Software Pipelining
with Reduced Register Requirement *

Jian Wang® Andreas Krall ~ M. Anton Ertl

Institut fiir Computersprachen
Technische Universitat Wien
Argentinierstr. 8
A-1040 Vienna, Austria

Abstract

Although it is well-known that a strong interaction exists between software pipelining
and register allocation, simultaneous software pipelining and register allocation is still less
understood and remains an open problem. In this paper, we first analyze the influence
of the re-use of registers on the loop data dependence graph and model the problem of
software pipelining to reduce register requirement based on the concepts of row-number and
column-number of decomposed software pipelining. Given the row-numbers of all operations
in the loop, generating the column-numbers to obtain the minimum register requirement
can be modelled as the integer programming problem which can be solved in polynomial
time. Then, a solution is presented to the special case without resource constraints and an
approximate solution is presented to the general case with resource constraints. Register
spilling and register coloring are considered to further reduce the number of actually needed
registers. The preliminary experimental results are presented to indicate the efficiency of our
new approach.

Keywords: Instruction-level Parallelism, Loop Scheduling, Software Pipelining, Register
Allocation, Register Spilling, Register Coloring

1 Introduction

Exploiting Instruction-Level Parallelism (ILP) within loops has become a key compilation is-
sue for the instruction-level parallel processors like Very Long Instruction Word (VLIW) and
superscalar machines [1, 2, 3]. Software pipelining is an efficient compilation technique to
exploit ILP for loops, which initiates successive iterations before previous iterations complete
[4,5,6,7,8,9,10, 11, 12].

Register Allocation is another key compilation issue [13, 14, 15, 16, 17]. It has been well-
known that a strong interaction exists between software pipelining and register allocation. On
one hand, performing register allocation before software pipelining may introduce unacceptable
anti-dependences due to the reuse of registers, which may limit software pipelining [17, 3].
On the other hand, if software pipelining is done before register allocation, more registers than

*This work was supported by the Lise Meitner Stipendium funded by the Austrian Science Foundation (FWF)
and the Austrian Science and Research Ministry.
"Email: jlan@mips.complang.tuwien.ac.at; Tel: 43-1-588014474; Fax: 43-1-5057838.

necessary may be needed, which may cause unnecessary register spillings and severely degrade
the performance of the pipelined loop [3]. However, simultaneous register allocation and software
pipelining is still less understood and remains open.

The interaction between register allocation and loop-free code scheduling has been studied
since the mid 1980s [10, 18, 13, 19, 20, 21], and register allocation for software pipelined
loop has been studied by many researchers and some efficient techniques have been proposed
[22, 12, 17, 15]. However, the interaction between register allocation and software pipelining
was lately considered in few studies. Mangione-Smith, et al. developed a lower bound on the
number of registers needed for a given modulo scheduled loop [23]. A technique called lifetime-
sensitive modulo scheduling has been presented by Huff [24], in which he uses the idea of
bidirectional slack-scheduling to perform the modulo scheduling with a try for shortening the
lifetime of a variable. Under the assumption of unlimited resources, Ning and Gao have modelled
the optimal loop scheduling and buffer allocation problem as an integer programming problem
and developed a polynomial time algorithm [25, 26]. Govindarajan et al have integrated the
consideration of resource constraints into Ning and Gao’s model [27], but their approach may
suffer from exponential computation complexity in the worst case. In [28], software pipelining is
treated as a three step procedure: MRT-scheduling, iteration-scheduling and register allocation.
After getting a MRT-schedule, they consider the register requirement problem in the step of
iteration-scheduling which is similar to the phase of finding column-number in our decomposed
software pipelining framework. However, for the loops with dependence cycles, it is not clear in
their approach how to find a MRT-schedule such that the iterative-scheduling is successful.

In this paper, we study the interaction between software pipelining and register allocation
from a new perspective. Based on the concepts of row-number and column-number of decom-
posed software pipelining [29, 30, 31], we first analyze the influence of the re-use of registers on
the loop data dependence graph and model the problem of software pipelining to reduce register
requirement. In our model, data dependences, resource constraints and register requirement
can be considered altogether. Our idea is that the row-number is used to satisfy the resource
constraints whereas the column-number is used to satisfy the data dependences and control the
register requirement. Then we find that, given the row-numbers of all operations in the loop,
generating the column-numbers to obtain the minimum register requirement can be modelled
as the integer programming problem which can be solved in polynomial time. The work of Ning
and Gao is actually a special case of our model when no resource constraint exists. Finally
we develop a heuristic approach for software pipelining to reduce register requirement. Register
spilling and register coloring both are considered to further reduce the number of actually needed
registers. Our approach is supported by preliminary experimental results.

This paper is organized as follows: The next section gives a brief introduction to decomposed
software pipelining. Section 3 first analyzes the influence of the re-use of registers on the loop
data dependence graph and then models the problem of software pipelining to reduce the register
requirement. In Section 4, we present a solution to the special case of our model when no
resource constraint exists. In Section 5, an approaximate solution is developed and both the
register spilling and the register coloring are considered to further reduce the number of actually
needed registers. The preliminary experimental results are also presented. Conclusion is given
in Section 6.

2 Decomposed Software Pipelining(DESP)

The data dependences of a loop can be represented by a Loop Data Dependence Graph (LDDG),
(O,E,)\, 0), where O is the operation set and E the dependence edge set; the dependence

distance)\ and the delay ¢ are two non-negative integers associated with each edge. For
example, e = (op,op’) and (A(e),d(e)) denote that op’ can only be issued d(e) cycles after the
start of the operation op of the A(e)th previous iteration [2, 9].

DESP is a novel modulo scheduling approach, and its idea can be illustrated by Figure 2.1
as an example. First, we modify the LDDG by removing some edges so that the graph becomes
acyclic; secondly, we apply the list scheduling technique [1, 2] on the modified graph to generate
the software pipelined loop body under the resource constraints, and use the row-number to
denote the cycle-number of each operation in the loop body; thirdly, we determine the iteration-
number (denoted as column-number in the context of DESP) of each operation such that all
data dependences in LDDG are satisfied.

LDDG MLDDG

’ m
, <::> <::> 15314 | 11=2
' 2 62

step 1 stV

—_— @ * step 3

1,4,
2
) cn 1 2
. 53, 1,4;
. 6. 2: 15
® O O © 3
b 5,3; 26
— loop independent dependence 6

— - loop-carried dependence

Figure 2.1 Deconposed Software Pipelining

Formally, DESP theoretically decomposes the loop schedule ¢ into two functions, row-number
and column-number.

Definition 2.1 Let G = (O, E, A\, 0) be the LDDG of a loop, and ¢ a valid loop schedule for
G with initiation interval IT'. We define the row-number rn and the column-number cn, two
mappings from O to N (non-negative integer set), such that

o(op,1) = rn(op) + I * (en(op) — 1) and o(op,i) = c(op,1) + IT (i — 1).

Thus, software pipelining can be described below with the concepts of row-number and
column-number.

Definition 2.2 (Decomposed Software Pipelining) Let G = (O, E, X, §) be the LDDG
of a loop, we say that the row-number, rn, and the column-number, cn, are valid for the loop,
if and only if the following constraints are satisfied:

1. resource constraints: Yop;,op; € O, if rn(op;) = rn(op;), then op; and op; must not conflict
with respect to the resources?;

2. dependence constraints:

AIT € N, rn(op’) — rn(op) + IT x (\(e) + cn(op') — cn(op)) > 6(e), Ve = (op,op’) € E.

'That is, a new iteration of the loop can be issued every IT cycles
2Here, we only consider the pipelined operations and the single-cycle operations, but the definition is easily
extended to the case of multi-cycle non-pipelined operations.

IT is called the initiation interval or the length of the software pipelined loop body. The goal of
decomposed software pipelining is to find valid row-number and column-number with minimum
II. O

In this paper, we assume that min(rn(op)) = 1 and min(cn(op)) = 0. In previous papers
[29, 30, 31], we have proven the following theoretical results.

Theorem 2.1 For a given LDDG, suppose we have constructed row-number rn which
satisfies the resource constraints. We can construct column-number cn such that the data
dependence constraints are also satisfied, if and only if, for each cycle C' of the LDDG,

Z 7(e) <0

VeeC

where 7(e) = —\(e) + [(d(e) + rn(op) — rn(op'))/IT], e = (op,0p’). O

Theorem 2.1 implicitly points out that, if we have constructed row-numbers taking into
account the resource constraints for a LDDG without cycle, then we can always construct
column-numbers such that the data dependence constraints are also satisfied.

3 Modelling the Problem

In this section, we will model the problem of software pipelining to reduce register requirement.
That is, under the constraints of resources and data dependences, our goal is minimizing both
the initiation interval and the register requirement.

3.1 Influence of Register Requirement on LDDG

In the case of register allocation for a software pipelined loop, more than one register could
be allocated to one variable. We assume that the registers are well-distributed to different
iterations, as shown in Figure 3.1.

x <- {Rl, R2}

R1= ...

. =Rl Rl= ...

C=R2 |

Figure 3.1 Register Allocation for Software Pipelined Loops

Thus, the anti-dependence edges caused by the re-use of registers are introduced to LDDG
in such a way that,

(1) If the variable v is first defined by op; and then used by op; in the original loop body
— we call (op;, op;) a loop-independent dependence(denoted as lid), and w is allocated with K,
registers, then one anti-dependence edge with the iteration-distance of K, (i.e. A((opj,op;)) =
K,) is introduced to LDDG from op; to op; (e.g. the variable z in Figure 3.2);

4

(2) If the variable w is first used by op; and then defined by op; in the original loop body —
we call (op;,op;) a loop-carried dependence(denoted as lcd), and u is allocated with K, regis-
ters, then one anti-dependence edge with the iteration-distance (i.e. A((op;,op;)) = K, — 1) is
introduced into LDDG from op; to op; (e.g. the variable y in Figure 3.2).

®
(1, 6) (Ky-1,0)
® ®

(a) a loop (b) LDDG (c) anti-dependence edges introduced
by reuse of registers for x and y

Figure 3.2 Anti-Dependence Edges Caused by Re-Use of Registers

3.2 Definitions

The above analysis can be concluded by a new dependence graph LD DG™ which will be defined
as follows. In addition, we will also define the valid software pipelined loop and the valid software
pipelined loop body.

Definition 3.1 If a software pipelined loop body is given, then the initiation interval (the
length of the loop body) I and the row-number of each operation are determined, denoted as
{II,rn}; If a software pipelined loop is given, then the initiation interval II, the row-number
and the column-number of each operation are determined, denoted as {II,rn,cn}. O

In fact, if rn is determined, then II can be determined in terms of the LDDG. How to
determine 17, however, is beyond the scope of this paper.

Definition 3.2 Given the LDDG (O, E, A, §) of a loop, a software pipelined loop {II,rn,cn}
is valid if and only if, (1) the resource constraints are satisfied; and (2) Ve = (op;,0p;) €
E,rn(opj) — rn(op;) + IT % (A(e) + cn(op;) — en(op;)) > d(e). O

Definition 3.3 Given the LDDG (O, E, \,d) of a loop, a software pipelined loop body
{I1,rn} is valid if and only if, for each cycle C of the LDDG, > y.cc7(e) < 0, where 7(e) =
—A(e) + [(6(e) + rn(opi) — rn(op;)) /111, e = (op;,op;). O

Obviously, Definition 3.2 and 3.3 are directly derived from Definition 2.2 and Theorem 2.1,
respectively.

Definition 3.4 Given the LDDG (O, E, A, §) of a loop, we define LDDG™ = (O, E U Ej;jy U
Ejcq, \,0), where

(1) Eiiq = {(opi,opj)|opi,op; € O; op; first defines a variable and then op; uses the variable in
the loop body. }; Ejcq = {(opi,opj)|opi,op; € O; op; first uses a variable and then op; defines
the variable in the loop body. };

(2) Ve € Ejig U Ejeq, 0(e) = 0;
(3) Ve € Ejg, Ae) = Ky; Ve € Ejeg,Me) = K, — 1. Where K, is the number of registers
allocated to v and u is the corresponding variable. O

Figure 3.2 is an example, where (b) is LDDG and (c) is LDDG™. Actually, LDDG™ is the
graph extended by all anti-dependence edges caused by the re-use of registers to LDDG.

Definition 3.5 Given a loop, in the context of our model, its register requirement RR is

defined as the sum of the number of registers allocated to each loop-variant variable in the loop,
that is, RR = Y y,cy Ky. Where V is the set of all loop-variant variables(that is, they are
defined in the loop body) and K, the number of registers allocated to u. O

3.3 The Problem Description

We are ready to model the problem of software pipelining to reduce register requirement. From
Theorem 2.1, Definition 3.2 and 3.3, we directly have the following result.

Theorem 3.1 Given a loop and a valid software pipelined loop body {II,rn}, we can always
find the column-number, ¢n, such that {II,rn,cn} is a valid software pipelined loop. O

Now, given the LDDG (O, E,)\, §) of a loop and a valid software pipelined loop body {II,rn},
any column-number, en, which we find to make {II,rn,cn} valid, must satisfy the data depen-
dence constraints below:

rn(op;) — rn(op;) + IT * (A(e) + en(op;) — en(op;)) > d6(e), Ve = (op;,op;) € E.

Also, let LDDG* = (O, E U Ej;q U Eje4, A, 0), for any anti-dependence edges caused by the
re-use of registers, the following constraints must be satisfied:

rn(op;) — rn(op;) + 11 * (Ky + en(op;) — en(opi)) > 0,Y(opi, op;) € Eiig;

rn(op;) — rn(op;) + 11 * (K, — 1 + cn(op;) — cn(op;)) > 0,Y(op;, op;) € Ejeq;

Thus, given a valid {II,rn}, the minimum register requirement can be determined by the
above dependence constraints.

Definition 3.6 Given the LDDG (O, E, X,) of a loop and a valid software pipelined loop
body {II,rn}, let LDDG" = (O, E U E};q U Ej.q, \,0), the problem of finding the minimum
register requirement can be modelled as an integer programming problem as follows:

min Z K,

YueVv

Subject to

en(opj) — en(op;) > —A(e) + [(6(e) — rn(op;) + rn(opi))/IT1,Ve = (op;,op;) € E;
Ky, + en(op;) — en(op (opi) — rn(op;))/ 111,V (opi, op;) € Eia;

(opi) — rn(op;))/111,Y(opi, 0p;) € Eicg;
K, cn(op) integers, Yop € O,u € V.

i) = [(rn
K, + cn(opj) — en(op;) > 1+ [(rn

Where V is the set of all loop-variant variables. The minimum register requirement correspond-
ing to {II,rn} is denoted as RRyn(I1,rn). O.

The column-number can be automatically determined while the integer programming prob-
lem is solved. Thus, the problem of software pipelining to reduce register requirement can be
expressed in a very simple way.

Definition 3.7 (The problem of software pipelining to reduce register require-
ment) Given the LDDG of a loop, find a valid software pipelined loop body {II,rn} such that
both the I'T and the RR,,;;n(I1,rn) are minimum. O

Theorem 3.2 Given the LDDG (O, E, \,0) of a loop and a valid software pipelined loop
body {II,rn}, the solution to the integer programming problem of Definition 3.6 exists. O

Proof: Given {II,rn}, the right hand side of each inequality of the data dependence con-
straints is a constant, so we only need to prove that, for any valid {II,rn}, we can always find
cn such that

en(op;) — en(op;) > —X(e) + [(6(e) — rn(op;) + rn(op;))/I1], Ve = (op;, op;) € E.

This is actually the result of Theorem 3.1. O

Theorem 3.3 The constraint matrix in the integer programming problem of Definition 3.6
is totally unimodular. O

Theorem 3.3, which is directly derived from the work of Ning and Gao [25, 26], points out
that the integer programming problem of Definition 3.6 can be solved as a linear programming
problem and the optimal solution is guaranteed to be integral. Therefore, in order to solve
our integer programming problem, we can use general linear programming algorithms such as
simplex, ellipsoid or interior point methods [32, 33, 34]. Also, Ning and Gao presented a more
efficient algorithm whose computation complexity is O(n> logn), where n is the number of nodes
in LDDG.

4 A Solution to the Special Case without Resource Constraints

In Definition 3.6 and 3.7, we use the row-number to treat the resource constraints and use
the column-number to satisfy the data dependences and to determine the minimum register
requirement. In this section, we will point out that, when no resource constraint exists, the
model of software pipelining to reduce register requirement can be greatly simplified.

As the first step, we combine the row-number and the column-number to a new function, .

Definition 4.1 Given a valid software pipelined loop {II,rn, cn}, we define 7w(op) = rn(op)+
IT x cn(op) for each operation op. O

7 actually represents a pipelinable loop with the initiation interval of 11, where m(op) denotes
the cycle-number of op in the pipelinable loop body. Figure 4.1 gives an example.

{11, mn, cn} - pipelining
=2 -
0 - 1 * o) ggg opl
opl 1 op4 op2
WP e
2 op2 op4 op4 4 gfﬁ
Figure 4.1 {11, rn, cn} and m

With the concept of 7, Definition 3.6 and 3.7 can be combined below:

Definition 4.2 (The problem of software pipelining to reduce register require-
ment without resource constraints) Given LDDG = (O, E, \,d) of a loop, let LDDG" =

(O,E U Ej;;qU Eje4, A\, 0), the problem of software pipelining to reduce register requirement can
be modelled as an integer programming problem as follows:

min Z K,

YueV

Subject to

m(op;) — m(opi) > —X(e) * MII + i(e),Ve = (op;,0p;) € E;
MII « Ky, + m(opj) — m(op;) > 0,Y(opi, op;) € Eiig;

MII * Ky + m(opj) — w(opi) > 1,¥(opi, 0p;) € Eiea;

K, m(op) integers, Yop € O,u € V.

Where V is the set of all loop-variant variables, M I is the minimum initiation interval which
can be computed as

MIT =, e, (32 /(S X))

Obviously, the above integer programming problem is of the same properties as those of
Definition 3.6, so it can be also efficiently solved.

5 An Approximate Solution to the General Case

As to the general case with resource constraints, we can only look for heuristic approaches.
The key is first to find a valid software pipelined loop body which is sensitive to the register
requirement.

Our software pipelining framework is based on the DESP as shown in Figure 2.1. In the first
step, we use the following method to modify the LDDG [29, 30, 31]:

(1) find out all strongly connected components (SCCs) in the LDDG, remove all edges which
are not included in the SCCs;

(2) under the unlimited resource constraints, generate a software pipelined loop for the SCCs,
denoted as (rng, cng);

(3) for each edge e = (op;, op;) of SCCs, if rng(op;) — rng(op;) < d(e), then remove e from
the SCCs.

The remaining graph is acyclic, denoted as MLDDG. We have proven that any software
pipelined loop body satisfying the data dependences of the MLDDG is valid.

In the second step, we use the heuristic scheduling method presented in this section. In the
third step, we solve the integer programming problem to determine the column-number. Two
other measures — register spilling and register coloring — are also presented to further reduce the
register requirement.

5.1 The Heuristic Scheduling

The register requirement of a variable is determined by its lifetime; and its lifetime is mainly
determined by the column-numbers of the corresponding operations. For example, u is written
by op; and read by op;, then u’s lifetime, lt(u), satisfies the inequality: I« (en(op;) —cn(op;)) —
IT+1 <It(u) < II*(en(op;) —cn(op;)) + 11 — 1. If rn(op;) and rn(op;) are known, then It(u)
can be precisely computed by lt(u) = IT % (cn(opj) — en(op;)) + rn(op;) — rn(op;). Note that
|rn(op;) — rn(op;)| < II, the objective of this subsection is only to reduce cn(op;) — cn(op;).

Let us consider two operations, op and op’, with a dependence edge e = (op, op’) in the LDDG,
we have the data dependence constraint: ITx (A(e)+cen(op’) —cn(op)) +rn(op’) —rn(op) > d(e).
If rn(op’) —rn(op) > d(e), then en(op’) — en(op) can take the minimum value, —A(e). In general,
the greater is rn(op’) — rn(op), the less is en(op’) — cn(op). These facts help us to develop
scheduling heuristics to the register requirement.

First, add some edges to the MLDDG such that cn(op’) — en(op) of these edges can take
the minimum values. As most dependence edges originally in the LDDG have been removed in
the MLDDG, there may be a lot of schedulable operations at each cycle. Without increase of
the estimated II3, it is possible that some operations can be delayed to schedule such that some
dependence edges are satisfied.

We suggest that an edge e = (op, op) can be added to the MLDDG only if

(1) The operation op’ does not use the critical resources. res is one of the critical resources
if t — 14 [N/n] < the estimated II, where ¢ is the current cycle, N is the number of operations
using res and n is the number of res in the machine; and

(2) The lengths of the resulting dependence paths are not greater than the estimated II. That
is, t + d(e) + height(op') — 1 < the estimated II, where ¢ is the current cycle and height(op') is
the height of op’ in the MLDDG. In this case, we say op’ can be delayed at cycle ¢.

Then we present some scheduling heuristics to determine the scheduling priorities of opera-
tions.

In order to obtain the optimal time efficiency, we consider the height of operation(that means
the length of the longest path from the operation to the end of the graph) in the MLDDG as the
first heuristic. Besides, two heuristics sensitive to register requirement are considered as follows:

(1) If an operation can be delayed and uses the critical resources, then it has a lower schedul-
ing priority;

(2) If an operation has no predecessor in the LDDG, then it has a higher scheduling priority.

We take an example shown in Figure 5.1 and 5.2 to demonstrate the above scheduling process.
Figure 5.1(1) is the loop and (2) the machine model. The LDDG is shown in Figure 5.2(1). After
the first step of DESP software pipelining framework, we get the MLDDG as shown in Figure
5.2(2). The machine has only one multiplier but the loop includes two multiplications, so the
estimated I is 2. First, op2 does not use the critical resources and can be delayed, so the edge
(opl,0p2) is added to the MLDDG. At the first cycle, op4 uses the critical resources and can
be delayed, so it has a lower scheduling priority; thus, opl, op3, op5 and op6 are put in the first
cycle. op2 and op4 are put in the second cycle.

3The estimated IT can be derived from the critical cycle of the LDDG and the number of operations using the
critical resources.

The Code of Pi pel i ne Nunber Qperation Latency

The Original Loop: the Loop Body:
Menmory port 2 Load 13
for i=1 to n do 1. t0=t0+1; Store 1
s=s+ali] 2. tl=a[t0]; Address ALU 2 Add/ Sub 1
a[i]=s*s*ali] 3. s=s+tl; Adder 1 FAdd/ FSub 1
enddo 4. t2=s*s; I Add/ | Sub 1
5. t3=t1*t2; Ml tiplier 1 FMUL 2
6. a[t0]=t3 I MUL 2

(1) The Loop (2) The Machi ne Model

Figure 5.1 An Exanpl e

@ (0.1) (0,1) @
(0,1)/< @{1‘3)@@ @

()(0,13)
(0, 1) @ @ é}/ (0,1) @ @
(0,2)
(0,2) @ \<) @
@, (& a2y (D G O
(0.2) @ @‘(fm @
(1) LDDG (2) M.DDG (3) LDDG after (4) NLD:DIG_after
spilling spilling

Figure 5.2 LDDGs, M.DDGs

5.2 Register Spilling

Spilling decision are conventionally made only when a register conflict occurs, that is, the number
of simultaneously live variables is greater than the number of available machine registers. The
effect of spilling is keeping the result of a computation in memory rather than in a register such
that the register can be re-used to keep the result of a new computation at the cost of increasing
the number of load/store operations.

In this subsection we discuss register spilling problem for software pipelining. Our starting-
points are that, (1) spilling decision should be made during software pipelining; and (2) spilling
can be used to reduce the register requirement without degradation of the optimal software
pipelining performance.

In our heuristic scheduling and the solving of the integer programming problem of Definition
3.6, we try to minimize the lifetime of each variable. Given a loop, however, each variable has
a lower bound on its lifetime; this lower bound is determined by the length of the longest path
in the LDDG from the variable’s definition to its use. For example, in Figure 5.2(1), the lower
bound on t0’s lifetime is the length of the path from opl to op6, that is 19.

The effects of a spilling can re-construct the LDDG and may decrease the lower bound on
the lifetimes for some variables. For the example as shown in Figure 5.2, after we spill the
use, use(op6,t0), — that is, spill t0 only for op6 — the LDDG is modified to the one as shown
in Figure 5.2(3). It is not difficult to compute that the lower bound on ¢0’s lifetime becomes
1. The register requirement is reduced even if we consider the registers needed for the newly
introduced variable.

Spilling introduces new load/store operations. We suggest that the load/store operations
caused by spilling does not increase the estimated II.

10

The spilling — benefit of a use is defined as the decrease of lifetime per inserted load/store
operation. More precisely, given a use, use(op,u), where op is the operation using variable u,
let It(u) be the lower bound on u’s lifetime before spill use(op,u) and [#'(u) the one after spill
use(op,u). Thus, the spilling-benefit of use(op,u) is [(It(u) — It'(u))/2] as a store and a load
are inserted to the LDDG. Obviously, a use with greater value of spilling-benefit is the one with
higher spilling priority.

We take the loop shown in Figure 5.1 as an example to illustrate the above ideas. We discuss
two cases: (1) scheduling without spilling; (2) scheduling with spilling.

For the first case, the estimated II is 2 since the machine has one multiplier but the loop
body contains two multiplications. The valid software pipelined loop body can be found under
the constraint of the MLDDG (shown in Figure 5.2(2)). After adding an edge (1,2) to the
MLDDG, we obtain rn(1) = rn(3) = rn(5) = rn(6) = 1 and rn(2) = rn(4) = 2. It is easy to
compute the number of required registers for the loop, which is 23.

For the second case, the estimated II is also 2. After computing the spilling-benefits of all
uses, we find that up(op6, t0) has the greatest value of spilling-benefit which is [(19—15)/2] = 2,
so up(op6,t0) has the highest spilling priority. After spilling up(op6,t0), the modified LDDG
and MLDDG are shown in Figure 5.2(3) and (4), respectively. After adding an edge (1,2) to the
MLDDG, we obtain rn(1) = rn(3) = rn(5) = rn(6) = rn(s) = 1 and rn(2) = rn(4) = rn(l) = 2.
It is easy to compute the number of required registers for the loop, which is 21.

5.3 Register Coloring

After we obtain the software pipelined loop with the minimum register requirement, we can
further reduce the number of actually needed registers by register coloring since we defined the
register requirement of a loop as the sum of the register requirements of all variables when we
built our model.

First, we construct the weighted interference graph (WIG), where the weight on each node
represents the register requirement of the corresponding variable. Thus, the number of actually
needed registers can be counted by the conventional method [14].

Secondly, we define the degree of a node with consideration of the weight of each node. For
example, let K, denote the weight of u, NS(u) be its adjacent node set, then the degree of u,
deg(u) = Ky + 2 veNs(u) Ko

Finally, the number of registers can be counted as follows:

(1) For each node u in the WIG, compute its degree deg(u);
(2) Let RR = miny(deg(u));

(3) Find a node v in the WIG with the minimum degree; if deg(v) > RR then RR = deg(v);
(4) Update the WIG by removing v and all its edges;

(5) If the WIG is empty then return (RR); else re-compute the degrees of all remaining
nodes in the WIG and goto (3).

5.4 The Algorithm

The algorithm is described as follows:

Algorithm Scheduling;

11

INPUT: The loop to be software pipelined and its LDDG;
OUTPUT: The software pipelined loop;

BEGIN

Construct the MLDDG, determine the estimated II;
Compute the height of each operation in the MLDDG;
Check and add some edges to the MLDDG;

Call the spill-checking;

AN o

Re-compute the heights of some operations;

6. Find out all schedulable operations at the current cycle and put them in the DRS (Data
Ready Set);

7. Determine the scheduling priorities of all operations in the DRS;

8. Under the constraint of resources, select the operation with the highest scheduling priority
from the DRS and place it in the current cycle, update the DSR. This step repeats until no
operation can be placed in the current cycle;

9. If all operations of the loop have been scheduled then goto step 10; else update the DRS,
the MLLDDG and the estimated IT and goto step 3;

10. For each operation, let its row-number be its cycle-number. Determine the II; solve
the integer programming problem of Definition 3.6 to determine the column-number and the
minimum register requirement

11. Generate the software pipelined loop in terms of the row-numbers and the column-
numbers;

12. Call the register coloring and determine the number of actually needed registers;
END;

The spill-checking algorithm is described as follows:
Algorithm Spill-Checking;
BEGIN

1. If the memory access unit is one of the critical resources, then return;

2. Compute the spilling-benefit of each use;

3. Under the constraint of not increasing the estimated II, select a (group of) use(s) for
spilling. In this step, if no use can be selected then return;

4. Update the MLDDG and the DRS; return;
END;

5.5 The Preliminary Experimental Results

The effort to implement the above algorithm is underway. Before getting extensive experimental
tests, we select four examples to verify our algorithm. Except for example 1, the other three
examples are selected from the Livermore benchmarks. As our preliminary experiments are
mainly conducted by a manual simulation, we try to select some simple loops in a random

12

way. The machine model we use in the experiments is shown in Figure 5.1(2). For comparison,
example 1 and the machine model are directly cited from [17].

Table 1. Register Requirenent
for Two Schedul i ng Approaches

Exanpl e L M DESP Qur new approach
1 20 2 27 21
2 22 3 39 30
3 18 3 21 18
4 17 2 27 25
note: L = the length of the |ongest
dependence path in the | oop body;
M1 = the mninuminitiation interval.

Table 1 gives the register requirements for the optimal software pipelining performance by
two scheduling approaches — DESP and our new approach presented in this paper. We see that
our new approach can obtain an improvement over DESP up to 23.1% in register use without
degradation of the optimal performance. Note that, for example 1, [17] gets the result with the
requirement of 28 registers.

6 Conclusion

This paper studies the interaction between software pipelining and register allocation. Based on
the concepts of row-number and column-number of decomposed software pipelining, we analyze
the influence of the re-use of registers on the loop data dependence graph and develop a model
of software pipelining to reduce register requirement in which data dependences, resource con-
straints and register requirement can be considered together. We use the row-number to satisfy
the resource constraints and use the column-number to satisfy the data dependences and control
the register requirement. Given the row-numbers of all operations in the loop, generating the
column-numbers to obtain the minimum register requirement can be modelled as an integer
programming problem which can be solved in polynomial time. A solution to the special case
without resource constraints and an approximate solution to the general case with resource con-
straints are presented. Register spilling and register coloring are considered to further reduce the
number of actually needed registers. The preliminary experimental results show the efficiency
of our new approach. Our future work is to implement our new model and approaches using our
compiler testbed.

References

[1] J.A. Fisher, D. Landskov, and B.D. Shriver. Microcode compaction: Looking backward
and looking forward. In proceedings of 1981 National Computer Conference, 95-102 1981.

[2] F. Gasperoni. Compilation techniques for vliw architectures. Technical Report TR435, New
York University, March 1989.

[3] B. R. Rau and J.A. Fisher. Instruction-level parallel processing: History, overview and
perspective. The Journal of Supercomputing, 7(1), January 1993.

[4] B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily schedulable horizon-
tal architecture for high performance scientific computing. In proceedings of the 14th In-

13

[16]

[17]

[18]

[19]

ternational Symposium on Microprogramming and Microarchitectures (MICRO-1/), pages
183-198, October 1981.

A. Aiken and A. Nicolau. Perfect pipelining: A new loop parallelization technique. In
proceedings of European Symposium on Programming, Lecture notes in Computer Science,
No.300, pages 221 —235. Spring-Verlag, June 1988.

P. Y. T. Hsu. Highly Concurrent Scalar Processing. PhD thesis, University of Illinois,
Urbana-Champaign, 1986.

K. Ebcioglu. A compilation technique for software pipelining of loops with conditional
jumps. In proceedings of the 20th International Symposium on Microprogramming and
Microarchitectures (MICRO-20), pages 69-79, 1987.

B. Su, S. Ding, and J. Xia. Urpr - an extension of urcr for software pipelining. In pro-
ceedings of the 19th International Symposium on Microprogramming and Microarchitectures

(MICRO-19), pages 104 — 108, 1986.

Bogong Su and Jian Wang. Loop-carried dependence and the general URPR. software
pipelining approach. In proceedings of the 24th Annual Hawaii International Conference on
System Sciences, pages 366-372. IEEE and ACM, January 1991.

R.F. Touzeau. A fortran compiler for the fps-164 scientific compute. In proceedings of ACM
SIGPLAN Symposium on Compiler Construction, 1984.

A E. Charlesworth. An approach to scientific array processing: The architecture design of
the ap-120b/fps-164 family. Computer, pages 18-27, September 1981.

M.S. Lam. A Systolic Array Optimizing Compiler. PhD thesis, CMU, 1987. CMU-CS-87-
187.

D.G. Bradlee, S. J. Eggers, and R.R. Henry. Integrated register allocation and instruction
scheduling for riscs. In proceedings of the 4th International Conference on ASPLOS, 1991.

G. J. Chaitin. Register allocation and spilling via graph coloring. In proceedings of ACM
SIGPLAN Symp. on Compiler Construction, 1982.

L.J. Hendren, G.R. Gao, E. R. Altman, and C. Mukerji. Register allocation using cyclic
interval graph: A new approach to an old problem. Technical Report ACAPS Technical
Memo 33, McGill University, 1992.

S. S. Pinter. Register allocation with instruction scheduling: A new approach. In proceedings
of ACM SIGPLAN PLDI, 1993.

B. R. Rau, M. Lee, P.P. Tirumalai, and M.S. Schlansker. Register allocation for software
pipelined loops. In proceedings of PLDI, 1992.

J. R. Goodman and W. Hsu. Code scheduling and register allocation in large basic blocks.
In proceedings of International Conference on Supercomputing, 1988.

S.A. Mahlke, W.Y. Chen, P.P. Chang, and W.W. Hwu. Scalar program performance on
multiple-instruction-issue processors with a limited number of registers. In proceedings of
the 25th HAWAII International Conference on System Sciences, January 1992.

Wolfgang Ambrosch, M. Anton Ertl, Felix Beer, and Andreas Krall. Dependence-conscious
global register allocation. In proceedings of PLSA, April 1994.

14

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[32]
[33]

[34]

David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Resource spackling: A framework for
integrating register allocation in local and global schedulers. In M. Cosnard, G. R. Gao, and
G. M. Silberman, editors, proceedings of International Conference on Parallel Architectures
and Compilation Techniques. IFIP, North-Holland, August 1994.

C. Eisenbeis, W. Jalby, and A. Lichnewsky. Compile-time optimization of memory and
register usage on the cray-2. In proceedings of the second Workshop on Languages and
Compilers, 1989.

William Mangione-Smith, S. G. Abraham, and E. S. Davidson. Register requirements of
pipelined processors. In proceedings of 1992 ACM International Conference on Supercom-
puting, 1992.

R. Huff. Lifetime-sensitive modulo scheduling. In proceedings of ACM SIGPLAN PLDI,
pages 258-267, June 1993.

Qi Ning and Guang R. Gao. A novel framework of register allocation for software pipelining.
Technical Report ACAPS Technical Memo 42, McGill University, 1993.

Q. Ning and G.R. Gao. A novel framework of register allocation for software pipelining. In
proceedings of POPL, January 1993.

R. Govindarajan, Erik R. Altman, and Guang R. Gao. Minimizing register requirements
under resource-constrainted rate-optimal software pipelining. In proceedings of the 27th
International Symposium on Microprogramming and Microarchitectures (MICRO-27), De-
cember 1994.

A. E. Eichenberger, E. S. Davidson, and S. G. Abraham. Minimum register requirements
for a modulo schedule. In proceedings of the 27th International Symposium on Micropro-
gramming and Microarchitectures (MICRO-27), December 1994.

Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining: A new approach to
exploit instruction level parallelism for loop programs. In Michel Cosnard, Kemal Ebcioglu,
and Jean-Luc Gaudiot, editors, proceedings of IFIP WG 10.83 Working Conference on Archi-
tectures and Compilation Techniques for Fine and Medium Grain Parallelism, pages 3-15.
IFIP, North-Holland, January 1993.

Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining. Reseach Repport
RR-1838, INRITA-Rocquencourt, France, 1993.

Jian Wang, Christine Eisenbeis, Martin Jourdan, and Bogong Su. Decomposed Software
Pipelining: A new perspective and a new approach. International Journal of Parallel
Programming, 22(3):357-379, 1994.

V. Chvatal. Linear Programming. W.H. Freeman and Company, 1983.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

(4), 1984.

L.G.. Khachian. A polynomial algorithm in linear programming. Soviet Math. Doklady,
(20), 1979.

15

