
VLIW Operation Refinement for Reducing Energy
Consumption

Ulrich Hirnschrott and Andreas Krall
CD-Lab Compilation Techniques for Embedded Processors

Technische Universität Wien
Argentinierstraße 8,

A-1040 Wien, Austria
Email: {uli,andi}@complang.tuwien.ac.at
Telephone: +43 1 58801 {58520,18511}

Fax: +43 1 58801 18598

Abstract— The demand for mobile computer power has ex-
ploded in the recent years. Variable length VLIW processors offer
the necessary performance at low power. Software optimizations
are necessary to further decrease the energy consumption. In
this article we present a compiler optimization which reduces the
dynamic power dissipation resulting from the switching activities
during instruction fetch.

Energy consumption can be reduced by minimizing the Ham-
ming distance between successively fetched instruction words.
Using a dynamic programming approach we first compute a set
of optimal instruction arrangements of the execution bundles in
a basic block. These sets are used in an enumerative optimal
algorithm and a genetic evolution, in order to minimize an
objective function for the global Hamming distance. We evaluated
our algorithms on different variable length VLIW architectures
with 3 to 6 parallel functional units. On a large set of DSP
benchmark programs the Hamming distance can be reduced by
about 10% on average. Maximum reductions range up to 30%.

I. INTRODUCTION

As mobile computing is booming, reducing the energy
consumption of applications has gained importance. Energy
consumption can be reduced both by hardware and software
techniques. This work is focused on energy reducing compi-
lation techniques.

In digital CMOS circuits the dominant part of energy
consumption is the switching activity [1]. Therefore, many
techniques have been developed to reduce the amount of
switching activity. Gray coding has been applied to reduce
the number of bit switches in linear addressing and instruction
scheduling has been used to reduce the number of bit switches
during instruction fetch [2].

We propose an optimal operation refinement algorithm for
variable length VLIW architectures. Related work is discussed
in section II. The machine model is presented in section
III-A and optimality is defined in section III-B. The global
optimization algorithm is described in section IV. Finally we
evaluate the algorithm for different VLIW architectures in
section V.

II. RELATED WORK

Tiwari et al. [3] give an overview of compilation tech-
niques for reducing the energy consumption during program

execution. Optimization methods which reduce the number of
cycles, reduce the number of memory accesses, or increase
locality also result in a reduction of energy consumption.
Additional optimizations which reduce the switching activity
on data or address buses reduce the energy consumption.
Measurements of reorderings of instructions for a 486DX2
processor showed only differences in energy consumption
below 2%.

Toburen et al. [4] implemented a list scheduling algorithm
to limit the maximal energy consumption for the execution of
an instruction group of an eight way VLIW architecture. After
the dependence graph for a basic block is computed the list
scheduler determines the ready list and begins scheduling of
instructions based on the dependence height. When the energy
threshold for an execution bundle is exceeded, the remaining
instructions are scheduled in the next bundle. Experiments
show that increasing the threshold from 10 to 12 nJ improves
the run time for different benchmark programs from 1.3 to
10.2 %. Because of this unusual metric the results cannot be
compared with any results from other work.

Parikh et al. [5] evaluated three different energy consump-
tion aware scheduling algorithms for a scalar architecture. The
first algorithm is list scheduling with the energy consumption
as the first selection criterion. The second algorithm schedules
instructions in reverse order. The third algorithm does a look-
ahead of two levels. The algorithms have been evaluated with
randomly generated dependence graphs. The three different
algorithms perform similar regarding the energy consumption.
The performance decrease is less than 6%. Three different
algorithms which take performance as the first and energy
as the second heuristic, energy as the first and performance
as the second heuristic or the product of performance and
energy as a heuristic behave similar, but do not have a
performance penalty. The empirical evaluation is to artificial
to be comparable with other work.

Lee et al. [6] presented a scheduling algorithm which does
both a horizontal scheduling within an execution bundle and a
vertical scheduling between bundles for a fixed length VLIW
architecture. The horizontal scheduling is solved optimally
using a multi-stage bipartite matching algorithm to minimize

the bus transition activities (the Hamming distance of the
instruction encodings). Since vertical scheduling is NP-hard
a heuristic algorithm based on weighted bipartite matching
and allowable window for vertical scheduling is presented.
Experimental results of horizontal scheduling show average
13.3% improvements with a 4-way issue architecture and
average 20.15% improvements with an 8-way issue architec-
ture. The additional enhancement from horizontal to vertical
scheduling is 7.66% for 4-way issue and 10.55% for 8-way
issue. The metric for the measurements in this work is the
power consumption on the instruction bus.

Shin et al. [7] presented an algorithm which computes an
optimal reordering of the operations within a VLIW instruc-
tion for a basic block. The Hamming distance between the
instructions in a basic block is minimized. The problem is
solved by transforming it into a shortest path problem and
solving the shortest path problem. An empirical evaluation
has been done on a variable length VLIW processor with eight
functional units (256 bit VLIW length). The average reduction
of switching activity on the instruction bus is 31.4%. Later
Shin et al. [8] extended their algorithm to a heuristic global
one. During transformation of the problem to a weighted
graph, simplifications are necessary to limit computation and
memory requirements. The global algorithm reduces switching
activity by 34.3%.

Stouraitis [9] developed a post optimizer which reorders
instructions and renames register operands for an ARM pro-
cessor. The reordering is done using a list scheduler which
uses energy reduction as the first heuristic. The effects have
been measured with a wireless multimedia protocol on real
hardware. The energy savings are 9.17%.

Choi and Chatterjee [10] solve the instruction scheduling for
low-power problem as a precedence constrained Hamiltonian
path problem for DAGs and the traveling salesman problem.
Minimum spanning tree and simulated annealing are used
for solving this NP-hard problem. For a five stage pipelined
RISC processor energy savings between 2.68% and 29.19%
are achieved.

III. OPTIMAL GLOBAL INSTRUCTION GROUPING

As former works have shown (see Section II), commu-
nication on core buses is a main contributor to the total
energy consumption of a processor. Since instruction fetching
is inherent in today’s processor architectures, and instruction
busses of VLIW architectures can become wide, there is a
great potential in reducing the total system energy needs by
reducing energy dissipation during instruction fetch.

The aim of our work is to refine VLIW operations in
such a way, that fetching a function’s instruction words from
code memory needs as little energy as possible. As reported
by others [6], [7], this goal can be reached by minimizing
the Hamming distance of successively fetched words. Our
method works as a post–pass optimization and has no runtime
performance penalty on the compiled application.

i11 i12 i22 i21
i23 i31 i33 i34
i32 i43 i42 i41
.

Fig. 1. Code image of variable length VLIW

TABLE I

NUMBER OF PARALLEL EXECUTION UNITS

VLIW3 VLIW4c VLIW4m VLIW5 VLIW6
MOV 1 1 2 2 2
CMP 1 2 1 2 3
BR 1 1 1 1 1

A. Machine Model

The application area of our simulated architecture is digital
signal processing. The raw processing power necessary for
digital signal processing requires the exploitation of paral-
lelism. Small code size is an important requirement and
hardware costs shall be low. Therefore a variable length VLIW
architecture was designed, where the order of operations
within one VLIW is arbitrary. Figure 1 shows a possible code
memory mapping of the following operation sequence.

i11|i13
i21|i22|i24
i31|i32|i33|i34
i41|i42|i43
(ixy means instruction i is executed in cycle x at functional unit y)

Mind that there is an important difference between fetch
word and execution bundle. A fetch word is the fixed amount
of code memory that is fetched during one fetch cycle,
depicted by one row of the code image in Figure 1. In opposite,
an execution bundle is a varying number of operations which
are executed in the same execution cycle. These are depicted
by the dashed boxes in Figure 1.

For static evaluation of the improvements achieved by our
refinement strategy, we modeled five different architectures.
The maximum size for an execution bundle varies from 3
to 6 operations respectively, and each bundle can be built of
operations from 3 different classes. These classes are:

• MOV (memory access)
• CMP (computation, ALU)
• BR (branches)

Operations are either coded as short operation (20 bit), or long
operation (40 bit). A fetch word always consists exactly of
80 bit (e.g. four short operations). Table I shows these five
architectural models.

B. Optimality

Equation 1 shows the objective function for a function’s
global Hamming distance which we used in our models.

DistFglob =
∑

bεB

fb ∗

(

Distint
b +

∑

sεSb

pb→s ∗ Distext
b→s

)

(1)

J

T F

H

H
H

Hj

�
�

��

H
H

Hj

�
�

��

J

T

F

H
1
2
3
4
5
6
7
8
9

10
11
12

Fig. 2. Illustration of block alignment

where B is the set of F ’s basic blocks, fb the execution
frequency of block b, Distint

b the internal Hamming distance
of block b, Sb the successor blocks of b, pb→s the probability
of branching from b to s, and Distext

b→s the so–called external
Hamming distance of block b to block s. Execution frequen-
cies and branch probabilities are estimated by the following
heuristic functions:

fb = 10l (2)

with l the loop nesting level of b, and

pb→s =











1

|Sb|
for non–loop branches,

0.9 for the back–branch of a loop,

0.1 for the end–loop branch.

(3)

The internal Hamming distance of a block b is calculated
as follows:

Distint
b =

Nb
F W ord−1
∑

i=1

Dist
(

FWordb
i , FWordb

i+1

)

(4)

where N b
FWord is the number of fetch words in block b, and

Dist
(

FWordb
i , FWordb

i+1

)

the Hamming distance of the

ith and (i + 1)th fetch words of block b.
Calculating the external Hamming distance of a block to its

successors works mostly analogous. There is only a difference
if the first or last execution bundles of a basic block are not
aligned. This has to be taken into account correctly. Figure 2
depicts an example. For edge H → T , the Hamming distance
of fetch words 3 and 6 has to be calculated, For H → F 3
and 4, for T → J 9 and 10, and for F → J 6 and 9.

IV. ALGORITHM

The following refinement possibilities are taken into con-
sideration:

• Permuting the operations of one execution bundle,
• Swapping operands of commutative operations.

Our optimization takes two steps. First a set of locally optimal
operation refinements is computed. The second step then
selects those local solutions that yield the minimal global
Hamming distance as defined in Equation 1.

A. Local Optimization

In our model, the operations of one execution bundle are not
bound to one fetch word, i.e. when choosing one reordering,
an instruction might be placed into a different fetch word than
it would be placed under another reordering. Therefore, the
local reordering problem cannot be converted to a shortest path
problem as proposed in [7]. We use an enumerative method
with an optimization of runtime complexity by dynamic pro-
gramming.

Actually, we have to enumerate all possible arrangements
(including permutations and operand swapping) of each ex-
ecution bundle’s operations and find the combination which
results in the minimal internal Hamming distance. This yields
a not acceptable exponential runtime complexity. Our ap-
proach makes use of the circumstance, that only the first
and the last fetch words of the blocks are needed for the
global expansion step. So we only have to consider such
combinations, that differ in their resulting first and last fetch
words. All other combinations can be eliminated in each step
of the dynamic program. This reduces runtime complexity so
that the algorithm is reasonably fast for typical code and the
used VLIW models. It also still yields the optimal result,
because all 1 of the locally optimal solutions are generated
and used in the global expansion.

B. Global Expansion

Local optimization yielded sets of local optima, i.e. oper-
ation arrangements with minimal Hamming distance for any
possible combination of different first and last fetch words.
Global expansion now tries to select one local optimum
for each block in order to minimize the global Hamming
distance as defined in Equation 1. Two different strategies were
implemented The first one is a total recursive enumeration
of all possible combinations of local optima, whereas the
second strategy implements a genetic evolution for the global
expansion step.

1) Total Recursive Enumeration: This strategy was meant
to be a reference implementation that always finds the optimal
solution of the global expansion. It loops through all the basic
blocks and their corresponding local optima recursively. Every
time the last block of the function is reached, the global Ham-
ming distance is evaluated. If it is smaller than the currently
known best solution, then the solution is memorized, otherwise
it is discarded. This is continued until all combinations are
checked.

2) Genetic Evolution: An individual of the population rep-
resents one possible combination of local optima. For each ba-
sic block the index of the chosen optimum is stored in an array.
Crossover between two individuals is done by interchanging
parts of two arrays and is performed during reproduction of a
generation. The crossover points are chosen randomly. Muta-
tion is done by changing one of the indices to another valid
index and is done for a fixed ratio of randomly chosen genes.
The fitness function of the individuals is defined by the global

1i.e. all combinations of different first and last fetch words (”borders”)

TABLE II

GEOMETRIC MEANS OF IMPROVEMENTS

Model LOC GEN TRE
VLIW3 6.1 % 7.7 % 7.8 %
VLIW4c 6.1 % 7.8 % 7.9 %
VLIW4m 7.3 % 10.0 % 9.7 %
VLIW5 7.6 % 10.4 % 9.8 %
VLIW6 8.3 % 11.1 % 10.4 %

TABLE III

OPTIMALITY OF GENETIC EVOLUTION

Model sub–optimal optimal
VLIW3 63 160
VLIW4c 68 144
VLIW4m 66 126
VLIW5 64 117
VLIW6 52 125

Hamming distance. Since we want to do minimization, we
have to search for individuals with the least fitness. The size
of the population depends linearly on the number of possible
incarnations, and is currently bound to a maximum of 1000 (in
case of more than 1.000.000 possibilities). The first population
is generated randomly, but includes an individual made of
the absolute local optima. Parents for the new generation are
selected randomly within the fittest 50% of the population.
The individual with best fitness survives unchanged (cloned
reproduction). If evolution stagnates 2 for a certain number of
generations, then we consider the global minimum to be found
and stop the evolution.

V. EMPIRICAL EVALUATION

Static evaluation covered a total of 239 functions and was
done for all different architecture models. An enhanced full
rate coder application contributes 95 functions, 16 functions
are taken from the DSP kernels of the DSPstone benchmark
suite, the rest of our benchmarks are various vector operations,
digital filters, algorithms like quicksort, bubblesort, md5, com-
press, etc.

The experiments started with an evaluation of each func-
tion’s unoptimized Hamming distance. In the next step we
applied the local optimization algorithm. Choosing the overall
minimum out of the optima for each basic block yields
the values for a only locally optimized Hamming distance
without taking inter–block effects into account. After local
optimization we applied the genetic evolution for global opti-
mization. At last a total recursive enumeration for solving the
global problem was done. Functions with more than a million
different combinations of local optima were not enumerated.

Table II presents the geometric means of reduction of the
global Hamming distance for all models. Table III shows
a comparison of non–optimal and optimal solutions reached
by genetic evolution. Table IV shows how many of the not
enumerated functions were improved by the genetic evolution.

2fitness does not increase

TABLE IV

BENEFITS OF GENETIC EVOLUTION FOR NOT ENUMERATED FUNCTIONS

Impact on unoptimized global HD
Model improved no change
VLIW3 16 0
VLIW4c 27 0
VLIW4m 47 0
VLIW5 58 0
VLIW6 62 0

VI. CONCLUSION

In this work, we aim at operation refinement for variable
VLIW processors in order to minimize energy consumption
during instruction fetch. We proposed an optimal exhaustive
algorithm and a genetic evolution for solving this problem.
These algorithms are more general than other work since they
can handle instruction bundles which cross a fetch word and
also include operand swapping. We presented an extensive
static experimental evaluation with a large set of benchmark
programs for 5 different VLIW architectures. The Hamming
distance can be reduced by about 10% on average, single
functions show reductions of the global Hamming distance
of up to 40%.

REFERENCES

[1] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low power CMOS
digital design,” IEEE Journal of Solid State Circuits, vol. 27, no. 4, pp.
473–484, 1992.

[2] C.-L. Su, C.-Y. Tsui, and A. M. Despain, “Low power architecture
design and compilation techniques for high-performance processors,” in
Proceedings of IEEE CompCon’94. IEEE, April 1994, pp. 489–498.

[3] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low
energy: An overview,” in Proceedings of the 1994 IEEE Symposium on
Low Power Electronics. IEEE, October 1994.

[4] M. C. Toburen, T. M. Conte, and M. Reilly, “Instruction scheduling for
low power dissipation in high performance processors,” in Proceedings
of the Power Driven Micro-architecture Workshop at ISCA’98. ACM,
June 1998.

[5] A. Parikh, M. T. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “In-
struction scheduling based on energy and performance constraints,” in
Annual Workshop on VLSI (WVLSI’00). IEEE, 2000.

[6] C. Lee, J. K. Lee, and T. Hwang, “Compiler Optimization on Instruction
Scheduling for Low Power,” in Proceedings of the 13th conference on
International Symposium on System Synthesis. ACM Press, 2000, pp.
55–60.

[7] D. Shin and J. Kim, “An operation rearrangement technique for
low-power VLIW instruction fetch,” in Proceedings of Workshop on
Complexity-Effective Design, June 2000.

[8] D. Shin, J. Kim, and N. Chang, “An operation rearrangement technique
for power optimization in VLIW instruction fetch,” in Proceedings of
Design, Automation and Test in Europe, Date’01. ACM, March 2001,
pp. 809–817.

[9] T. Stouraitis, “Low Power Software Development for Embedded Appli-
cations,” University of Patras, Tech. Rep., 2001.

[10] K. won Choi and A. Chatterjee, “Efficient instruction-level optimization
methodology for low-power embedded systems,” in Proceedings of
International Synmposium on System Synthesis ISSS 01, October 2001,
pp. 147–152.

