
Software Pipelining with Register Allocation and Spilling �Jian Wangy Andreas KrallM. Anton Ertl Christine EisenbeiszInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstr. 8A-1040 Wien, AustriaAbstractSimultaneous register allocation and software pipelining is still less understood and re-mains an open problem. In this paper, we �rst present the Register Requirement Graph(RRG) which can dynamically re
ect the register requirement during software pipelining.Then, using the RRG as a basis, we develop a Register-Pressure-Sensitive (RPS) schedulingtechnique and study the problem of register spilling for software pipelining. We also presentthree algorithms { RPS without spilling, RPS with spilling and the software pipelining witha limited number of registers. The preliminary experimental results show that the �rst twoalgorithms can e�ciently reduce the register requirement without degradation of the optimalperformance and the third can e�ectively exploit instruction-level parallelism within loopseven for those machines with a small register �le.Keywords: Instruction-level Parallelism, Loop Scheduling, Software Pipelining, RegisterAllocation, Spilling, Data Dependence Graph1 IntroductionIt has been well known that exploiting Instruction-Level Parallelism (ILP) within loops has be-come a key compilation issue for the instruction-level parallel processors like Very Long Instruc-tion Word (VLIW) and superscalar machines [1, 2, 3]. Software pipelining has been proposedfor exploiting ILP within loops, which can e�ectively overlap the execution of operations fromdi�erent iterations [4, 5, 6, 7, 8, 9, 10, 11, 12].Register Allocation is another key compilation issue [13, 14, 15, 16, 17]. It has been wellknown that performing register allocation before software pipelining may introduce unacceptableanti-dependences due to the reuse of registers, which may limit software pipelining [17, 3]. Onthe other hand, if software pipelining is done before register allocation, more registers thannecessary may be needed, which may cause unnecessary register spillings and severely degradethe performance of the pipelined loop [3]. However, simultaneous register allocation and softwarepipelining is still less understood and remains open.�This work was supported by the Lise Meitner Stipendium funded by the Austrian Science Foundation (FWF)and the Austrian Science and Research Ministry.yEmail: jian@mips.complang.tuwien.ac.at; Tel: 43-1-588014474; Fax: 43-1-5057838.zDr. Eisenbeis is with INRIA-Rocquencourt, Domaine de Voluceau, BP 105-78153, Le Chesnay Cedex, France.1

The interaction between register allocation and loop-free code scheduling has been studiedsince the mid 1980s [10, 18, 13, 16, 19], and register allocation for software pipelined loop hasbeen studied by many researchers and some e�cient techniques have been proposed [20, 12,17, 15]. However, the interaction between register allocation and software pipelining was latelyconsidered in few studies. Mangione-Smith, et al. developed a lower bound on the numberof registers needed for a given modulo scheduled loop [21]. Ning and Gao have presenteda framework of register allocation for software pipelining by which they deduce the minimalnumber of registers needed for �nding some optimal software pipelined loop [22], but they donot consider the resource constraints. A called lifetime-sensitive modulo scheduling techniquehas been presented by Hu� [23], in which he uses the idea of bidirectional slack-scheduling toperform the modulo scheduling with a try for shortening the lifetime of a variable, but he doesnot consider the register spilling problem.Our approaches presented in this paper are di�erent from all of the above. In order tounderstand the interaction between register allocation and software pipelining, we present anovel framework, called Register Requirement Graph (RRG), which can dynamically re
ect theregister requirement during software pipelining. While software pipelining, the RRG is used tocontrol the register pressure caused by software pipelining itself. On one hand, the RRG givesthe register related information to guide the scheduling process such that no more register thannecessary is needed. On the other hand, from the RRG we can dynamically estimate the registerrequirement such that the spilling decision and the tradeo� between the initiation interval andregister pressure are e�ciently made.The next section gives a background to make this paper self-contained. The work reported inthis paper can be concluded as follows: (1) Present the RRG to estimate the register requirementduring software pipelining (Section 3); (2) Use the RRG to develop a Register- Pressure-Sensitive(RPS) scheduling technique (Section 4); (3) Study the problem of register spilling to reduce theregister pressure without degradation of the optimal performance (Section 5); (4) Presentthree software pipelining algorithms { RPS without spilling, RPS with spilling and the softwarepipelining with a limited number of registers (Section 6); (5) Give the preliminary experimentalresults to indicate the e�ciency of the three algorithms (Section 7).2 Decomposed Software Pipelining(DESP)The data dependences of a loop can be represented by a Loop Data Dependence Graph (LDDG),(O;E; �; �), where O is the operation set and E the dependence edge set; the dependencedistance � and the delay � are two non-negative integers associated with each edge. Forexample, e = (op; op0) and (�(e); �(e)) denote that op0 can only be issued �(e) cycles after thestart of the operation op of the �(e)th previous iteration [2, 9].DESP is a novel modulo scheduling approach, and its idea can be illustrated by Figure 2.1as an example1. First, we modify the LDDG by removing some edges so that the graph becomesacyclic; secondly, we apply the list scheduling technique on the modi�ed graph to generatethe software pipelined loop body under the resource constraints, and use the row-number todenote the cycle-number of each operation in the loop body; thirdly, we determine the iteration-number (denoted as column-number in the context of DESP) of each operation such that alldata dependences in LDDG are satis�ed.Formally, DESP theoretically decomposes the loop schedule � into two functions, row-number1For all examples in this paper, the loop-independent dependence edges are solid edges whereas loop-carriedones are dotted if we do not attach (�; �) to each edge. 2

5, 3, 1, 4;
6, 2;

1, 4;
2;

5,3, 1,4;
6, 2;

 5,3;
 6;

LDDG MLDDG

1

2

3
6

5

4
1

2

3
6

5

4

rn
1 5,3,1,4
2 6,2

cn
1 1,4,2
2 5,3,6

 step 1

step 2

step 3

 Figure 2.1 Decomposed Software Pipelining and column-number.De�nition 2.1 Let G = (O;E; �; �) be the LDDG of a loop, and � a valid loop schedulefor G with initiation interval II . We de�ne the row-number rn and the column-number cn, twomappings from O to N (non-negative integer set), such that�(op; 1) = rn(op) + II � (cn(op)� 1) and �(op; i) = �(op; 1)+ II � (i� 1):2 Thus, software pipelining can be described below with the concepts of row-number andcolumn-number.De�nition 2.2 (Decomposed Software Pipelining) Let G = (O;E; �; �) be the LDDGof a loop, we say that the row-number, rn, and the column-number, cn, are valid for the loop,if and only if the following constraints are satis�ed:1. resource constraints: 8opi; opj 2 O, if rn(opi) = rn(opj), then opi and opj can not beresource-con
ict2;2. dependence constraints:9II 2 N; 8e = (op; op0) 2 E; rn(op0)� rn(op) + II � (�(e) + cn(op0)� cn(op)) � �(e):II is called as the initiation interval or the length of the software pipelined loop body. Thegoal of decomposed software pipelining is to �nd valid row-number and column-number withminimum II . 2In our previous papers [24, 25, 26], we have proven the following theoretical results.Theorem 2.1 For a given LDDG, suppose we have constructed row-number rn whichsatis�es the resource constraints. We can construct column-number cn such that the datadependence constraints are also satis�ed, if and only if, for each cycle C of the LDDG,X8e2C �(e) � 0where �(e) = ��(e) + d(�(e) + rn(op)� rn(op0))=IIe, e = (op; op0). 22Here, we only consider the pipelined operations and the single-cycle operations, but the de�nition is easilyextended to the case of multi-cycle non-pipelined operations.3

The following corallary is direct from Theorem 2.1.Corallary 2.1 For a LDDG without cycle, if we have constructed row-number taking intoaccount the resource constraints, then we can always construct column-number such that thedata dependence constraints are also satis�ed. 23 Register Requirement GraphIn decomposed software pipelining, the column-number is an important parameter to controlthe register requirement of each variable. In fact, the register requirement is mainly determinedby the di�erence between the column-numbers of two operations which have a data dependence(denoted as dcnij). For example, suppose variable u is written by opi and read by opj , thendcnij gives the estimate of the lifetime of u. Thus, we �rst present the Register RequirementGraph (RRG) which can dynamically estimate dcnij . The RRG gives the heuristics to guidethe scheduling process (determining the row-number).Our software pipelining framework is based on the DESP as shown in Figure 2.1. In the �rststep, we use the following method to modify the LDDG [24, 25, 26]:(1) �nd out all strongly connected components (SCCs) in the LDDG, remove all edges whichare not included in the SCCs;(2) under the unlimited resource constraints, generate a software pipelined loop for the SCCs,denoted as (rn0; cn0);(3) for each edge e = (opi; op� j) of SCCs, if rn0(opj)� rn0(op� i) < �(e), then remove efrom the SCCs.The remaining graph is acyclic, denoted as MLDDG. We have proven that any row-numberssatisfying the data dependences of the MLDDG must satisfy the condition of Theorem 2.1.Given the LDDG (O;E; �; �) of a loop, after the �rst step of decomposed software pipelining,we obtain an acyclic dependence graph MLDDG = (O;Em; �). A new graph, called registerrequirement graph, is de�ned as RRG = (O;E; !), where ! is a weight on each edge whichrepresents the estimated di�erence between the column-numbers of two operations in the worstcase.Let MII be the estimated minimum initiation interval, before scheduling the softwarepipelined loop body, we initially de�ne ! as follows:(1) !(e) = ��(e); 8e 2 Em;(2) !(e) = ��(e) + d(�(e) +MII � 1)=MIIe; 8e 2 E �Em.While scheduling the software pipelined loop body, we recompute !(e) for each e = (opi; opj) 2E � Em as follows:(1) !(e) = ��(e) + d(�(e) � (rn(opj) � rn(opi)))=MIIe, if rn(opi) and rn(opj) both aredetermined;(2) !(e) = ��(e) + d(�(e)� 1 + rn(opi))=MIIe, if rn(opi) is determined but rn(opj) is not;(3) !(e) = ��(e) + 1 + d(�(e)� rn(opj))=MIIe, if rn(opj) is determined but rn(opi) is not;An example of RRG is given in Figure 3.1 and 3.2, Figure 3.1(1)is the loop and (2) themachine model. Its LDDG and MLDDG are shown in Figure 3.2(1) and (2), respectively.Figure 3.2(3) is the initial RRG. Figure 3.2(4) is the RRG when rn(op1) = rn(op3) = rn(op5) =rn(op6) = 1 and rn(op2) = rn(op4) = 2. 4

The Original Loop:

for i=1 to n do
s=s+a[i]
a[i]=s*s*a[i]
enddo

The Code of
the Loop Body:

1. t0=t0+1;
2. t1=a[t0];
3. s=s+t1;
4. t2=s*s;
5. t3=t1*t2;
6. a[t0]=t3

(1) The Loop

Pipeline Number Operation Latency

Memory port 2 Load 13
 Store 1
Address ALU 2 Add/Sub 1
Adder 1 FAdd/FSub 1
 IAdd/ISub 1
Multiplier 1 FMUL 2
 IMUL 2

(2) The Machine Model

Figure 3.1 An Example

1

2
3

4

5

6

1

2
3

4

5

6

1

2
3

4

5

6

(0,1)

(0,13)

(0,1)

(0,2)

(0,2)

1

7

1

2

2

(1) LDDG (2) MLDDG (3) RRG

 Figure 3.2 LDDG, MLDDG and RRGs

1

2
3

4

5

6

0

7

0

2

1

(4) RRGA de�nition-use path is de�ned as a path from the operation writing a variable to anyoperation reading the variable in the LDDG. The critical de�nition-use path of variable u, cdupu,is de�ned as X8e2cdupu !(e) = maxany dup of u(X8e2dupu !(e)):Let RRG = (O;E; !), for each edge e 2 E, �(e) is de�ned as the number of variables whosecritical de�nition-use path include e.RRG has the following two properties:(1) Let RRG = (O;E; !), cdupu be the critical de�nition-use path of u, then P8e2cdupu !(e)gives the estimate of the register requirement of u.(2) Let RRG = (O;E; !), during scheduling the software pipelined loop body, for any edgee which is in the LDDG but not included in the MLDDG, if e is satis�ed (that is, rn(opj) �rn(opi) � �(e); e = (opi; opj)), then the register requirement may be decreased by up to (!(e)+�(e)) � �(e) registers compared to the case when e is not satis�ed.4 RPS SchedulingWe present the following two heuristics to direct the scheduling process:(1) Delay some operations to be scheduled such that some dependence edges can be satis�edin the software pipelined loop body;(2) Develop register-pressure-sensitive heuristics to determine the scheduling priorities foroperations.In the second step of our software pipelining framework, we use list scheduling on the5

MLDDG (obtained in the �rst step) to determine the row-numbers for all operations. First,we �nd out all schedulable operations at the current cycle and put them into the Data ReadySet (DRS), then we select the operations with the highest scheduling priority to schedule.As most dependence edges originally in the LDDG have been removed in the MLDDG, theremay be a lot of schedulable operations in the DRS at each cycle. Without increase of theestimated II3, it is greatly possible that some operations can be delayed to schedule such thatsome dependence edges avoid being unnecessary broken.We suggest that an operation can be delayed and removed from the current DRS only if(1) The operation does not use the critical resources. res is one of the critical resources ift � 1 + dN=ne � the estimated II, where t is the current cycle, N is the number of operationsusing res and n is the number of res in the machine; and(2) The lengths of the resulting dependence paths are not greater than the estimated II. Thatis, t+ �(e)+ height(op)� 1 � the estimated II, where t is the current cycle, e is the dependenceedge which we are willing to hold and height(op) is the height of op in the MLDDG.For the example of Figure 2.2(2), at the �rst cycle, all operations are schedulable and canbe put into the DRS, but only operation 2 can be delayed and removed from the DRS.When there are more than one operation which can be delayed, we �rst consider the operationwith the greatest value of (!(e) + �(e)) � �(e), where e is the dependence edge which we arewilling to hold.Next we discuss how to determine the scheduling priorities for the operations of the DRS.In order to obtain the optimal time e�ciency, we consider the height of operation in theMLDDG as the �rst heuristic. The second heuristic is sensitive to the register pressure and isderived from the RRG.At the current cycle t, suppose opi and opj are the operations with the greatest value ofheight in the MLDDG. If opi and opj are not resource-con
ict, then they should be scheduledat t. If opi and opj are resource-con
ict, then we use the second heuristic to determine theirscheduling priorities as follows:(1) If an operation is scheduled at t, then another should be scheduled after the tth cycle;(2) Suppose opi is scheduled at t, let DES(opi) be the dependence edge set which includedall edges adjacent to opi. Let rn(opi) = t, we re-compute the new value of ! of each edge inDES(opi), denoted as !new . Thus, we can compute the register � benefit of opi,�(opi; t) = X8e2DES(opi)(!(e)� !new(e)) � �(e);(3) By the same method as step (2), we compute �(opj; t);(4) The operation with greater value of � (the register-bene�t) is the one with higher schedul-ing priority.4.1 Register SpillingSpilling decision are conventionally made only when a register con
ict occurs, that is, the numberof simultaneously live variables is greater than the number of available machine registers. The3The estimated II can be derived from the critical cycle of the LDDG and the number of operations using thecritical resources. 6

e�ect of spilling is keeping the result of a computation in memory rather than in a register suchthat the register can be re-used to keep the result of a new computation at the cost of increasingthe number of load/store operations and probably degrading the code performance. Softwarepipelining overlaps the execution of the operations from di�erent iterations, increasing registerpressure and generating excessive spill code in the case of small machine register �les.This section discusses register spilling problem for software pipelining. Our starting-pointis that spilling decision should be made during software pipelining such that the interactionsbetween register allocation and loop scheduling can be seen. The RRG can dynamically re
ectthe change on the register requirement during software pipelining and make our starting-pointfeasible.Two problems to be discussed are as follows: (1) When is a spilling decision made duringsoftware pipelining? (2) How to do a spilling ?In the loop body, we suppose that, a variable only has a de�nition (the operation de�ningthe variable) but may have more than one use (the operation using the variable). We �rst wantto make a remark: The meaning of spilling in the context of this paper is something di�erentfrom the conventional spilling problem [14]. We say spilling a (a group of) use(s) but do notsay spilling a variable (that is, spilling all its uses). By spilling a use, we mean that a storeoperation after the de�nition and a load operation before the spilled use are inserted, and otheruses still reference the value of the variable in a register.From the RRG, we can dynamically estimate the register requirement at each cycle. Spillingis needed only if the number of required registers is greater than the number of available machineregisters. In fact, other measures like delaying some operations to schedule and introducing somedependence edges into the MLDDG can also decrease the register requirement.Another necessary condition for spilling is that the load/store operations caused by spillingdoes not increase the estimated II. In the case of that there are not enough available machineregisters to reach the estimated II, we �rst increase the estimated II and then consider spillingor other measures to decrease the register requirement (see next section).The spilling process consists of two steps: (1) Select a (a group of) use(s) for spilling;(2) Modify the MLDDG and the RRG by adding the necessary load/store operations and re-computing the value of corresponding ! and �.The spilling � benefit of a use is de�ned as the number of saved registers per insertedload/store operation. More precisely, given a use, use(op; u), where op is the operation usingvariable u, under the assumption of that use(op; u) has been spilled, we re-compute the minimalregister requirement of variable u and the new introduced variable, denoted as K 0u. Thus, thespilling-bene�t of use(op; u) is d(Ku�K 0u)=2e as a store and a load are inserted to the MLDDGand the RRG for spilling a use.Obviously, a use with greater value of spilling-bene�t is the one with higher spilling priority.We take the loop shown in Figure 3.1 as an example to illustrate the above ideas. We discusstwo cases: (1) scheduling without spilling; (2) scheduling with spilling.For the �rst case, the estimated II is 2 since the machine has one multiplier but the loopbody contains two multiplications. The software pipelined loop body can be found under theconstraints of the MLDDG (shown in Figure 3.2(2)) and the initial RRG (shown in Figure3.2(3)). By delaying operation 2, we obtain rn(1) = rn(3) = rn(5) = rn(6) = 1 and rn(2) =rn(4) = 2. It is easy to compute the number of required registers which is 23.For the second case, the estimated II is also 2. After computing the spilling-bene�ts of all7

uses, we �nd that up(op6; t0) has the greatest value of spilling-bene�t which is d(13�7�2)=2e = 2,so up(op6; t0) has the highest spilling priority. After spilling up(op6; t0), the modi�ed MLDDGand the modi�ed initial RRG are shown in Figure 5.1. By delaying operation 2, we obtainrn(1) = rn(3) = rn(5) = rn(6) = rn(s) = 1 and rn(2) = rn(4) = rn(l) = 2. It is easy tocompute the number of required registers which is 21.
1

2
3

4

5

6

1

2
3

4
5

6

s

l

s

l

(1) The modified MLDDG (2) The modified initial RRG

Figure 5.1 Scheduling with Register Spilling

1

7

1

1

2

2
7

1An important observation is that, spilling can decrease the register requirement withoutdegradation of the optimal software pipelining performance if the spilling decision can be e�-ciently controlled.5 AlgorithmsOn the basis of the last three sections, we present three software pipelining algorithms. The�rst two are software pipelining to minimize the register requirement and the third is softwarepipelining with a limited number of registers.5.1 RPS Scheduling without SpillingThe algorithm is described as follows:Algorithm RPS-without-Spilling;INPUT: The loop to be software pipelined and its LDDG;OUTPUT: The software pipelined loop;BEGIN1. Construct the MLDDG, determine the estimated II;2. Compute the height of each operation in the MLDDG;3. Find out all de�nition-use paths of each variable, construct the RRG;4. Find out all schedulable operations and put them in the DRS;5. Find out those operations which can be delayed one by one, remove them from the DRS;6. Determine the scheduling priorities of all operations in the DRS;7. Under the constraint of resources, select the operation with the highest scheduling priority8

from the DRS and place it in the current cycle, update the DSR. This step repeats until nooperation can be placed in the current cycle;8. If all operations of the loop have been scheduled then goto step 9; else update the DRSand the RRG and goto step 5;9. For each operation, let its row-number be its cycle-number. From Theorem 2.3, thecolumn-number of each operation is computed in terms of the row-numbers and the II;10. Generate the software pipelined loop in terms of the row-numbers and the column-numbers;END;5.2 RPS Scheduling with SpillingThis algorithm is di�erent from the RPS-without-Spilling algorithm in the way that a new spill-checking step is inserted between step 5 and step 6. The new step calls a spill-checking algorithmwhich is described as follows:Algorithm Spill-Checking;BEGIN1. If the memory access unit is one of the critical resources, then return;2. Compute the spilling-bene�t of each use, we actually only consider those uses which areon the critical de�nition-use paths;3. Under the constraint of not increasing the estimated II, select a (a group of) use(s) forspilling. In this step, if no use can be selected then return;4. Update the MLDDG, the RRG and the DRS; return;END;5.3 Software Pipelining with a Limited Number of RegistersThe above two algorithms try to obtain the optimal software pipelined loop with the minimalregister requirement. In this section we present an approach for software pipelining with alimited number of registers.Our idea is that we �rst estimated the register requirement, if the number of required registersis greater than the given number of available machine registers then we increase the estimatedII such that the register requirement is reduced.However, it is di�cult and complicated to precisely estimate the register requirement. RRGonly estimates the register requirement of each variable. The problem of which variables canshare the same registers remains open during software pipelining.We present the following heuristics: Let K0 be the given number of available machine regis-ters; Kest be the estimated number of required registers from RRG. A non-negative integer N0 isintroduced. If Kest�N0 � K0 then we call the algorithm of RPS scheduling with spilling; else we�rst increase the estimated II (maybe also increase N0 in some cases) to satisfy Kest�N0 � K0.After getting the software pipelined loop body, we can precisely compute the number of requiredregisters. If the number is greater than K0, then we increase the estimated II and call the al-9

gorithm of RPS with spilling again. The process repeats until a software pipelined loop body isobtained whose register requirement is not greater than K0.We have not yet any theoretical analysis about N0, but we believe that N0 can be estimatedempirically.6 Preliminary Experimental ResultsThe e�ort to implement the algorithms presented in this paper is underway. Before gettingextensive experimental tests, we select six examples to verify our algorithms. Except for example1, the other �ve examples are selected from the Livermore benchmarks, shown in Table 1. Asour preliminary experiments are mainly conducted by a manual simulation, we try to selectsome simple loops in a random way. The machine model we use in the experiments is shown inFigure 3.1(2).
Table 1. Experimental Examples

Example L MII with lcd ? Remarks

 1 20 2 no Figure 2.1(1)
 2 22 3 no Kernel 1
 3 17 1 yes Kernel 3
 4 18 3 yes Kernel 5
 5 16 1 yes Kernel 11
 6 17 2 no Kernel 12

note 1: L = the length of the longest dependence path in
 the loop body.
note 2: MII = the Minimal II.
note 3: lcd = loop-carried dependence.Table 2 gives the register requirements for the optimal software pipelining performance bythree scheduling approaches { DESP, RPS without spilling and RPS with spilling. AlthoughDESP itself adopts the measures to reduce the register requirement when it determines thecolumn-numbers, the algorithm of RPS without spilling can still obtain an improvement overDESP from 7:4% to 17:9% in register use without degradation of the optimal performance exceptfor example 3 and 5. For example 3 and 5, no improvement in register use can be obtained sincethe initiation intervals (II) of the software pipelined loops are 1. For example 1 and 2, thealgorithm of RPS with spilling can further obtain an improvement over DESP in register use of22:2% and 23:1%, respectively, without degradation of the optimal performance.

Table 2. Register Requirement for Three Scheduling Approaches

Example II DESP RPS without Spilling RPS with Spilling

 1 2 27 23 21
 2 3 39 32 30
 3 1 30 30 30
 4 3 21 18 18
 5 1 29 29 29
 6 2 27 25 25

note: II = the initiation interval of the software pipelined loop.The results of our algorithm for software pipelining with a limited number of registers arepresented in Table 3 and Figure 7.1. Table 3 gives the initiation intervals (II) obtained by our10

algorithm for the six examples when the number of available machine registers (K0) is 8, 16and 32, respectively. The relations between K0 and the speedup are shown in Figure 7.1. Thespeedup is de�ned as L=II , where L is the length of the longest dependence path in the loopbody (shown in Table 1), representing the optimal performance when we only exploit the ILPwithin the loop body. The results show that our algorithm can obtain the optimal speedupwhen K0 = 32 (the minimal size of register �le in the current ILP processors) and an averagespeedup of 2.34 when K0 = 8, indicating that our algorithm can still e�ciently exploit the ILPacross iterations for loops even for a small register �le (K0 = 8).
Table 3. Software Pipelining with a Limited Number of Registers

Example The number of available machine registers:
 8 16 32
 ---- ---- ----
 1 7 3 2
 2 16 8 3
 3 7 3 1
 4 8 4 3
 5 5 2 1
 6 9 4 2

 (The Initiation Interval of the Software Pipelined Loop)

example
1 2 3 4 5 6

2

4

6

8

10

12

14

16

speedup

Figure 7.1 Software Pipelining with a Limited Number of Registers

Ko = 8

Ko = 16

Ko = 32

7 ConclusionThis paper presents the Register Requirement Graph (RRG) which can dynamically re
ectthe register requirement during software pipelining. On the basis of the RRG, A Register-Pressure-Sensitive (RPS) scheduling technique is developed and the problem of register spillingfor software pipelining is studied. We also present three algorithms { RPS without spilling, RPSwith spilling and the software pipelining with a limited number of registers. The preliminaryexperimental results indicate that the �rst two algorithms can e�ciently improve the registeruse without degradation of the optimal performance and the third can e�ectively exploit theILP across iterations for loops even for those machines with a small register �le.The three algorithms are being implemented on our compiler testbed. We expect extensiveexperimental tests. 11

References[1] J.A. Fisher, D. Landskov, and B.D. Shriver. Microcode compaction: Looking backwardand looking forward. In proceedings of 1981 National Computer Conference, 95-102 1981.[2] F. Gasperoni. Compilation techniques for vliw architectures. Technical Report TR435, NewYork University, March 1989.[3] B. R. Rau and J.A. Fisher. Instruction-level parallel processing: History, overview andperspective. The Journal of Supercomputing, 7(1), January 1993.[4] B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily schedulable horizon-tal architecture for high performance scienti�c computing. In proceedings of the 14th In-ternational Symposium on Microprogramming and Microarchitectures (MICRO-14), pages183{198, October 1981.[5] A. Aiken and A. Nicolau. Perfect pipelining: A new loop parallelization technique. Inproceedings of European Symposium on Programming, Lecture notes in Computer Science,No.300, pages 221 {235. Spring-Verlag, June 1988.[6] P. Y. T. Hsu. Highly Concurrent Scalar Processing. PhD thesis, University of Illinois,Urbana-Champaign, 1986.[7] K. Ebcioglu. A compilation technique for software pipelining of loops with conditionaljumps. In proceedings of the 20th International Symposium on Microprogramming andMicroarchitectures (MICRO-20), pages 69{79, 1987.[8] B. Su, S. Ding, and J. Xia. Urpr - an extension of urcr for software pipelining. In pro-ceedings of the 19th International Symposium on Microprogramming and Microarchitectures(MICRO-19), pages 104 { 108, 1986.[9] Bogong Su and Jian Wang. Loop-carried dependence and the general URPR softwarepipelining approach. In proceedings of the 24th Annual Hawaii International Conference onSystem Sciences, pages 366{372. IEEE and ACM, January 1991.[10] R.F. Touzeau. A fortran compiler for the fps-164 scienti�c compute. In proceedings of ACMSIGPLAN Symposium on Compiler Construction, 1984.[11] A.E. Charlesworth. An approach to scienti�c array processing: The architecture design ofthe ap-120b/fps-164 family. Computer, pages 18{27, September 1981.[12] M.S. Lam. A Systolic Array Optimizing Compiler. PhD thesis, CMU, 1987. CMU-CS-87-187.[13] D.G. Bradlee, S. J. Eggers, and R.R. Henry. Integrated register allocation and instructionscheduling for riscs. In proceedings of the 4th International Conference on ASPLOS, 1991.[14] G. J. Chaitin. Register allocation and spilling via graph coloring. In proceedings of ACMSIGPLAN Symp. on Compiler Construction, 1982.[15] L.J. Hendren, G.R. Gao, E. R. Altman, and C. Mukerji. Register allocation using cyclicinterval graph: A new approach to an old problem. Technical Report ACAPS TechnicalMemo 33, McGill University, 1992.[16] S. S. Pinter. Register allocation with instruction scheduling: A new approach. In proceedingsof ACM SIGPLAN PLDI, 1993. 12

[17] B. R. Rau, M. Lee, P.P. Tirumalai, and M.S. Schlansker. Register allocation for softwarepipelined loops. In proceedings of PLDI, 1992.[18] J. R. Goodman and W. Hsu. Code scheduling and register allocation in large basic blocks.In proceedings of International Conference on Supercomputing, 1988.[19] S.A. Mahlke, W.Y. Chen, P.P. Chang, and W.W. Hwu. Scalar program performance onmultiple-instruction-issue processors with a limited number of registers. In proceedings ofthe 25th HAWAII International Conference on System Sciences, January 1992.[20] C. Eisenbeis, W. Jalby, and A. Lichnewsky. Compile-time optimization of memory andregister usage on the cray-2. In proceedings of the second Workshop on Languages andCompilers, 1989.[21] William Mangione-Smith, S. G. Abraham, and E. S. Davidson. Register requirements ofpipelined processors. In proceedings of 1992 ACM International Conference on Supercom-puting, 1992.[22] Qi Ning and Guang R. Gao. A novel framework of register allocation for software pipelining.Technical Report ACAPS Technical Memo 42, McGill University, 1993.[23] R. Hu�. Lifetime-sensitive modulo scheduling. In proceedings of ACM SIGPLAN PLDI,pages 258{267, June 1993.[24] Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining: A new approach toexploit instruction level parallelism for loop programs. In Michel Cosnard, Kemal Ebcioglu,and Jean-Luc Gaudiot, editors, proceedings of IFIP WG 10.3 Working Conference on Archi-tectures and Compilation Techniques for Fine and Medium Grain Parallelism, pages 3{15.IFIP, North-Holland, January 1993.[25] Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining. Reseach RepportRR-1838, INRIA-Rocquencourt, France, 1993.[26] Jian Wang, Christine Eisenbeis, Martin Jourdan, and Bogong Su. Decomposed SoftwarePipelining: A new perspective and a new approach. International Journal of ParallelProgramming, 22(3):357{379, 1994.
13

