also a very good indicator as
to why the proof failed (i.e. locate the compiler bug). By
exploiting the regular structure of the data flow equivalence
problems it is possible to identify the relevant parts of the
graph. vanHelsing computes the reachability (from pairs of
value nodes which were not unified, but were conjectured
to) assuming all predicates encode functions. The direction
of the edges are therefore incoming for all but the one with
the highest index at each functor node.
fof (axl,axiom, (add (A, B, X) &

add(A,B,Y)) => X=Y).

fof (opl, hypothesis, syml=sym6) .
fof (op2, hypothesis, symd4=sym8) .

fof (cjl,conjecture, symS=sym9) .

Listing 3: Missing an axiom

Listing 3 shows an example for a failing proof. Lines 3
and 4 encode (application provided) knowledge about initially
equal live-in variables of two data flows (from Listing 1).
The conjecture (in line 6) states that the given symbols must
be computed by semantically equivalent data flows. Without
knowing the arithmetic identity (A+1)+14+C = A+24C, the
prover is unable to unify syms and symy; and thus the proof
fails. Each conjectured equivalence which was not unified
is dumped into a separate graph (all irrelevant nodes have
been removed). These small, isolated graphs can be manually
inspected to identify the reason for the failing proof. Value
nodes have one of three possible colors in the failure dumps:
red and yellow nodes are only part of one data flow, while
orange nodes are part of both (i.e. were unified). The reason
for the failure often is near the first value nodes which were not
unified (i.e. red or yellow ones). Figure 2 shows the resulting
graph (irrelevant nodes have been removed, i.e. the unrelated
functor and its values are not printed).

Visual inspection quickly reveals that the first different
colors begin to appear with symsy and symy. It is clear that
symr, representing the expression A + 2, needs to be unified
with the expression A 4+ 1 + 1, represented by symg. This is

an instance of a more general fact of arithmetic. Adding the
needed axiom (Listing 4) results in a succeeding proof depicted
in Figure 3. Such axioms are produced by the compiler as part
of their translation facts, documenting each transformation that
was applied to the program.

fof (ax2,axiom, (add (A,1,B) & add(B,1,C)
& add(A,2,D)) => C=D).

Listing 4: The missing axiom

VI. PERFORMANCE EVALUATION

We have compiled 5 sets of benchmarks from three dif-
ferent back-end passes of our compiler. The problems within
all sets have a common structure, but the structures are
different between the sets. Instruction selection (isel) problems
are the most complex, because the transformation has the
largest impact on the data flow. Register allocation (regalloc)
problems are of modest complexity, depending on the amount
of spill code inserted. Without spilling the data flow does not
change at all, but if registers were spilled the changes are
intrusive. VLIW scheduling (vliw) problems are the simplest:
Instructions are reordered, the data flow will not be changed
at all. Normally the problems emitted by our compiler can
be proven, i.e. isel.succ, regalloc.succ and vliw.succ. During
development we also collected a set of problems which can
not be proven (compiler bugs, missing axioms), i.e. isel.fail
and vliw.fail. Interestingly we noticed that Z3 does not scale
well with respect to performance on the failing problem sets.

The problems emitted by our compiler are directly used by
Vampire and vanHelsing. Because E-prover does not support
types, we have to apply a preprocessing step and remove
them. In order to also experiment with Z3, we had to first
convert the problems into SMTIib format. For doing so we
used the fptp2x program that is part of TPTP library and
allows us to convert the problems into smt format used by
Z3. The current formulation of the problems proves to be not
optimal for Vampire nor for Z3. Vampire would profit from
using the built-in equality instead of using axioms. While
Z3 would profit from its built-in arithmetics instead of the
axiomatization provided by us. But since the problems are
automatically created by the verification engine of the research
compiler it is unreasonable to freely change the way problems

add
symo6

1

oy
sym2 sym2

add

sym7

sym10

syml1

—] sym7
P sym7
unrelated sym§8

syml2

Fig. 3: A succeeding proof

TABLE I: Benchmark Set and Performance

Size Runtime (seconds)
Benchmark Set | # files mean total vanHelsing ~ Vampire E 73
isel.succ 705 25 kiB 49 MiB 13.76 2454 4431 4241
regalloc.succ 454 412kiB 239 MiB 49.11 5479 49198 5534
vliw.suce 401 484 kiB 259 MiB 5455 20913 81641 23374
vliw.fail 27 905kiB 22 MiB 438 1754 8872 8121
isel.fail 343 29kiB 12 MiB 2.97 745 3882 96181
L0
N
g 3 .
P L
(e 0
S
o0
20 =
I8 vanHelsing < S
15 |00 Vampire o od |
5 In eprover S
5 10 (In 73 B
<
51 R ~ . = = 2 2
= | - = e i -
ol]| 1 1 [- - - i
isel.succ regalloc.succ vliw.succ vliw.fail isel fail

Fig. 4: Relative performance (factor), smaller is better

are formulated, although probably this would highly influence
performance of Vampire, E and Z3.

Table I contains the number of problems in the set, average
file size (mean) as an indicator of the complexity of each
problem, the total size of the set and the time each prover
needs to process the whole problem set. We report on the best
of 3 runs of vanHelsing (version aall5e4), Vampire (1.8 rev.
1362), E-prover (E 1.8-001 Gopaldhara) and Z3 (4.3.1). The
tests were performed on a Core i7 @ 1.73 GHz using a 64 bit
Ubuntu 12.10. We decided to run all the solvers three times
in order to eliminate any effect from the operating system that
might influence the results while the experiments are run.

Vampire is a very fast prover and has won the FOF section
of the CASC [5] competition for many years now. Although
that is the case, for our problem formulation vanHelsing always
performs better then Vampire (roughly factor 2). Vampire
proves to always be second fastest prover tested for these

problem sets. E-prover has been executed in silent mode and
failed to prove one problem of the isel.succ set. In the case of
E-prover we have noticed that the performance is generally
worse than vanHelsing and Vampire’s performance. Using
Z3, proves in general to almost match the performance of
Vampire, except for the case of sar problems. For evaluating
the performance used hard timeouts (-7:3 -#:3) of 3 seconds
(vanHelsing needs less than 3 seconds for all 343 problems
in the set). We noticed that using this small timeout Z3
fails to find a solution on all problems of the viiw.fail set
and only found the solution for 28 problems of isel.fail. By
increasing the timeout to 240 second, Z3 finds 309 models for
the isel.fail set, but still no model is generated for any of the
problems in viiw.fail. Figure 4 shows the relative performance
for all provers on each of the problem sets, normalized to
vanHelsing’s total runtime. Despite the good performance in
our application we do not expect vanHelsing to be competitive
on general first-order problems.

VII. CONCLUSIONS

In this paper we presented the vanHelsing tool that is
tailored toward the problem of proving expressions to be
semantically equivalent. These kind of problems frequently, but
not exclusively, occur in compiler verification. An outstanding
feature of vanHelsing is its ability to produce graphical rep-
resentations of the problem in DOT format. If the proof for
a problem can not be found the relevant sub graph can be
displayed. In order to better highlight the problematic parts of
failing equivalence proofs, vanHelsing uses different colors.

Using this approach in order to analyze failing proofs
reduces the time spent from hours to minutes. Beside its
debugging capabilities, vanHelsing’s performance on the kind
of problems that occur in practical compiler verification is
much better than state-of-the-art theorem provers (up to a
factor of 3).

REFERENCES

[11 X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI '11. New York, NY, USA: ACM, 2011, pp. 283-294.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993532

[2] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 216-226. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594334

[3] A. Pnueli, M. Siegel, and F. Singerman, “Translation validation,” in Pro-
ceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, ser. TACAS 98. Springer,
1998, pp. 151-166.

[4] R. Lezuo, “Scalable Translation Validation,” Ph.D. dissertation, Vienna
University of Technology, 2014.

[5] G. Sutcliffe and C. Suttner, “The State of CASC,” AI Communications,
vol. 19, no. 1, pp. 3548, 2006.

[6] A. Riazanov and A. Voronkov, “The design and implementation of
VAMPIRE,” AI Commun., vol. 15, pp. 91-110, Aug. 2002.

[7]1 L. Kovdcs and A. Voronkov, “First-Order Theorem Proving and Vam-
pire,” in CAV, 2013, pp. 1-35.

[8] S. Schulz, “E - a brainiac theorem prover,” AI Commun., vol. 15, no.
2,3, pp. 111-126, Aug. 2002.

[91 J. A. Robinson and A. Voronkov, Eds., Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press, 2001.

[10] G. Sutcliffe, “The TPTP problem library and associated infrastructure:
The FOF and CNF parts, v3.5.0,” Journal of Automated Reasoning,
vol. 43, no. 4, pp. 337-362, 2009.

[11] L. Bachmair and H. Ganzinger, “Resolution theorem proving,” in
Handbook of Automated Reasoning, 2001, pp. 19-99.

[12] L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337-340. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1792734.1792766

[13] E. R. Gansner and S. C. North, “An open graph visualization system

and its applications to software engineering,” SOFTWARE - PRACTICE
AND EXPERIENCE, vol. 30, no. 11, pp. 1203-1233, 2000.

AVAILABILITY AND REPRODUCIBILITY !

An evaluation package containing binary 64 bit Linux
versions is available at http://www.complang.tuwien.ac.at/tbfg/
vanHelsing-evaluation.tar.gz. It also contains the benchmark
presented in the evaluation section of this paper. Time was
measured using the time command, we reported the real
value. Measuring of the total runtime of a benchmark set
was done using the following command line: time for
i in *.tptp; do ${PROVER} $i; done. The script
tptp_2_etptp.sh converts TPTP files to E-prover input format
and can be found in the perf_test directory.

At this time no source code is public available, we hope
to change this in the near future.

The command line options mentioned in this paper are:
-p to produce the evidence file, -i dumps the initial problem
graph to a DOT file, -F dumps the relevant sub graphs of failed
conjectured equalities.

Please note that the message Failure does not indicate
an internal problem of vanHelsing. It means that no proof for
the conjecture has been derived.

IThis section will be removed in the final version of the paper

