Software Pipelining with Register Allocation and Spilling *

Jian Wang' Andreas Krall
M. Anton Ertl Christine Eisenbeist

Institut fur Computersprachen
Technische Universitat Wien
Argentinierstr. 8

A-1040 Wien, Austria

Abstract

Simultaneous register allocation and software pipelining is still less understood and re-
mains an open problem. In this paper, we first present the Register Requirement Graph
(RRG) which can dynamically reflect the register requirement during software pipelining.
Then, using the RRG as a basis, we develop a Register-Pressure-Sensitive (RPS) scheduling
technique and study the problem of register spilling for software pipelining. We also present
three algorithms — RPS without spilling, RPS with spilling and the software pipelining with
a limited number of registers. The preliminary experimental results show that the first two
algorithms can efficiently reduce the register requirement without degradation of the optimal
performance and the third can effectively exploit instruction-level parallelism within loops
even for those machines with a small register file.

Keywords: Instruction-level Parallelism, Loop Scheduling, Software Pipelining, Register
Allocation, Spilling, Data Dependence Graph

1 Introduction

It has been well known that exploiting Instruction-Level Parallelism (ILP) within loops has be-
come a key compilation issue for the instruction-level parallel processors like Very Long Instruc-
tion Word (VLIW) and superscalar machines [1, 2, 3]. Software pipelining has been proposed
for exploiting ILP within loops, which can effectively overlap the execution of operations from
different iterations [4, 5,6, 7, 8,9, 10, 11, 12].

Register Allocation is another key compilation issue [13, 14, 15, 16, 17]. It has been well
known that performing register allocation before software pipelining may introduce unacceptable
anti-dependences due to the reuse of registers, which may limit software pipelining [17, 3]. On
the other hand, if software pipelining is done before register allocation, more registers than
necessary may be needed, which may cause unnecessary register spillings and severely degrade
the performance of the pipelined loop [3]. However, simultaneous register allocation and software
pipelining is still less understood and remains open.

*This work was supported by the Lise Meitner Stipendium funded by the Austrian Science Foundation (FWF)
and the Austrian Science and Research Ministry.

"Email: jian@mips.complang.tuwien.ac.at; Tel: 43-1-588014474; Fax: 43-1-5057838.

!Dr. Eisenbeis is with INRIA-Rocquencourt, Domaine de Voluceau, BP 105-78153, Le Chesnay Cedex, France.

The interaction between register allocation and loop-free code scheduling has been studied
since the mid 1980s [10, 18, 13, 16, 19], and register allocation for software pipelined loop has
been studied by many researchers and some efficient techniques have been proposed [20, 12,
17, 15]. However, the interaction between register allocation and software pipelining was lately
considered in few studies. Mangione-Smith, et al. developed a lower bound on the number
of registers needed for a given modulo scheduled loop [21]. Ning and Gao have presented
a framework of register allocation for software pipelining by which they deduce the minimal
number of registers needed for finding some optimal software pipelined loop [22], but they do
not consider the resource constraints. A called lifetime-sensitive modulo scheduling technique
has been presented by Huff [23], in which he uses the idea of bidirectional slack-scheduling to
perform the modulo scheduling with a try for shortening the lifetime of a variable, but he does
not consider the register spilling problem.

Our approaches presented in this paper are different from all of the above. In order to
understand the interaction between register allocation and software pipelining, we present a
novel framework, called Register Requirement Graph (RRG), which can dynamically reflect the
register requirement during software pipelining. While software pipelining, the RRG is used to
control the register pressure caused by software pipelining itself. On one hand, the RRG gives
the register related information to guide the scheduling process such that no more register than
necessary is needed. On the other hand, from the RRG we can dynamically estimate the register
requirement such that the spilling decision and the tradeoff between the initiation interval and
register pressure are efficiently made.

The next section gives a background to make this paper self-contained. The work reported in
this paper can be concluded as follows: (1) Present the RRG to estimate the register requirement
during software pipelining (Section 3); (2) Use the RRG to develop a Register- Pressure-Sensitive
(RPS) scheduling technique (Section 4); (3) Study the problem of register spilling to reduce the
register pressure without degradation of the optimal performance (Section 5); (4) Present
three software pipelining algorithms — RPS without spilling, RPS with spilling and the software
pipelining with a limited number of registers (Section 6); (5) Give the preliminary experimental
results to indicate the efficiency of the three algorithms (Section 7).

2 Decomposed Software Pipelining(DESP)

The data dependences of a loop can be represented by a Loop Data Dependence Graph (LDDG),
(O, E,)\, 6), where O is the operation set and F the dependence edge set; the dependence
distance A and the delay 6 are two non-negative integers associated with each edge. For
example, e = (op,0p’) and (A(e),d(e)) denote that op’ can only be issued 6(e) cycles after the
start of the operation op of the A(e)th previous iteration [2, 9].

DESP is a novel modulo scheduling approach, and its idea can be illustrated by Figure 2.1
as an example!. First, we modify the LDDG by removing some edges so that the graph becomes
acyclic; secondly, we apply the list scheduling technique on the modified graph to generate
the software pipelined loop body under the resource constraints, and use the row-number to
denote the cycle-number of each operation in the loop body; thirdly, we determine the iteration-
number (denoted as column-number in the context of DESP) of each operation such that all
data dependences in LDDG are satisfied.

Formally, DESP theoretically decomposes the loop schedule ¢ into two functions, row-number

'For all examples in this paper, the loop-independent dependence edges are solid edges whereas loop-carried
ones are dotted if we do not attach (A, §) to each edge.

53,14
6, 2;
LDDG MLDDG
m
- 1 5314
. step 2 2 62
1
, step 1 l step 3
! e
0
4 2
\] cn
. 53,14 1142
B o © b
@ 5,3;

Figure 2.1 Deconposed Software Pipelining

and column-number.

Definition 2.1 Let G = (O, £,)\, 6) be the LDDG of a loop, and ¢ a valid loop schedule
for G with initiation interval I'l. We define the row-number rn and the column-number cn, two
mappings from O to N (non-negative integer set), such that

o(op,1) = rn(op) + I * (en(op) — 1) and o(op,i)=o(op, 1)+ I1*(i—1).

Thus, software pipelining can be described below with the concepts of row-number and
column-number.

Definition 2.2 (Decomposed Software Pipelining) Let G = (O, E,\,6) be the LDDG
of a loop, we say that the row-number, rn, and the column-number, cn, are valid for the loop,
if and only if the following constraints are satisfied:

1. resource constraints: Vop;,op; € O, if rn(op;) = rn(op;), then op; and op; can not be
resource-conflict?;

2. dependence constraints:

IIT € N, Ve = (op,op’) € E, rn(op’) — rn(op) + IT x (A(e) + cn(op’) — en(op)) > é(e).

I1 is called as the initiation interval or the length of the software pipelined loop body. The
goal of decomposed software pipelining is to find valid row-number and column-number with
minimum /7. O

In our previous papers [24, 25, 26], we have proven the following theoretical results.

Theorem 2.1 For a given LDDG, suppose we have constructed row-number rn which
satisfies the resource constraints. We can construct column-number c¢n such that the data
dependence constraints are also satisfied, if and only if, for each cycle C' of the LDDG,

Z 7(e) <0

VeeC

where 7(e) = —=A(e) + [(6(e) + rn(op) — rn(op’))/II], e = (op,op’). O

?Here, we only consider the pipelined operations and the single-cycle operations, but the definition is easily

extended to the case of multi-cycle non-pipelined operations.

The following corallary is direct from Theorem 2.1.

Corallary 2.1 For a LDDG without cycle, if we have constructed row-number taking into
account the resource constraints, then we can always construct column-number such that the
data dependence constraints are also satisfied. O

3 Register Requirement Graph

In decomposed software pipelining, the column-number is an important parameter to control
the register requirement of each variable. In fact, the register requirement is mainly determined
by the difference between the column-numbers of two operations which have a data dependence
(denoted as den;j). For example, suppose variable u is written by op; and read by op;, then
deng; gives the estimate of the lifetime of w. Thus, we first present the Register Requirement
Graph (RRG) which can dynamically estimate den;;. The RRG gives the heuristics to guide
the scheduling process (determining the row-number).

Our software pipelining framework is based on the DESP as shown in Figure 2.1. In the first
step, we use the following method to modify the LDDG [24, 25, 26]:

(1) find out all strongly connected components (SCCs) in the LDDG, remove all edges which
are not included in the SCCs;

(2) under the unlimited resource constraints, generate a software pipelined loop for the SCCs,
denoted as (rng, cng);

(3) for each edge e = (op;,0p — j) of SCCs, if rng(op;) — rng(op — 1) < 6(e), then remove e
from the SCCs.

The remaining graph is acyclic, denoted as MLDDG. We have proven that any row-numbers
satisfying the data dependences of the MLDDG must satisfy the condition of Theorem 2.1.

Given the LDDG (O, F, X, §) of aloop, after the first step of decomposed software pipelining,
we obtain an acyclic dependence graph M LDDG = (O, E,,,§). A new graph, called register
requirement graph, is defined as RRG = (O, F,w), where w is a weight on each edge which
represents the estimated difference between the column-numbers of two operations in the worst
case.

Let MII be the estimated minimum initiation interval, before scheduling the software
pipelined loop body, we initially define w as follows:

(1) w(e) = —A(e), Ve € Ly

(2) w(e)=—=Ae)+ [(6(e) + MII —1)/MII|,Vee€ E - E,,.

While scheduling the software pipelined loop body, we recompute w(e) for each e = (op;, 0p;) €
FE — F,, as follows:

(1) w(e) = —=Ale) + [(6(e) — (rn(op;) — rnlop;)))/MII], if rn(op;) and rn(op;) both are
determined;

(2) w(e) = —=Ae)+ [(6(e) = L+ rn(op;))/MII], if rn(op;) is determined but rn(op;) is not;

(3)w(e) =—=Ae)+ 1+ [(6(e) — rn(op;))/MII],if rn(op;) is determined but rn(op;) is not;

An example of RRG is given in Figure 3.1 and 3.2, Figure 3.1(1)is the loop and (2) the
machine model. Its LDDG and MLDDG are shown in Figure 3.2(1) and (2), respectively.
Figure 3.2(3) is the initial RRG. Figure 3.2(4) is the RRG when rn(opl) = rn(op3) = rn(op5) =
rn(op6) = 1 and rn(op2) = rn(opd) = 2.

The Code of Pi pel i ne Nurber Operation Latency

The Original Loop: the Loop Body:
Menory port 2 Load 13
for i=1 to n do 1. t0=t0+1; Store 1
s=s+ali] 2. tl1=a[t0]; Address ALU 2 Add/ Sub 1
a[i]=s*s*ali] 3. s=s+tl; Adder 1 FAdd/ FSub 1
enddo 4. t2=s*s; | Add/ | Sub 1
5. t3=t1*t2; Ml tiplier 1 FMUL 2
6. a[t0]=t3 | MUL 2

(1) The Loop (2) The Machi ne Mbdel

Figure 3.1 An Exanpl e

(1) LDDG (2) M.DDG (3) RRG (4) RRG

Figure 3.2 LDDG M.DDG and RRGs

A definition-use path is defined as a path from the operation writing a variable to any
operation reading the variable in the LDDG. The critical definition-use path of variable u, cdup,,

is defined as
Z wle) = max (Z w(e)).

Ve€Ecdup., any dup of u VeEdup.,
Let RRG = (0, F,w), for each edge e € E, a(e) is defined as the number of variables whose
critical definition-use path include e.
RRG has the following two properties:

(1) Let RRG = (O, F,w), cdup, be the critical definition-use path of u, then 3 v, c 4y, w(€)
gives the estimate of the register requirement of .

(2) Let RRG = (0, F,w), during scheduling the software pipelined loop body, for any edge
e which is in the LDDG but not included in the MLDDG, if e is satisfied (that is, rn(op;) —
rn(op;) > 6(e),e = (op;,op;)), then the register requirement may be decreased by up to (w(e)+
A(e)) * a(e) registers compared to the case when e is not satisfied.

4 RPS Scheduling

We present the following two heuristics to direct the scheduling process:

(1) Delay some operations to be scheduled such that some dependence edges can be satisfied
in the software pipelined loop body;

(2) Develop register-pressure-sensitive heuristics to determine the scheduling priorities for
operations.

In the second step of our software pipelining framework, we use list scheduling on the

MLDDG (obtained in the first step) to determine the row-numbers for all operations. First,
we find out all schedulable operations at the current cycle and put them into the Data Ready
Set (DRS), then we select the operations with the highest scheduling priority to schedule.

As most dependence edges originally in the LDDG have been removed in the MLDDG, there
may be a lot of schedulable operations in the DRS at each cycle. Without increase of the
estimated II%, it is greatly possible that some operations can be delayed to schedule such that
some dependence edges avoid being unnecessary broken.

We suggest that an operation can be delayed and removed from the current DRS only if

(1) The operation does not use the critical resources. res is one of the critical resources if
t— 1+ [N/n] < the estimated II, where ¢ is the current cycle, N is the number of operations
using res and n is the number of res in the machine; and

(2) The lengths of the resulting dependence paths are not greater than the estimated II. That
is, t 4+ 0(e) + height(op) — 1 < the estimated II, where ¢ is the current cycle, e is the dependence
edge which we are willing to hold and height(op) is the height of op in the MLDDG.

For the example of Figure 2.2(2), at the first cycle, all operations are schedulable and can
be put into the DRS, but only operation 2 can be delayed and removed from the DRS.

When there are more than one operation which can be delayed, we first consider the operation
with the greatest value of (w(e)+ A(e)) * a(e), where e is the dependence edge which we are
willing to hold.

Next we discuss how to determine the scheduling priorities for the operations of the DRS.

In order to obtain the optimal time efficiency, we consider the height of operation in the
MLDDG as the first heuristic. The second heuristic is sensitive to the register pressure and is

derived from the RRG.

At the current cycle ¢, suppose op; and op; are the operations with the greatest value of
height in the MLDDG. If op; and op; are not resource-conflict, then they should be scheduled
at t. If op; and op; are resource-conflict, then we use the second heuristic to determine their
scheduling priorities as follows:

(1) If an operation is scheduled at ¢, then another should be scheduled after the tth cycle;

(2) Suppose op; is scheduled at ¢, let DES(op;) be the dependence edge set which included
all edges adjacent to op;. Let rn(op;) = t, we re-compute the new value of w of each edge in
DES(op;), denoted as wyey,. Thus, we can compute the register — benefit of op;,

nlopit) = Y (w(e) = wnewle)) * ale);

Yee DES(op;)

(3) By the same method as step (2), we compute n(op;,t);

(4) The operation with greater value of 5 (the register-benefit) is the one with higher schedul-
ing priority.

4.1 Register Spilling

Spilling decision are conventionally made only when a register conflict occurs, that is, the number
of simultaneously live variables is greater than the number of available machine registers. The

*The estimated II can be derived from the critical cycle of the LDDG and the number of operations using the
critical resources.

effect of spilling is keeping the result of a computation in memory rather than in a register such
that the register can be re-used to keep the result of a new computation at the cost of increasing
the number of load/store operations and probably degrading the code performance. Software
pipelining overlaps the execution of the operations from different iterations, increasing register
pressure and generating excessive spill code in the case of small machine register files.

This section discusses register spilling problem for software pipelining. Our starting-point
is that spilling decision should be made during software pipelining such that the interactions
between register allocation and loop scheduling can be seen. The RRG can dynamically reflect
the change on the register requirement during software pipelining and make our starting-point
feasible.

Two problems to be discussed are as follows: (1) When is a spilling decision made during
software pipelining? (2) How to do a spilling ?

In the loop body, we suppose that, a variable only has a definition (the operation defining
the variable) but may have more than one use (the operation using the variable). We first want
to make a remark: The meaning of spilling in the context of this paper is something different
from the conventional spilling problem [14]. We say spilling a (a group of) use(s) but do not
say spilling a variable (that is, spilling all its uses). By spilling a use, we mean that a store
operation after the definition and a load operation before the spilled use are inserted, and other
uses still reference the value of the variable in a register.

From the RRG, we can dynamically estimate the register requirement at each cycle. Spilling
is needed only if the number of required registers is greater than the number of available machine
registers. In fact, other measures like delaying some operations to schedule and introducing some
dependence edges into the MLDDG can also decrease the register requirement.

Another necessary condition for spilling is that the load/store operations caused by spilling
does not increase the estimated II. In the case of that there are not enough available machine
registers to reach the estimated II, we first increase the estimated II and then consider spilling
or other measures to decrease the register requirement (see next section).

The spilling process consists of two steps: (1) Select a (a group of) use(s) for spilling;
(2) Modify the MLDDG and the RRG by adding the necessary load/store operations and re-
computing the value of corresponding w and a.

The spilling — bene fit of a use is defined as the number of saved registers per inserted
load /store operation. More precisely, given a use, use(op,u), where op is the operation using
variable u, under the assumption of that use(op, u) has been spilled, we re-compute the minimal
register requirement of variable v and the new introduced variable, denoted as K. Thus, the
spilling-benefit of use(op,u)is [(K, — K!)/2] as a store and a load are inserted to the MLDDG
and the RRG for spilling a use.

Obviously, a use with greater value of spilling-benefit is the one with higher spilling priority.

We take the loop shown in Figure 3.1 as an example to illustrate the above ideas. We discuss
two cases: (1) scheduling without spilling; (2) scheduling with spilling.

For the first case, the estimated II is 2 since the machine has one multiplier but the loop
body contains two multiplications. The software pipelined loop body can be found under the
constraints of the MLDDG (shown in Figure 3.2(2)) and the initial RRG (shown in Figure
3.2(3)). By delaying operation 2, we obtain rn(1l) = rn(3) = rn(5) = rn(6) = 1 and rn(2) =
rn(4) = 2. It is easy to compute the number of required registers which is 23.

For the second case, the estimated II is also 2. After computing the spilling-benefits of all

uses, we find that up(op6, t0) has the greatest value of spilling-benefit which is [(13—-7-2)/2] = 2,
so up(op6,t0) has the highest spilling priority. After spilling up(op6,0), the modified MLDDG
and the modified initial RRG are shown in Figure 5.1. By delaying operation 2, we obtain
rn(l) = rn(3) = ra(5) = r(6) = ro(s) = 1 and rn(2) = ro(4) = ra(l) = 2. It is easy to
compute the number of required registers which is 21.

(1) The nodified M.DDG (2) The nodified initial RRG

Figure 5.1 Scheduling with Register Spilling

An important observation is that, spilling can decrease the register requirement without
degradation of the optimal software pipelining performance if the spilling decision can be effi-
ciently controlled.

5 Algorithms

On the basis of the last three sections, we present three software pipelining algorithms. The
first two are software pipelining to minimize the register requirement and the third is software
pipelining with a limited number of registers.

5.1 RPS Scheduling without Spilling

The algorithm is described as follows:
Algorithm RPS-without-Spilling;
INPUT: The loop to be software pipelined and its LDDG;
OUTPUT: The software pipelined loop;
BEGIN
1. Construct the MLDDG, determine the estimated II;
. Compute the height of each operation in the MLDDG;
. Find out all definition-use paths of each variable, construct the RRG;

. Find out those operations which can be delayed one by one, remove them from the DRS;

2

3

4. Find out all schedulable operations and put them in the DRS;

5

6. Determine the scheduling priorities of all operations in the DRS;
7

. Under the constraint of resources, select the operation with the highest scheduling priority

from the DRS and place it in the current cycle, update the DSR. This step repeats until no
operation can be placed in the current cycle;

8. If all operations of the loop have been scheduled then goto step 9; else update the DRS
and the RRG and goto step 5;

9. For each operation, let its row-number be its cycle-number. From Theorem 2.3, the
column-number of each operation is computed in terms of the row-numbers and the II;

10. Generate the software pipelined loop in terms of the row-numbers and the column-
numbers;

END;

5.2 RPS Scheduling with Spilling

This algorithm is different from the RPS-without-Spilling algorithm in the way that a new spill-
checking step is inserted between step 5 and step 6. The new step calls a spill-checking algorithm
which is described as follows:

Algorithm Spill-Checking;
BEGIN

1. If the memory access unit is one of the critical resources, then return;

2. Compute the spilling-benefit of each use, we actually only consider those uses which are
on the critical definition-use paths;

3. Under the constraint of not increasing the estimated II, select a (a group of) use(s) for
spilling. In this step, if no use can be selected then return;

4. Update the MLDDG, the RRG and the DRS; return;
END;

5.3 Software Pipelining with a Limited Number of Registers

The above two algorithms try to obtain the optimal software pipelined loop with the minimal
register requirement. In this section we present an approach for software pipelining with a
limited number of registers.

Ouridea is that we first estimated the register requirement, if the number of required registers
is greater than the given number of available machine registers then we increase the estimated
IT such that the register requirement is reduced.

However, it is difficult and complicated to precisely estimate the register requirement. RRG
only estimates the register requirement of each variable. The problem of which variables can
share the same registers remains open during software pipelining.

We present the following heuristics: Let Ky be the given number of available machine regis-
ters; K.z be the estimated number of required registers from RRG. A non-negative integer Ny is
introduced. If K. 5 — No < K then we call the algorithm of RPS scheduling with spilling; else we
first increase the estimated I (maybe also increase Ny in some cases) to satisfy K.s — No < K.
After getting the software pipelined loop body, we can precisely compute the number of required
registers. If the number is greater than Koy, then we increase the estimated II and call the al-

gorithm of RPS with spilling again. The process repeats until a software pipelined loop body is
obtained whose register requirement is not greater than Kj.

We have not yet any theoretical analysis about Ny, but we believe that Ny can be estimated
empirically.

6 Preliminary Experimental Results

The effort to implement the algorithms presented in this paper is underway. Before getting
extensive experimental tests, we select six examples to verify our algorithms. Except for example
1, the other five examples are selected from the Livermore benchmarks, shown in Table 1. As
our preliminary experiments are mainly conducted by a manual simulation, we try to select
some simple loops in a random way. The machine model we use in the experiments is shown in
Figure 3.1(2).

Table 1. Experinental Exanples

Exanpl e L M with lcd ? Remar ks
1 20 2 no Figure 2.1(1)
2 22 3 no Kernel 1
3 17 1 yes Kernel 3
4 18 3 yes Kernel 5
5 16 1 yes Kernel 11
6 17 2 no Kernel 12

note 1: L = the length of the |ongest dependence path in
the | oop body.

note 2: MI the Mnimal I1.

note 3: lcd | oop-carried dependence.

Table 2 gives the register requirements for the optimal software pipelining performance by
three scheduling approaches — DESP, RPS without spilling and RPS with spilling. Although
DESP itself adopts the measures to reduce the register requirement when it determines the
column-numbers, the algorithm of RPS without spilling can still obtain an improvement over
DESP from 7.4% to 17.9% in register use without degradation of the optimal performance except
for example 3 and 5. For example 3 and 5, no improvement in register use can be obtained since
the initiation intervals (II) of the software pipelined loops are 1. For example 1 and 2, the
algorithm of RPS with spilling can further obtain an improvement over DESP in register use of
22.2% and 23.1%, respectively, without degradation of the optimal performance.

Table 2. Register Requirement for Three Schedul i ng Approaches

Exanpl e I DESP RPS wi t hout Spilling RPS with Spilling
1 2 27 23 21
2 3 39 32 30
3 1 30 30 30
4 3 21 18 18
5 1 29 29 29
6 2 27 25 25
note: Il =the initiation interval of the software pipelined |oop.

The results of our algorithm for software pipelining with a limited number of registers are
presented in Table 3 and Figure 7.1. Table 3 gives the initiation intervals (/1) obtained by our

10

algorithm for the six examples when the number of available machine registers (Ky) is 8, 16
and 32, respectively. The relations between Ky and the speedup are shown in Figure 7.1. The
speedup is defined as L/II, where L is the length of the longest dependence path in the loop
body (shown in Table 1), representing the optimal performance when we only exploit the ILP
within the loop body. The results show that our algorithm can obtain the optimal speedup
when Ky = 32 (the minimal size of register file in the current ILP processors) and an average
speedup of 2.34 when Ky = 8, indicating that our algorithm can still efficiently exploit the ILP
across iterations for loops even for a small register file (Ko = 8).

Table 3. Software Pipelining with a Limted Nunber of Registers

(The Initiation Interval of the Software Pipelined Loop)

Exanpl e The nunber of avail abl e nachine registers
8 16 32
1 7 3 2
2 16 8 3
3 7 3 1
4 8 4 3
5 5 2 1
6 9 4 2
b speedup
16' - - - r r 1
14' - - - r r r 1
12' - - - r r r 1
r - - - r r r 1
10 ! , , , . Ko = 32
8 r - - - r r r l'\' 1
' ' | N '
6 r - - - r\k - - r - ';\' - - r '//' - r '\\' 1
N ! 75T v ! !
r - - - r = = r '/'/ - r - -\-\; - - - rr - = '\: Ko = 16
4 .. AN \ PP N
2 - - - r : e - r,-_-“:‘r :-:-:-;-- - - r - -~=~.a KO = 8
, \ , , , , _exanpl e
1 2 3 4 5 6

Figure 7.1 Software Pipelining with a Limted Nunber of Registers

7 Conclusion

This paper presents the Register Requirement Graph (RRG) which can dynamically reflect
the register requirement during software pipelining. On the basis of the RRG, A Register-
Pressure-Sensitive (RPS) scheduling technique is developed and the problem of register spilling
for software pipelining is studied. We also present three algorithms — RPS without spilling, RPS
with spilling and the software pipelining with a limited number of registers. The preliminary
experimental results indicate that the first two algorithms can efficiently improve the register
use without degradation of the optimal performance and the third can effectively exploit the
ILP across iterations for loops even for those machines with a small register file.

The three algorithms are being implemented on our compiler testbed. We expect extensive
experimental tests.

11

References

[1]

[2]

[3]

[4]

[10]

[11]

[13]

[14]

[15]

[16]

J.A. Fisher, D. Landskov, and B.D. Shriver. Microcode compaction: Looking backward
and looking forward. In proceedings of 1981 National Computer Conference, 95-102 1981.

F. Gasperoni. Compilation techniques for vliw architectures. Technical Report TR435, New
York University, March 1989.

B. R. Rau and J.A. Fisher. Instruction-level parallel processing: History, overview and
perspective. The Journal of Supercomputing, 7(1), January 1993.

B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily schedulable horizon-
tal architecture for high performance scientific computing. In proceedings of the 14th In-
ternational Symposium on Microprogramming and Microarchitectures (MICRO-14), pages
183-198, October 1981.

A. Aiken and A. Nicolau. Perfect pipelining: A new loop parallelization technique. In
proceedings of Furopean Symposium on Programming, Lecture notes in Computer Science,
No.300, pages 221 —235. Spring-Verlag, June 1988.

P. Y. T. Hsu. Highly Concurrent Scalar Processing. PhD thesis, University of Illinois,
Urbana-Champaign, 1986.

K. Ebcioglu. A compilation technique for software pipelining of loops with conditional

jumps. In proceedings of the 20th International Symposium on Microprogramming and
Microarchitectures (MICRO-20), pages 69-79, 1987.

B. Su, S. Ding, and J. Xia. Urpr - an extension of urcr for software pipelining. In pro-
ceedings of the 19th International Symposium on Microprogramming and Microarchitectures

(MICRO-19), pages 104 — 108, 1986.

Bogong Su and Jian Wang. Loop-carried dependence and the general URPR software
pipelining approach. In proceedings of the 24th Annual Hawaii International Conference on
System Sciences, pages 366-372. IEEE and ACM, January 1991.

R.F. Touzeau. A fortran compiler for the fps-164 scientific compute. In proceedings of ACM
SIGPLAN Symposium on Compiler Construction, 1984.

A.E. Charlesworth. An approach to scientific array processing: The architecture design of
the ap-120b/fps-164 family. Computer, pages 18-27, September 1981.

M.S. Lam. A Systolic Array Optimizing Compiler. PhD thesis, CMU, 1987. CMU-CS-87-
187.

D.G. Bradlee, S. J. Eggers, and R.R. Henry. Integrated register allocation and instruction
scheduling for riscs. In proceedings of the 4th International Conference on ASPLOS, 1991.

G. J. Chaitin. Register allocation and spilling via graph coloring. In proceedings of ACM
SIGPLAN Symp. on Compiler Construction, 1982.

L.J. Hendren, G.R. Gao, E. R. Altman, and C. Mukerji. Register allocation using cyclic
interval graph: A new approach to an old problem. Technical Report ACAPS Technical
Memo 33, McGill University, 1992.

S.S. Pinter. Register allocation with instruction scheduling: A new approach. In proceedings

of ACM SIGPLAN PLDI, 1993.

12

[17] B. R. Rau, M. Lee, P.P. Tirumalai, and M.S. Schlansker. Register allocation for software
pipelined loops. In proceedings of PLDI, 1992.

[18] J. R. Goodman and W. Hsu. Code scheduling and register allocation in large basic blocks.
In proceedings of International Conference on Supercomputing, 1988.

[19] S.A. Mahlke, W.Y. Chen, P.P. Chang, and W.W. Hwu. Scalar program performance on
multiple-instruction-issue processors with a limited number of registers. In proceedings of
the 26th HAWAII International Conference on System Sciences, January 1992.

[20] C. Eisenbeis, W. Jalby, and A. Lichnewsky. Compile-time optimization of memory and
register usage on the cray-2. In proceedings of the second Workshop on Languages and
Compilers, 1989.

[21] William Mangione-Smith, S. G. Abraham, and E. S. Davidson. Register requirements of
pipelined processors. In proceedings of 1992 ACM International Conference on Supercom-
puting, 1992.

[22] Qi Ning and Guang R. Gao. A novel framework of register allocation for software pipelining.
Technical Report ACAPS Technical Memo 42, McGill University, 1993.

[23] R. Huff. Lifetime-sensitive modulo scheduling. In proceedings of ACM SIGPLAN PLDI,
pages 258267, June 1993.

[24] Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining: A new approach to
exploit instruction level parallelism for loop programs. In Michel Cosnard, Kemal Ebcioglu,
and Jean-Luc Gaudiot, editors, proceedings of IFIP WG 10.3 Working Conference on Archi-
tectures and Compilation Techniques for Fine and Medium Grain Parallelism, pages 3—15.
IFIP, North-Holland, January 1993.

[25] Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining. Reseach Repport
RR-1838, INRIA-Rocquencourt, France, 1993.

[26] Jian Wang, Christine Eisenbeis, Martin Jourdan, and Bogong Su. Decomposed Software
Pipelining: A new perspective and a new approach. International Journal of Parallel
Programming, 22(3):357-379, 1994.

13

