
Short Presentation: Static Verification of Global Heap
References in Java Native Libraries

Florian Brandner, Dietmar Ebner, Andreas Krall and Christian Thalinger
Institut für Computersprachen

TU Wien
{brander,ebner,andi,twisti}@complang.tuwien.ac.at

ABSTRACT
Explicit memory management of Java objects is a frequent
source of programming errors in Java native libraries. In
this article we present a static verification tool for the au-
tomatic detection of frequent kinds of errors such as miss-
ing registration of global references. The tool implements a
control-flow aware interprocedural escape analysis in order
to determine which references have to be explicitly registered
for the garbage collector followed by an analysis that makes
sure that those references are created on all possible control
flow paths. The tool has been applied to some large native
libraries and we were able to detect a fairly large number of
programming errors.

1. INTRODUCTION
Via the Java Native Interface (JNI) [4] Java allows to call

methods written in other programming languages like C or
C++. A Java Virtual Machine (JVM) [5] has automatic
memory management. But automatic memory management
does not work correctly anymore when references to Java
objects are stored in global variables in native libraries. The
programmer is responsible to register and unregister such
references explicitly for the garbage collector (GC).

JNI distinguishes between local and global references. The
creation of a Java object in a native function results in a local
reference. This local reference is valid only in the creating
thread until the scope of the native function ends. However,
those references can be prematurely invalidated by a call of
the JNI function DeleteLocalRef, thereby enabling the GC
to reclaim the occupied memory space earlier. References
passed as arguments to native functions or created locally
can be stored in global (static) variables and can thus also
be accessed by other threads. In this case it is necessary to
register the reference with the JNI function NewGlobalRef

to prevent the GC from reclaiming the memory space of a
particular object too early. NewGlobalRef stores a reference
to an object into a data structure which is known to the
GC and prevents the GC thereby from marking them for

To be presented at the third workshop on Semantics, Program Analysis, and
Computing Environments for Memory Management (SPACE), January
2006, Charleston, South Carolina

collection. Those references han be removed later on by a
call to DeleteGlobalRef.

The explicit memory management in native functions is
a source of different programming errors. Missing calls to
NewGlobalRef or wrong placed DeleteGlobalRef calls lead
to dangling references. Missing DeleteGlobalRef calls cre-
ate memory leaks. Wrong pairing of NewGlobalRef and
DeleteGlobalRef calls or multiple DeleteGlobalRef or
DeleteLocalRef calls can lead to run time exceptions in
some JVMs. These errors are very hard to detect. The
GC is called at unpredictable intervals. Some conservative
GCs also scan the global memory and do not produce an
error when NewGlobalRef calls are missing. However, for
exact GCs, the registration of Java objects stored in global
variables in native code is essential.

In this work we present a tool to catch some frequent
sources of errors in Java native libraries. We implement a
control-flow aware interprocedural escape analysis in order
to determine which references have to be explicitly registered
for the garbage collector followed by an analysis that makes
sure that those references are created on all possible control
flow paths.

Related work is presented in Section 2. Section 3 explains
our interprocedural algorithm, and computational results on
some big Java native libraries are presented in Section 4.

2. RELATED WORK
The problem to determine if an object leaves a certain

scope is known as escape analysis.
In 1988, Ruggieri and Murtagh developed an interproce-

dural analysis for determining the lifetime of dynamically
allocated objects [7]. They partition the heap into subheaps
for procedures and determine the objects whose lifetime is
contained in the lifetime of the procedures.

Goldberg and Park [2] introduced the term escape analysis
and proposed an algorithm to determine if arguments of
functions have a greater lifetime than the function call itself.

Bruno Blanchet extended a Java-to-C compiler by an es-
cape analysis [1]. The analysis transforms Java into SSA
form, builds equations, and solves them with an iterative
fixpoint solver.

John Whaley and Martin Rinard combined pointer and
escape analysis [9]. They analyze arbitrary regions of incom-
plete programs obtaining complete information for objects
which do not escape these regions.

Kotzmann and Mössenböck developed a very fast escape
analysis for Suns Java HotSpot client compiler [3]. The anal-
ysis operates on an intermediate representation in SSA form

98



and introduces equi-escape sets for the efficient propagation
of escape information. The results are used for scalar re-
placement of fields and for stack allocation of objects.

Shaham et al. present a framework for statically reasoning
about temporal heap properties [8]. They developed a con-
servative analysis which proves for certain program points
that a memory object of a heap reference is not needed any
more.

3. ANALYSIS
Our analysis makes use of the gcc 1 compiler framework

and is based on its intermediate representation GIMPLE,
which is basically a simple three address language without
high level flow structures. No GIMPLE statement has im-
plicit side effects and lexical scopes are represented as con-
tainers. Moreover, variables residing in memory are never
used directly in expressions but loaded into a temporary
which is used instead. Furthermore, we make use of a frame-
work for interprocedural optimization recently introduced in
gcc. However, due to technical limitations, this currently ex-
cludes the use of the Static Single Assignment form (SSA),
which would simplify our analysis. Therefore, we have to
take into account that references in the intermediate repre-
sentation can be redefined. A project aiming to drop this
restriction in gcc is currently scheduled for version 4.2.

Once the call graph is build, we iterate its nodes in post-
order, thereby ensuring we analyze all callees before their
callers as long as they are available in the current compi-
lation unit and there are no backward edges. During the
intraprocedural analysis, each function is annotated with
the following information:

(a) Parameter declarations of a JNI type are marked, if
they point to an object that escapes the current function
and there is at least one path from the entry block to
the escape site without passing the objects address to
NewGlobalRef.

(b) A static function whose address is not taken is marked,
if it returns a reference to a garbage collected object
which is created within the function and for which no
global reference has been created.

In general, pointers are assumed to escape from a function,
if they are assigned to global (static) variables, passed to
functions whose parameter is marked to escape as described
in (a), or returned by a function whose address was taken or
that is declared non-static (otherwise, the calling functions
will be analyzed later on and the returned object is tracked
there).

In a first step, we heuristically determine the set of garbage
collected objects. Therefore, we assume that all JNI en-
try points are dereferenced function pointers contained in a
global environment structure (JNIEnv) and test their return
type against a set of predefined types. The set of tracked ob-
jects is determined by those calls and by references returned
from static functions as described in (b). Furthermore, we
can treat function parameters of appropriate type just like
newly created objects while — instead of creating a warning
— marking the corresponding parameter as described in (a)
as long as the reference is not passed to NewGlobalRef.

For each of those objects, a object tag is created that rep-
resents the global object. Each variable in the intermediate
1http://gcc.gnu.org

representation is annotated with an object tag if it points
to a garbage collected object at a particular point. For each
basic block, this information is stored in an in- and out-set
while the out-set is computed from the in-set by traversing
the basic block and applying the following rules:

• For a function call returning a global object, i.e., a
call to a JNI function of appropriate type or a static
function annotated with this information, the left hand
side of the expression is set to point to the associated
object tag.

• For a simple copy- or cast-operation, the left hand side
is set to the object tag associated with the right hand
side.

• For any assignment overwriting the points-to informa-
tion of the left hand side, e.g., var=NULL, the associated
object tag is removed.

Furthermore, in-sets of a particular basic block are com-
puted by merging the out-sets of its predecessor. However,
if a particular variable points to different object tags in its
predecessors, a virtual tag is created and associated with
the current variable. A virtual tag is annotated with a set
of “real” tags and encodes the information “one of those,
I do not know which”. Merging two different virtual tags
results in a new virtual tag while the set of real tags is the
union of both. For the rest of the analysis, virtual tags and
real tags are mostly treated the same. This procedure is re-
peated for each basic block of the current function until all
in- and out-sets remain stable, i.e., the points-to information
has been fully propagated within the current function.

Next, each object tag o is associated with a mark mo,b ∈
{m, u,>} for each basic block b and initialized to >. This
mark encodes the information, if an object escaping within
the current basic block is ensured to be registered at the
garbage collector, i.e., it is registered either on all control-
flow paths entering the block or on all paths from the cur-
rent block to the exit block. Again, mo,b for a particular
basic block b is computed by merging the information of the
predecessors and the procedure is iterated until the marks
remain stable. Algorithm 3.1 shows how mo,b is computed
for all object tags o of a particular basic block b. Object
tags for formal parameters are considered to be defined in
the entry block of the function. The operator ⊕ is defined
as given in Table 1.

⊕ m u >
m m u m

u u u u

> m u >

Table 1: Operator ⊕. The three states encode if a
particular tag can be proven to be registerd at the
GC (m), unregistered on at least one path (u), or this
information is not yet known (>).

In a final step, all escape sites for each basic block b are
checked and a warning is generated, if mo,b 6= m for a partic-
ular object tag o. If o is a virtual tag, each of its associated
real tags are processed instead and in the case o was created
for a formal parameter, this parameter is marked to escape
without being registered in the function annotation instead
of emitting a warning.

99



Algorithm 3.1 combine mark(basic block b)

1: for all object tags o do
2: if o is created in b then
3: if type(o) = virtual then
4: let m1, . . . , mn be the marks of associated tags in

their source block
5: mo,b = m1 ⊕m2 · · · ⊕mn−1 ⊕mn

6: else
7: mo,b = u

8: if o is passed to NewGlobalRef within b then
9: mo,b = m

10: else
11: mo,b = >
12: for all p ∈ pred(b) do
13: mo,b = mo,b ⊕mo,p

14: if mo,b 6= m then
15: let {s1, . . . , sm} be the set of successors of b
16: if mo,s1 = · · · = mo,sm = m then
17: mo,b = m

4. EXPERIMENTAL RESULTS
The algorithm has been tested on a number of prominent

open source libraries making extensive use of JNI code, i.e.,
the GNU classpath project (version 0.19, 31.000 lines of code
(loc)), the The Standard Widget Tookit (SWT) (version
3.2M3, 22.000 loc), and libgtk-java (version 2.6.2, 27.000
loc).

classpath SWT libgtk-java

jclass 5/7 61/61 0/0
jmethodID 35/43 1/1 22/22
jfieldID 5/8 498/498 0/0
others 0/38 0/0 0/158
Σ 45/96 560/560 22/180
NewGlobalRef calls 28 2 17

Table 2: Computational results for three prominent
Java libraries. Numbers indicate the number of bugs
in comparison to the number of generated warnings
and the number of explicit references created.

Table 2 presents the number of bugs and the number of
emitted warnings for each of the three test cases. Although
many warnings for field- and method IDs are emitted, those
instances are harmless in many cases since they are valid as
long as the particular class is loaded. However, one should
at least create a global reference to the corresponding class
to prevent the VM from prematurely unloading the class,
since this might result in dangling references. We therefore
count only those instances as bugs where neither a global
reference for the class nor for a corresponding object has
been created.

Furthermore, most false positives (50.0% for GNU class-
path, 86.07% for gtk-java) result from return expressions of
native functions that are mostly called from within the VM
and usually do not cause problems. However, we cannot rule
out that those functions are called from other native func-
tions in different modules and therefore emit a warning in
these cases. Note that such occasions can be easily filtered
since those functions follow a common naming convention.

The huge number of bugs in SWT results from code that
is automatically generated and omits necessary calls to
NewGlobalRef. Patches for most of the identified bugs have
already been submitted to the project maintainers.

5. CONCLUSION AND FURTHER WORK
Static verification for JNI code has proven to be a power-

ful tool for the detection of frequent sources of error and we
plan to incorporate analysis for some further frequent error
patterns, i.e., deletion of local references before the alloca-
tion of a global reference, unnecessary allocation of global
references for local variables, and - as far as possible - static
analysis of missing removals of allocated global references.

Acknowledgements
This work was supported in part by the Christian Doppler
Forschungsgesellschaft, Infineon, and OnDemand Microelec-
tronics.

6. REFERENCES
[1] B. Blanchet. Escape analysis for Java: Theory and

practice. ACM Transactions on Programming
Languages and Systems, 25(6):713–775, Nov. 2003.

[2] B. Goldberg and Y. G. Park. Higher order escape
analysis: Optimizing stack allocation in functional
program implementations. In N. D. Jones, editor,
ESOP’90, 3rd European Symposium on Programming,
volume 432 of Lecture Notes in Computer Science,
pages 152–160, Copenhagen, Denmark, 15–18 May
1990. Springer.

[3] T. Kotzmann and H. Mössenböck. Escape analysis in
the context of dynamic compilation and
deoptimization. In VEE ’05: Proceedings of the 1st
ACM/USENIX international conference on Virtual
execution environments, pages 111–120, New York, NY,
USA, 2005. ACM Press.

[4] S. Liang. Java Native Interface: Programmer’s Guide
and Reference. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[5] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, Second Edition. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[6] D. Novillo. Design and implementation of tree SSA. In
Proceedings of the 2004 GCC Developers’ Summit,
pages 119–130, June 2004.

[7] C. Ruggieri and T. P. Murtagh. Lifetime analysis of
dynamically allocated objects. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices,
pages 285–293, San Diego, California, Jan. 13–15, 1988.
ACM Press.

[8] R. Shaham, E. Yahav, E. K. Kolodner, and S. Sagiv.
Establishing local temporal heap safety properties with
applications to compile-time memory management.
Science of Computer Programming, 58(1-2):264–289,
Oct. 2005.

[9] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In OOPSLA’99
ACM Conference on Object-Oriented Systems,
Languages and Applications, volume 34(10) of ACM
SIGPLAN Notices, pages 187–206, Denver, CO, Oct.
1999. ACM Press.

100


