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necessary may be needed, which may cause unnecessary register spillings and severely degradethe performance of the pipelined loop [3]. However, simultaneous register allocation and softwarepipelining is still less understood and remains open.The interaction between register allocation and loop-free code scheduling has been studiedsince the mid 1980s [10, 18, 13, 19, 20, 21], and register allocation for software pipelinedloop has been studied by many researchers and some e�cient techniques have been proposed[22, 12, 17, 15]. However, the interaction between register allocation and software pipeliningwas lately considered in few studies. Mangione-Smith, et al. developed a lower bound on thenumber of registers needed for a given modulo scheduled loop [23]. A technique called lifetime-sensitive modulo scheduling has been presented by Hu� [24], in which he uses the idea ofbidirectional slack-scheduling to perform the modulo scheduling with a try for shortening thelifetime of a variable. Under the assumption of unlimited resources, Ning and Gao have modelledthe optimal loop scheduling and bu�er allocation problem as an integer programming problemand developed a polynomial time algorithm [25, 26]. Govindarajan et al have integrated theconsideration of resource constraints into Ning and Gao's model [27], but their approach maysu�er from exponential computation complexity in the worst case. In [28], software pipelining istreated as a three step procedure: MRT-scheduling, iteration-scheduling and register allocation.After getting a MRT-schedule, they consider the register requirement problem in the step ofiteration-scheduling which is similar to the phase of �nding column-number in our decomposedsoftware pipelining framework. However, for the loops with dependence cycles, it is not clear intheir approach how to �nd a MRT-schedule such that the iterative-scheduling is successful.In this paper, we study the interaction between software pipelining and register allocationfrom a new perspective. Based on the concepts of row-number and column-number of decom-posed software pipelining [29, 30, 31], we �rst analyze the inuence of the re-use of registers onthe loop data dependence graph and model the problem of software pipelining to reduce registerrequirement. In our model, data dependences, resource constraints and register requirementcan be considered altogether. Our idea is that the row-number is used to satisfy the resourceconstraints whereas the column-number is used to satisfy the data dependences and control theregister requirement. Then we �nd that, given the row-numbers of all operations in the loop,generating the column-numbers to obtain the minimum register requirement can be modelledas the integer programming problem which can be solved in polynomial time. The work of Ningand Gao is actually a special case of our model when no resource constraint exists. Finallywe develop a heuristic approach for software pipelining to reduce register requirement. Registerspilling and register coloring both are considered to further reduce the number of actually neededregisters. Our approach is supported by preliminary experimental results.This paper is organized as follows: The next section gives a brief introduction to decomposedsoftware pipelining. Section 3 �rst analyzes the inuence of the re-use of registers on the loopdata dependence graph and then models the problem of software pipelining to reduce the registerrequirement. In Section 4, we present a solution to the special case of our model when noresource constraint exists. In Section 5, an approaximate solution is developed and both theregister spilling and the register coloring are considered to further reduce the number of actuallyneeded registers. The preliminary experimental results are also presented. Conclusion is givenin Section 6.2 Decomposed Software Pipelining(DESP)The data dependences of a loop can be represented by a Loop Data Dependence Graph (LDDG),(O;E; �; �), where O is the operation set and E the dependence edge set; the dependence2



distance � and the delay � are two non-negative integers associated with each edge. Forexample, e = (op; op0) and (�(e); �(e)) denote that op0 can only be issued �(e) cycles after thestart of the operation op of the �(e)th previous iteration [2, 9].DESP is a novel modulo scheduling approach, and its idea can be illustrated by Figure 2.1as an example. First, we modify the LDDG by removing some edges so that the graph becomesacyclic; secondly, we apply the list scheduling technique [1, 2] on the modi�ed graph to generatethe software pipelined loop body under the resource constraints, and use the row-number todenote the cycle-number of each operation in the loop body; thirdly, we determine the iteration-number (denoted as column-number in the context of DESP) of each operation such that alldata dependences in LDDG are satis�ed.
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    Figure 2.1  Decomposed Software Pipelining  
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Formally, DESP theoretically decomposes the loop schedule � into two functions, row-numberand column-number.De�nition 2.1 Let G = (O;E; �; �) be the LDDG of a loop, and � a valid loop schedule forG with initiation interval II1. We de�ne the row-number rn and the column-number cn, twomappings from O to N (non-negative integer set), such that�(op; 1) = rn(op) + II � (cn(op)� 1) and �(op; i) = �(op; 1) + II � (i� 1):2 Thus, software pipelining can be described below with the concepts of row-number andcolumn-number.De�nition 2.2 (Decomposed Software Pipelining) Let G = (O;E; �; �) be the LDDGof a loop, we say that the row-number, rn, and the column-number, cn, are valid for the loop,if and only if the following constraints are satis�ed:1. resource constraints: 8opi; opj 2 O, if rn(opi) = rn(opj), then opi and opj must not conictwith respect to the resources2;2. dependence constraints:9II 2 N; rn(op0)� rn(op) + II � (�(e) + cn(op0)� cn(op)) � �(e); 8e = (op; op0) 2 E:1That is, a new iteration of the loop can be issued every II cycles2Here, we only consider the pipelined operations and the single-cycle operations, but the de�nition is easilyextended to the case of multi-cycle non-pipelined operations.3



II is called the initiation interval or the length of the software pipelined loop body. The goal ofdecomposed software pipelining is to �nd valid row-number and column-number with minimumII. 2In this paper, we assume that min(rn(op)) = 1 and min(cn(op)) = 0. In previous papers[29, 30, 31], we have proven the following theoretical results.Theorem 2.1 For a given LDDG, suppose we have constructed row-number rn whichsatis�es the resource constraints. We can construct column-number cn such that the datadependence constraints are also satis�ed, if and only if, for each cycle C of the LDDG,X8e2C �(e) � 0where �(e) = ��(e) + d(�(e) + rn(op)� rn(op0))=IIe, e = (op; op0). 2Theorem 2.1 implicitly points out that, if we have constructed row-numbers taking intoaccount the resource constraints for a LDDG without cycle, then we can always constructcolumn-numbers such that the data dependence constraints are also satis�ed.3 Modelling the ProblemIn this section, we will model the problem of software pipelining to reduce register requirement.That is, under the constraints of resources and data dependences, our goal is minimizing boththe initiation interval and the register requirement.3.1 Inuence of Register Requirement on LDDGIn the case of register allocation for a software pipelined loop, more than one register couldbe allocated to one variable. We assume that the registers are well-distributed to di�erentiterations, as shown in Figure 3.1.
x <- {R1,R2}

x= ...

... =x

R1= ...

... =R1

R2= ...

... =R2

R1= ...

... =R1

R2= ...

... =R2
......

Figure 3.1 Register Allocation for Software Pipelined LoopsThus, the anti-dependence edges caused by the re-use of registers are introduced to LDDGin such a way that,(1) If the variable u is �rst de�ned by opi and then used by opj in the original loop body{ we call (opi; opj) a loop-independent dependence(denoted as lid), and u is allocated with Kuregisters, then one anti-dependence edge with the iteration-distance of Ku (i.e. �((opj ; opi)) =Ku) is introduced to LDDG from opj to opi (e.g. the variable x in Figure 3.2);4



(2) If the variable u is �rst used by opj and then de�ned by opi in the original loop body {we call (opi; opj) a loop-carried dependence(denoted as lcd), and u is allocated with Ku regis-ters, then one anti-dependence edge with the iteration-distance (i.e. �((opj ; opi)) = Ku � 1) isintroduced into LDDG from opj to opi (e.g. the variable y in Figure 3.2).
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Figure 3.2 Anti-Dependence Edges Caused by Re-Use of Registers3.2 De�nitionsThe above analysis can be concluded by a new dependence graph LDDG+ which will be de�nedas follows. In addition, we will also de�ne the valid software pipelined loop and the valid softwarepipelined loop body.De�nition 3.1 If a software pipelined loop body is given, then the initiation interval (thelength of the loop body) II and the row-number of each operation are determined, denoted asfII; rng; If a software pipelined loop is given, then the initiation interval II, the row-numberand the column-number of each operation are determined, denoted as fII; rn; cng. 2In fact, if rn is determined, then II can be determined in terms of the LDDG. How todetermine II, however, is beyond the scope of this paper.De�nition 3.2 Given the LDDG (O;E; �; �) of a loop, a software pipelined loop fII; rn; cngis valid if and only if, (1) the resource constraints are satis�ed; and (2) 8e = (opi; opj) 2E; rn(opj)� rn(opi) + II � (�(e) + cn(opj)� cn(opi)) � �(e). 2De�nition 3.3 Given the LDDG (O;E; �; �) of a loop, a software pipelined loop bodyfII; rng is valid if and only if, for each cycle C of the LDDG, P8e2C �(e) � 0, where �(e) =��(e) + d(�(e) + rn(opi)� rn(opj))=IIe; e = (opi; opj). 2Obviously, De�nition 3.2 and 3.3 are directly derived from De�nition 2.2 and Theorem 2.1,respectively.De�nition 3.4 Given the LDDG (O;E; �; �) of a loop, we de�ne LDDG+ = (O;E [Elid [Elcd; �; �), where(1) Elid = f(opi; opj)jopi; opj 2 O; opj �rst de�nes a variable and then opi uses the variable inthe loop body. g; Elcd = f(opi; opj)jopi; opj 2 O; opi �rst uses a variable and then opj de�nesthe variable in the loop body. g;(2) 8e 2 Elid [Elcd; �(e) = 0;(3) 8e 2 Elid; �(e) = Ku; 8e 2 Elcd; �(e) = Ku � 1. Where Ku is the number of registersallocated to u and u is the corresponding variable. 2Figure 3.2 is an example, where (b) is LDDG and (c) is LDDG+. Actually, LDDG+ is thegraph extended by all anti-dependence edges caused by the re-use of registers to LDDG.De�nition 3.5 Given a loop, in the context of our model, its register requirement RR is5



de�ned as the sum of the number of registers allocated to each loop-variant variable in the loop,that is, RR = P8u2V Ku. Where V is the set of all loop-variant variables(that is, they arede�ned in the loop body) and Ku the number of registers allocated to u. 23.3 The Problem DescriptionWe are ready to model the problem of software pipelining to reduce register requirement. FromTheorem 2.1, De�nition 3.2 and 3.3, we directly have the following result.Theorem 3.1 Given a loop and a valid software pipelined loop body fII; rng, we can always�nd the column-number, cn, such that fII; rn; cng is a valid software pipelined loop. 2Now, given the LDDG (O;E; �; �) of a loop and a valid software pipelined loop body fII; rng,any column-number, cn, which we �nd to make fII; rn; cng valid, must satisfy the data depen-dence constraints below:rn(opj)� rn(opi) + II � (�(e) + cn(opj)� cn(opi)) � �(e); 8e = (opi; opj) 2 E:Also, let LDDG+ = (O;E [ Elid [ Elcd; �; �), for any anti-dependence edges caused by there-use of registers, the following constraints must be satis�ed:rn(opj)� rn(opi) + II � (Ku + cn(opj)� cn(opi)) � 0;8(opi; opj) 2 Elid;rn(opj)� rn(opi) + II � (Ku � 1 + cn(opj)� cn(opi)) � 0;8(opi; opj) 2 Elcd;Thus, given a valid fII; rng, the minimum register requirement can be determined by theabove dependence constraints.De�nition 3.6 Given the LDDG (O;E; �; �) of a loop and a valid software pipelined loopbody fII; rng, let LDDG+ = (O;E [ Elid [ Elcd; �; �), the problem of �nding the minimumregister requirement can be modelled as an integer programming problem as follows:min X8u2V KuSubject tocn(opj)� cn(opi) � ��(e) + d(�(e) � rn(opj) + rn(opi))=IIe;8e = (opi; opj) 2 E;Ku + cn(opj)� cn(opi) � d(rn(opi)� rn(opj))=IIe;8(opi; opj) 2 Elid;Ku + cn(opj)� cn(opi) � 1 + d(rn(opi)� rn(opj))=IIe;8(opi; opj) 2 Elcd;Ku; cn(op) integers; 8op 2 O; u 2 V:Where V is the set of all loop-variant variables. The minimum register requirement correspond-ing to fII; rng is denoted as RRmin(II; rn). 2.The column-number can be automatically determined while the integer programming prob-lem is solved. Thus, the problem of software pipelining to reduce register requirement can beexpressed in a very simple way. 6



De�nition 3.7 (The problem of software pipelining to reduce register require-ment) Given the LDDG of a loop, �nd a valid software pipelined loop body fII; rng such thatboth the II and the RRmin(II; rn) are minimum. 2Theorem 3.2 Given the LDDG (O;E; �; �) of a loop and a valid software pipelined loopbody fII; rng, the solution to the integer programming problem of De�nition 3.6 exists. 2Proof: Given fII; rng, the right hand side of each inequality of the data dependence con-straints is a constant, so we only need to prove that, for any valid fII; rng, we can always �ndcn such thatcn(opj)� cn(opi) � ��(e) + d(�(e) � rn(opj) + rn(opi))=IIe; 8e = (opi; opj) 2 E:This is actually the result of Theorem 3.1. 2Theorem 3.3 The constraint matrix in the integer programming problem of De�nition 3.6is totally unimodular. 2Theorem 3.3, which is directly derived from the work of Ning and Gao [25, 26], points outthat the integer programming problem of De�nition 3.6 can be solved as a linear programmingproblem and the optimal solution is guaranteed to be integral. Therefore, in order to solveour integer programming problem, we can use general linear programming algorithms such assimplex, ellipsoid or interior point methods [32, 33, 34]. Also, Ning and Gao presented a moree�cient algorithm whose computation complexity is O(n3 logn), where n is the number of nodesin LDDG.4 A Solution to the Special Case without Resource ConstraintsIn De�nition 3.6 and 3.7, we use the row-number to treat the resource constraints and usethe column-number to satisfy the data dependences and to determine the minimum registerrequirement. In this section, we will point out that, when no resource constraint exists, themodel of software pipelining to reduce register requirement can be greatly simpli�ed.As the �rst step, we combine the row-number and the column-number to a new function, �.De�nition 4.1 Given a valid software pipelined loop fII; rn; cng, we de�ne �(op) = rn(op)+II � cn(op) for each operation op. 2� actually represents a pipelinable loop with the initiation interval of II, where �(op) denotesthe cycle-number of op in the pipelinable loop body. Figure 4.1 gives an example.
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Figure 4.1 {II, rn, cn} and πWith the concept of �, De�nition 3.6 and 3.7 can be combined below:De�nition 4.2 (The problem of software pipelining to reduce register require-ment without resource constraints) Given LDDG = (O;E; �; �) of a loop, let LDDG+ =7



(O;E [ Elid [ Elcd; �; �), the problem of software pipelining to reduce register requirement canbe modelled as an integer programming problem as follows:min X8u2V KuSubject to �(opj)� �(opi) � ��(e) �MII + �(e);8e = (opi; opj) 2 E;MII �Ku + �(opj)� �(opi) � 0;8(opi; opj) 2 Elid;MII �Ku + �(opj)� �(opi) � 1;8(opi; opj) 2 Elcd;Ku; �(op) integers; 8op 2 O; u 2 V:Where V is the set of all loop-variant variables, MII is the minimum initiation interval whichcan be computed as MII = max8C2LDDG((X8e2C �(e))=(X8e2C �(e)))2. Obviously, the above integer programming problem is of the same properties as those ofDe�nition 3.6, so it can be also e�ciently solved.5 An Approximate Solution to the General CaseAs to the general case with resource constraints, we can only look for heuristic approaches.The key is �rst to �nd a valid software pipelined loop body which is sensitive to the registerrequirement.Our software pipelining framework is based on the DESP as shown in Figure 2.1. In the �rststep, we use the following method to modify the LDDG [29, 30, 31]:(1) �nd out all strongly connected components (SCCs) in the LDDG, remove all edges whichare not included in the SCCs;(2) under the unlimited resource constraints, generate a software pipelined loop for the SCCs,denoted as (rn0; cn0);(3) for each edge e = (opi; opj) of SCCs, if rn0(opj) � rn0(opi) < �(e), then remove e fromthe SCCs.The remaining graph is acyclic, denoted as MLDDG. We have proven that any softwarepipelined loop body satisfying the data dependences of the MLDDG is valid.In the second step, we use the heuristic scheduling method presented in this section. In thethird step, we solve the integer programming problem to determine the column-number. Twoother measures { register spilling and register coloring { are also presented to further reduce theregister requirement.
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5.1 The Heuristic SchedulingThe register requirement of a variable is determined by its lifetime; and its lifetime is mainlydetermined by the column-numbers of the corresponding operations. For example, u is writtenby opi and read by opj , then u's lifetime, lt(u), satis�es the inequality: II � (cn(opj)�cn(opi))�II + 1 � lt(u) � II � (cn(opj)� cn(opi)) + II � 1. If rn(opi) and rn(opj) are known, then lt(u)can be precisely computed by lt(u) = II � (cn(opj) � cn(opi)) + rn(opi) � rn(opj). Note thatjrn(opi)� rn(opj)j < II, the objective of this subsection is only to reduce cn(opj)� cn(opi).Let us consider two operations, op and op0, with a dependence edge e = (op; op0) in the LDDG,we have the data dependence constraint: II � (�(e)+cn(op0)�cn(op))+rn(op0)�rn(op) � �(e).If rn(op0)�rn(op) � �(e), then cn(op0)�cn(op) can take the minimum value, ��(e). In general,the greater is rn(op0) � rn(op), the less is cn(op0) � cn(op). These facts help us to developscheduling heuristics to the register requirement.First, add some edges to the MLDDG such that cn(op0) � cn(op) of these edges can takethe minimum values. As most dependence edges originally in the LDDG have been removed inthe MLDDG, there may be a lot of schedulable operations at each cycle. Without increase ofthe estimated II3, it is possible that some operations can be delayed to schedule such that somedependence edges are satis�ed.We suggest that an edge e = (op; op0) can be added to the MLDDG only if(1) The operation op0 does not use the critical resources. res is one of the critical resourcesif t� 1 + dN=ne � the estimated II, where t is the current cycle, N is the number of operationsusing res and n is the number of res in the machine; and(2) The lengths of the resulting dependence paths are not greater than the estimated II. Thatis, t+ �(e) + height(op0)� 1 � the estimated II, where t is the current cycle and height(op0) isthe height of op0 in the MLDDG. In this case, we say op0 can be delayed at cycle t.Then we present some scheduling heuristics to determine the scheduling priorities of opera-tions.In order to obtain the optimal time e�ciency, we consider the height of operation(that meansthe length of the longest path from the operation to the end of the graph) in the MLDDG as the�rst heuristic. Besides, two heuristics sensitive to register requirement are considered as follows:(1) If an operation can be delayed and uses the critical resources, then it has a lower schedul-ing priority;(2) If an operation has no predecessor in the LDDG, then it has a higher scheduling priority.We take an example shown in Figure 5.1 and 5.2 to demonstrate the above scheduling process.Figure 5.1(1) is the loop and (2) the machine model. The LDDG is shown in Figure 5.2(1). Afterthe �rst step of DESP software pipelining framework, we get the MLDDG as shown in Figure5.2(2). The machine has only one multiplier but the loop includes two multiplications, so theestimated II is 2. First, op2 does not use the critical resources and can be delayed, so the edge(op1; op2) is added to the MLDDG. At the �rst cycle, op4 uses the critical resources and canbe delayed, so it has a lower scheduling priority; thus, op1, op3, op5 and op6 are put in the �rstcycle. op2 and op4 are put in the second cycle.3The estimated II can be derived from the critical cycle of the LDDG and the number of operations using thecritical resources.
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The Original Loop:

for i=1 to n do
s=s+a[i]
a[i]=s*s*a[i]
enddo

The Code of 
the Loop Body:

1. t0=t0+1;
2. t1=a[t0];
3. s=s+t1;
4. t2=s*s;
5. t3=t1*t2;
6. a[t0]=t3 

(1) The Loop

Pipeline     Number   Operation  Latency

Memory port    2         Load       13
                         Store       1
Address ALU    2        Add/Sub      1
Adder          1       FAdd/FSub     1
                       IAdd/ISub     1
Multiplier     1          FMUL       2
                          IMUL       2

(2) The Machine Model

Figure 5.1 An Example
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5.2 Register SpillingSpilling decision are conventionally made only when a register conict occurs, that is, the numberof simultaneously live variables is greater than the number of available machine registers. Thee�ect of spilling is keeping the result of a computation in memory rather than in a register suchthat the register can be re-used to keep the result of a new computation at the cost of increasingthe number of load/store operations.In this subsection we discuss register spilling problem for software pipelining. Our starting-points are that, (1) spilling decision should be made during software pipelining; and (2) spillingcan be used to reduce the register requirement without degradation of the optimal softwarepipelining performance.In our heuristic scheduling and the solving of the integer programming problem of De�nition3.6, we try to minimize the lifetime of each variable. Given a loop, however, each variable hasa lower bound on its lifetime; this lower bound is determined by the length of the longest pathin the LDDG from the variable's de�nition to its use. For example, in Figure 5.2(1), the lowerbound on t0's lifetime is the length of the path from op1 to op6, that is 19.The e�ects of a spilling can re-construct the LDDG and may decrease the lower bound onthe lifetimes for some variables. For the example as shown in Figure 5.2, after we spill theuse, use(op6; t0), { that is, spill t0 only for op6 { the LDDG is modi�ed to the one as shownin Figure 5.2(3). It is not di�cult to compute that the lower bound on t0's lifetime becomes1. The register requirement is reduced even if we consider the registers needed for the newlyintroduced variable.Spilling introduces new load/store operations. We suggest that the load/store operationscaused by spilling does not increase the estimated II.10



The spilling � benefit of a use is de�ned as the decrease of lifetime per inserted load/storeoperation. More precisely, given a use, use(op; u), where op is the operation using variable u,let lt(u) be the lower bound on u's lifetime before spill use(op; u) and lt0(u) the one after spilluse(op; u). Thus, the spilling-bene�t of use(op; u) is d(lt(u) � lt0(u))=2e as a store and a loadare inserted to the LDDG. Obviously, a use with greater value of spilling-bene�t is the one withhigher spilling priority.We take the loop shown in Figure 5.1 as an example to illustrate the above ideas. We discusstwo cases: (1) scheduling without spilling; (2) scheduling with spilling.For the �rst case, the estimated II is 2 since the machine has one multiplier but the loopbody contains two multiplications. The valid software pipelined loop body can be found underthe constraint of the MLDDG (shown in Figure 5.2(2)). After adding an edge (1; 2) to theMLDDG, we obtain rn(1) = rn(3) = rn(5) = rn(6) = 1 and rn(2) = rn(4) = 2. It is easy tocompute the number of required registers for the loop, which is 23.For the second case, the estimated II is also 2. After computing the spilling-bene�ts of alluses, we �nd that up(op6; t0) has the greatest value of spilling-bene�t which is d(19�15)=2e = 2,so up(op6; t0) has the highest spilling priority. After spilling up(op6; t0), the modi�ed LDDGand MLDDG are shown in Figure 5.2(3) and (4), respectively. After adding an edge (1; 2) to theMLDDG, we obtain rn(1) = rn(3) = rn(5) = rn(6) = rn(s) = 1 and rn(2) = rn(4) = rn(l) = 2.It is easy to compute the number of required registers for the loop, which is 21.5.3 Register ColoringAfter we obtain the software pipelined loop with the minimum register requirement, we canfurther reduce the number of actually needed registers by register coloring since we de�ned theregister requirement of a loop as the sum of the register requirements of all variables when webuilt our model.First, we construct the weighted interference graph (WIG), where the weight on each noderepresents the register requirement of the corresponding variable. Thus, the number of actuallyneeded registers can be counted by the conventional method [14].Secondly, we de�ne the degree of a node with consideration of the weight of each node. Forexample, let Ku denote the weight of u, NS(u) be its adjacent node set, then the degree of u,deg(u) = Ku +Pv2NS(u)Kv.Finally, the number of registers can be counted as follows:(1) For each node u in the WIG, compute its degree deg(u);(2) Let RR = minu(deg(u));(3) Find a node v in the WIG with the minimum degree; if deg(v) > RR then RR = deg(v);(4) Update the WIG by removing v and all its edges;(5) If the WIG is empty then return (RR); else re-compute the degrees of all remainingnodes in the WIG and goto (3).5.4 The AlgorithmThe algorithm is described as follows:Algorithm Scheduling; 11



INPUT: The loop to be software pipelined and its LDDG;OUTPUT: The software pipelined loop;BEGIN1. Construct the MLDDG, determine the estimated II;2. Compute the height of each operation in the MLDDG;3. Check and add some edges to the MLDDG;4. Call the spill-checking;5. Re-compute the heights of some operations;6. Find out all schedulable operations at the current cycle and put them in the DRS (DataReady Set);7. Determine the scheduling priorities of all operations in the DRS;8. Under the constraint of resources, select the operation with the highest scheduling priorityfrom the DRS and place it in the current cycle, update the DSR. This step repeats until nooperation can be placed in the current cycle;9. If all operations of the loop have been scheduled then goto step 10; else update the DRS,the MLDDG and the estimated II and goto step 3;10. For each operation, let its row-number be its cycle-number. Determine the II; solvethe integer programming problem of De�nition 3.6 to determine the column-number and theminimum register requirement11. Generate the software pipelined loop in terms of the row-numbers and the column-numbers;12. Call the register coloring and determine the number of actually needed registers;END;The spill-checking algorithm is described as follows:Algorithm Spill-Checking;BEGIN1. If the memory access unit is one of the critical resources, then return;2. Compute the spilling-bene�t of each use;3. Under the constraint of not increasing the estimated II, select a (group of) use(s) forspilling. In this step, if no use can be selected then return;4. Update the MLDDG and the DRS; return;END;5.5 The Preliminary Experimental ResultsThe e�ort to implement the above algorithm is underway. Before getting extensive experimentaltests, we select four examples to verify our algorithm. Except for example 1, the other threeexamples are selected from the Livermore benchmarks. As our preliminary experiments aremainly conducted by a manual simulation, we try to select some simple loops in a random12



way. The machine model we use in the experiments is shown in Figure 5.1(2). For comparison,example 1 and the machine model are directly cited from [17].
Table 1.  Register Requirement 
 for Two Scheduling Approaches

Example   L   MII    DESP   Our new approach

   1      20   2      27          21
   2      22   3      39          30
   3      18   3      21          18 
   4      17   2      27          25 

note: L = the length of the longest 
          dependence path in the loop body;
      MII = the minimum initiation interval.Table 1 gives the register requirements for the optimal software pipelining performance bytwo scheduling approaches { DESP and our new approach presented in this paper. We see thatour new approach can obtain an improvement over DESP up to 23:1% in register use withoutdegradation of the optimal performance. Note that, for example 1, [17] gets the result with therequirement of 28 registers.6 ConclusionThis paper studies the interaction between software pipelining and register allocation. Based onthe concepts of row-number and column-number of decomposed software pipelining, we analyzethe inuence of the re-use of registers on the loop data dependence graph and develop a modelof software pipelining to reduce register requirement in which data dependences, resource con-straints and register requirement can be considered together. We use the row-number to satisfythe resource constraints and use the column-number to satisfy the data dependences and controlthe register requirement. Given the row-numbers of all operations in the loop, generating thecolumn-numbers to obtain the minimum register requirement can be modelled as an integerprogramming problem which can be solved in polynomial time. A solution to the special casewithout resource constraints and an approximate solution to the general case with resource con-straints are presented. Register spilling and register coloring are considered to further reduce thenumber of actually needed registers. The preliminary experimental results show the e�ciencyof our new approach. Our future work is to implement our new model and approaches using ourcompiler testbed.References[1] J.A. Fisher, D. Landskov, and B.D. Shriver. Microcode compaction: Looking backwardand looking forward. In proceedings of 1981 National Computer Conference, 95-102 1981.[2] F. Gasperoni. Compilation techniques for vliw architectures. Technical Report TR435, NewYork University, March 1989.[3] B. R. Rau and J.A. Fisher. Instruction-level parallel processing: History, overview andperspective. The Journal of Supercomputing, 7(1), January 1993.[4] B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily schedulable horizon-tal architecture for high performance scienti�c computing. In proceedings of the 14th In-13
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