
Using Semantic Relatedness and Locality for
Requirements Elicitation Guidance

Stefan Farfeleder
Institute of Computer Languages
Vienna University of Technology

Vienna, Austria
stefan.farfeleder@tuwien.ac.at

Thomas Moser
CDL Flex

Vienna University of Technology
Vienna, Austria

thomas.moser@tuwien.ac.at

Andreas Krall
Institute of Computer Languages
Vienna University of Technology

Vienna, Austria
andi@complang.tuwien.ac.at

Abstract—Requirements engineers strive for high-quality re-
quirements which are the basis for successful projects. Ontologies
and semantic technologies have been used successfully in several
areas of requirements engineering, e.g., analysis and categoriza-
tion of requirements. We improve a semantic guidance system
which derives phrases from a domain ontology by taking two
observations into account: a) domain terms that are semantically
related are more likely to be used together in a requirement,
and b) the occurrence of domain terms is usually not distributed
uniformly over the requirements specification. We define sug-
gestion orders that make use of these properties which results
in automatically proposing semantically and spatially related
domain terms to the requirements engineer. We implement these
orders in our tool and provide an evaluation using three projects
from the embedded systems domain. We achieve significant
suggestion quality improvements over previous work.

Keywords—domain ontology, semantic relatedness, require-
ments specification, requirements elicitation, guidance

I. INTRODUCTION

Any specification errors that propagate from the require-
ments definition phase into later development phases such
as design or testing have a much higher impact and cost
to fix them. Therefore requirements engineers work hard to
find errors in requirements and to have complete, correct and
consistent requirements.

Requirements specified using natural language text have
inherent ambiguities due to different ways to interpret them by
stakeholders. There have been many strategies to reduce the
ambiguity in requirement statements. They include restricting
the allowed grammar to a subset, e.g., Attempto Controlled
English [1], and using predefined vocabularies, e.g., the Lan-
guage Extended Lexicon [2].

Ontologies have been used for requirements engineering in
several ways. Körner and Brumm [3] use domain-independent
ontologies to detect linguistic problems in specifications. Other
works capture knowledge about the problem domain in the
ontology [4][5]. There the ontology acts as a vocabulary of do-
main terms with additional links between the terms that define
their relationships. This enables the analysis of requirement
statements with regards to the domain knowledge represented
in the ontology, e.g., to find missing requirements. The support
for inferring knowledge and reasoning allows automating tasks
that otherwise would have to be done manually.

Additionally to the analysis of already specified require-
ments, [6] showed that a domain ontology can also be used
as a guide during the specification of new requirements.
By directly using ontology information during requirements
definition this combines the advantages of ontology-based
analysis techniques with a reduction of specification effort.
In this work we build upon this guidance system and add a
method that actively tries to estimate what the requirements
engineer intends to type by taking semantic relations and
nearby requirements into account.

This work is structured as follows. Section II discusses re-
lated work; section III motivates our research and presents the
research questions. Then our proposed approach is described
in section IV, and its evaluation follows in section V. Finally
section VI concludes and lists future research topics.

II. RELATED WORK

PROPEL [7] is a tool that provides guidance for defining
property specifications which are expressed as finite-state
automata. For the definition of a property the user is guided
by a question tree, a hierarchical sequence of questions. There
are separate question trees for a property’s behavior and its
scope. Based on the answers the tool chooses an appropriate
property template. The tool is used to elicitate requirements
in the medical domain.

Kitamura et al. [4] present a requirements elicitation tool
that improves requirements quality by ontology-based anal-
ysis. The tool analyzes natural language requirements and
maps words to domain ontology concepts. According to these
occurrences and their relations in the ontology, requirements
are analyzed in terms of completeness, correctness, consis-
tency and unambiguity. The authors argue that with the help
of the domain ontology the requirements engineer needs less
knowledge about the problem domain. Hints are provided to
the requirements engineer to help solving found problems, e.g.,
if the tool determines that a domain concept is not defined in
the requirements set, the tool suggests adding a requirement
about the missing concept.

Recommendation systems filter items from a large set of
data and recommend them to a user based on information
about the user’s preferences. Maalej and Thurimella [8] pro-
vide an overview of possible applications of recommenda-

tion systems to requirements engineering. Additionally to the
requirement statements themselves and vocabularies - both
related to our work - they foresee usage in the area of
recommending quality measures, requirements dependencies,
people, etc.

SRRS [9] is a recommendation system which supports
choosing a requirements elicitation method for security re-
quirements. The requirements engineer needs to assign prior-
ities to ten key characteristics (e.g., unambiguity, traceability,
scalability) according to which the system then suggests the
most appropriate method.

Chen et al. [10] use a concept hierarchy which is derived
from a web directory to improve the quality of an advertising
keyword suggestion system. Concepts are considered to be
important in a hierarchy node if they do not occur in other
parts of the hierarchy as well. Semantically similar concepts
are grouped into clusters and one representative concept per
cluster is presented to the user. The semantically enriched
system performs better than traditional systems that are based
on statistical co-occurrence.

Literature distinguishes between semantic relatedness and
semantic similarity. Similarity is a specific kind of relatedness.
Reusing an example from Resnik [11], a car is similar to a
bicycle - both are a kind of vehicle - but the car is related to
gasoline, because it requires gasoline to drive. Semantic sim-
ilarity only considers subclass-of relations between concepts
while semantic relatedness takes all kinds of relations into
account, e.g., meronymy (part-of) and functional relationships
(require in the example above).

Budanitsky and Hirst [12] compare five measures of lexical
semantic relatedness and similarity that are based upon Word-
Net. WordNet contains synonymy, hyponymy (is-a, subclass-
of), several kinds of meronymy (part-of) and antonymy
(opposite-of) relations. The measures are compared to human
judgment and in the context of an application to detect
malapropism, the usage of lexically similar but semantically
incorrect words. Unfortunately four out of five measures only
handle similarity.

Yeh et al. [13] use the Wikipedia data set to compute
semantic relatedness between words. They build a graph from
the Wikipedia data, the articles being the nodes and links
to other articles being the edges. They differentiate between
links in infoboxes, categorical links and links in the content
itself. Combining the Personalized PageRank and the Explicit
Semantic Analysis techniques they achieve good results on two
established test data sets.

III. RESEARCH ISSUES

Previous work [6] presented a semantic guidance system for
requirements elicitation. It proposes phrases derived from the
knowledge contained in a domain ontology. While the system
works well for small ontologies, we found practical issues
when applying it to more requirements and bigger ontologies
due to the large number of generated proposals:

• The requirements engineer needs to type more charac-
ters until filtering limits the proposals to a manageable

amount.
• A requirements engineer not familiar with the domain

does not benefit from seeing a very long list of proposals,
e.g., when a domain term slipped his mind.

Clearly there must be a better method than showing all
matching proposals in alphabetical order. During the study
of these problems we thought about what constitutes “good”
proposals. We made the following observations:

• While writing a requirement statement it is possible to
use already specified requirement parts to, combined
with the ontology knowledge, predict the remainder of
the statement, at least to a certain degree. Consider a
requirement starting with “The Safing Controller shall be
able to”. We can support the requirements engineer by
suggesting concepts that are semantically related to the
concept Safing Controller for the following parts of the
requirement, e.g., SafeAct mode in Fig. 1.
We identified the following common types of semantic
relations in requirements (this list is intended to be
exemplary and not exhaustive):

– Function: Requirements of the form “subject shall
[be able to] verb object”. Given an ontology link
between subject and object, we can suggest object if
the requirements already contains subject.

– Restriction: Requirements of the form “if event then
subject shall [...]” or “during state subject shall
[...]”. Given an ontology link between a concept in
event/state and subject, we can suggest subject if the
requirements already contains event/state.

– Architecture: Requirements of the form “system shall
have subsystem”. Given an ontology link between
system and subsystem, we can suggest subsystem if
the requirements already contains system.

In this work we assume having a suitable domain ontol-
ogy containing such links. Ontology extraction techniques
(e.g., [5]) can be used to extract domain ontologies from
text documents.
We call this observation the semantic relatedness prop-
erty.

• The occurrences of many domain terms used in a re-
quirements specification are not randomly distributed
over the entire set of requirements but are clustered
around a certain location in the document. This is only
natural considering that most requirements specifications
are organized into chapters each describing an individual
part of the system. We call this observation the locality
property.
As a quick check for this observation we measured the
distributions of the requirement indices for concepts that
occur at least twice and computed the standard deviations.
For example, a concept occurring in two subsequent re-
quirements has a standard deviation of 0.5, one occurring
in requirement 1 and in requirement 100 a standard
deviation of 49.5. On average, the standard deviations
of those distributions were 11.60, 35.03 and 9.87 for the

������������	
�����
����

��������

	������� �	
���
����������

�	
����

���

����	����

���

�� �����

������	����
�

��	����
�

������� ������
� �	������

���

������	����
�

�
 �������������	�������� ������	
��������������� ��	��

��	���
���

��!

"

"

Fig. 1. Suggestions derived from Domain Ontology, Boilerplates and
Requirement

three requirements sets used in our evaluation. This is
considerably lower than for randomly distributed indices
(28.58, 81.69 and 24.82).
We call two concepts that occur in nearby requirements
spatially related.

The idea of this research is to find out whether we can make
use of those properties and whether this actually improves the
guidance system. In particular we want to answer the following
research questions:

• RQ1: Does the guidance system improve if we preferably
suggest semantically related concepts?

• RQ2: Does the guidance system improve if we preferably
suggest spatially related concepts?

We are optimistic that both questions can be answered posi-
tively and have the following hypotheses:

• H1: Suggesting semantically related concepts improves
the guidance system.

• H2: Suggesting spatially related concepts improves the
guidance system.

IV. GUIDANCE SYSTEM

This section briefly summarizes the existing semantic guid-
ance system and then goes on to introduce the new contribu-
tions, starting with section IV-D.

The goal of the guidance system is assisting the require-
ments engineer with specifying requirements. It does that by
proposing textual phrases which are derived from the ontology
information. Fig. 1 depicts a part of the ontology and how the
guidance is related. The beige boxes at the top and the arrows
between them are the ontology information while the blue ar-
eas represent the derived phrases (“CRCError is asserted”, “the
Safing Controller” and “enter the SafeAct mode”). Axioms are
labelled with brackets to make the distinguishable from named
relations. A requirement using these suggestions can be seen
at the very bottom.

A. Boilerplate Requirements
Our approach uses boilerplates for requirement statements.

This term was coined by J. Dick [14] and refers to a textual
requirement template. A boilerplate consists of a sequence of
attributes and fixed syntax elements. A common boilerplate

is “hsystemi shall hactioni”. In this boilerplate hsystemi
and hactioni are attributes and shall is a fixed syntax el-
ement. It is possible to combine several boilerplates by means
of concatenation (in Fig. 1 the boilerplates “if heventi,”
and “hsystemi shall hactioni” are combined). This allows
keeping the number of required boilerplates low while at the
same time having a high flexibility. During instantiation textual
values are assigned to the attributes of the boilerplates; a
boilerplate requirement is thus defined by its boilerplates and
its attribute values.

We use boilerplates for our approach due to two reasons:
a) the usage of different attributes allows providing context-
sensitive guidance (section IV-C), i.e., proposing different
suggestions depending on the current attribute, and b) using
boilerplates helps specifying requirements that are syntac-
tically uniform when using a small number of templates
(compared to the number of requirements).

There are numerous other template-based approaches for
requirements specification, most of them being more formal
than boilerplates. Post et al. [15] report on successfully apply-
ing a formal specification pattern system defined by Konrad
and Cheng [16] on automotive requirements. However, the
authors limit themselves to a certain class of requirements,
the behavioral requirements. Our approach aims at covering
all kinds of textual requirements.

B. Domain Ontology

A nowadays broadly accepted definition of the term ontol-
ogy is that it is a formal, explicit specification of a shared con-
ceptualization [17]. A domain ontology focuses on a specific
subject, here the system under construction. For requirements
engineering the aspect of sharing is of particular interest,
it means that stakeholders agree on a terminology and the
relations between the terms. By making use of this information
we lower the risk for requirements ambiguity.

The following ontology entities are used for the guidance
system:

• Concepts: Ontology concepts are the terms the require-
ments engineer uses in the requirements. This includes
actors, components, events, states, etc. of the system
under construction. In Fig. 1 the concepts are “asserted”,
“CRCError”, “pin”, “Safing Controller”, “SafeAct mode”
and “operation mode”.

• Relations: Relations are links between concepts. We use
two kinds of relations:

– A named relation represents a functional relationship
between a subject concept and an object concept.
The relation name is expected to be a transitive verb.
Named relations are used to derive suggestions.

– Anonymous relations simply indicate that two con-
cepts are related. This is used to prefer semantically
related suggestions.

In Fig. 1 there are two named relations: “is” between con-
cepts “CRCError” and “asserted”, and “enter” between
“Safing Controller” and “SafeAct mode”.

• Axioms: Axioms are relations between concepts with a
special meaning. An equivalence axiom represents the
knowledge that two concepts refer to the same phe-
nomenon in the domain (synonyms). A subclass-of axiom
states that one concept is a subclass of another one.
Both kinds of axioms lead to an inheritance of relations
from the equivalent or parent concept. The part-of axiom
imposes a hierarchical structure on the ontology contents
which facilitates navigation.

Additionally the ontology contains links that classify concepts
into one of the boilerplate attributes (the link between “Safing
Controller” and hsystemi in Fig. 1).

C. Suggestions
From the ontology knowledge the guidance system infers

three kinds of suggestions:
• Concept: The simplest kind of suggestion simply consists

of the name of an ontology concept, optionally prefixed
with the determiner “the”.

• Verb-Object: From a named ontology relation our system
proposes the relation’s verb in infinitive form followed by
the name of the relation’s destination concept (again op-
tionally prefixed with “the”). This suggestion is intended
to follow “shall” or “shall be able to” formulations often
found in requirements.

• Subject-Verb-Object: From a named ontology relation our
system proposes the relation’s source concept, followed
by the relation’s verb in third person singular form,
and the relation’s destination concept - both concept
names optionally prefixed with “the”. This suggestion is
intended to be used in clauses starting with “if”, “while”
or similar words.

In Fig. 1 an example is provided for each suggestion kind:
“the Safing Controller” for Concept, “enter the SafeAct mode”
for Verb-Object and “CRCError is asserted” for Subject-
Verb-Object. It is not always grammatically correct to add
a determiner before a concept name, e.g., before “asserted”.
Thus our approach checks the part-of-speech (a classification
of a word into one of several types, e.g., noun, verb, adjective)
to determine this.

The three suggestion kinds are used for different boilerplate
attributes. Table I shows the mapping between suggestions and
attributes. For the attributes event and state both Concept sug-
gestions and Subject-Verb-Object are used due to grammatical
reasons, e.g., a noun should be used for during hstatei but
if hstatei requires a clause. The Verb-Object suggestions are
used for the hactioni attribute which generally follows modal
verbs like “shall”; the remaining boilerplate attributes use only
the Concept suggestions.

D. Semantic Relatedness of Suggestions
We mentioned functional, restrictional and architectural

relations in requirements earlier. These relations have in com-
mon that they do not correspond to simple is-a ontology links.
While there exist requirements where is-a links are useful,
e.g., “The system shall have the following states: . . . ”, they

TABLE I
ATTRIBUTE SUGGESTION MAPPING

Attribute Con VO SVO
hsystemi, etc. X
hactioni X
heventi, hstatei X X

TABLE II
PROJECT MEASURES

Power-
Item DMS Airbag train
Reqs. 99 283 86
Concepts 233 591 267
Relations 164 425 115
Axioms 100 571 163

are rare. From this point of view semantic relatedness is
more important to us than semantic similarity. Using the car
example mentioned earlier, a possible requirement is “The
driver shall be able to refuel the car with gasoline.” When
proposing phrases to requirements engineers, we want to make
use of semantic relatedness between concepts, e.g., given a
requirement that already contains car we would rather suggest
gasoline than bicycle.

Unfortunately from the review of related literature it seems
that researchers concentrate more on similarity than on relat-
edness. We were able to find complex functions to compute
semantic similarity using up to six different factors [18]: link
type, node depth, local density, link strength, node attributes
and cluster granularity degree. Most of them only make sense
in an is-a taxonomy and do not apply well to the more generic
graph we are using. We experimented with using different
weights depending on link types but that had no measurable
effect. In the end we decided to go for simplicity: We measure
the relatedness of two concepts simply by using the edge count
of the shortest path between two concepts.

We define C to be the set of concepts, T to be the set of
link types in the ontology, L ✓ C⇥C⇥T to be the set of all
ontology links and the direct distance �l between two concepts
s and d to be

�l(c, c
0
) =

(
1 if 9 t 2 T : hc, c0, ti 2 L _ hc0, c, ti 2 L,

1 otherwise.

We use ontology links in an undirected manner to be more
flexible with the order in which concepts are stated in a
requirement, e.g., we can handle “subject shall action if event”
even though the link might be directed from event to subject.
Moreover we do not require instantiating boilerplate attributes
from left to right. Using �l we can compute the shortest path
�p between two concepts. In Fig. 1 the distance between Safing
Controller and SafeAct mode is one, the distance between
operating mode and assert is four.

We define R to be the set of requirements and S to be
the set of suggestions. Further we define cr : R ! P(C)

and cs : S ! P(C) to map a requirement or, respectively, a
suggestion to the concepts it uses. Next we define the distance
�s between a requirement r and a suggestion s to be

�s(r, s) = max(min

c2cr(r)
min

c02cs(s)
�p(c, c

0
), 1).

It is the minimum distance between any concept used in the
requirement and any concept used in the suggestion. We cap it
at one to avoid first proposing suggestions containing concepts
already used in the current requirement.

E. Locality Property

Requirements documents are often structured into sections
each covering a different aspect of system functionality. Terms
specific to that functionality occur mostly there. In order
to measure the spatial relatedness of two requirements, we
consider the requirements to be a list and define an index
function ind : R ! N. Requirements that have similar indices
are spatially related. When specifying a new requirement, the
requirements engineer must indicate the index where the new
requirement should be inserted into the list. This is similar to
choosing a section where the requirement should be added to.

We define the locality factor loc of a requirement r and a
suggestion s in the following way:

loc(r, s) = min

r02R

(
|ind(r)� ind(r

0
)| if cr(r0) \ cs(s) 6= ;,

1 otherwise.

It is the index distance to the nearest requirement that shares
at least one concept with the suggestion.

F. Suggestion Algorithm

Based on the previous observations we define four different
suggestion rankings. The first one (alpha) sorts suggestions
alphabetically and serves as a baseline. The second (sem-rel)
and third one (locality) sort using the semantic relatedness
function �s and locality function loc, respectively. The fourth
order (ML) uses a linear combination of both functions. A
machine learning approach is used to obtain good coefficients
for the combination.

Our algorithm for suggestions in a requirement r given
a (possibly empty) word w the requirements engineer is
currently typing for boilerplate attribute a consists of the
following steps:

1) Compute all suggestions and filter out those not starting
with w.

2) Sort remaining suggestions by either
a) Matching boilerplate attribute a (suggestions

marked by “X” in Table I are ranked before
suggestions lacking one), and then alphabetically,
using �s or loc, or

b) Using the weight computed by ML coefficients
Using these orders we achieve that semantically and spa-

tially related suggestions are ranked and shown before other
suggestions.

For the ML ranking we use linear regression models, one
for each boilerplate attribute. The models are trained using
the following features: suggestion type, matching boilerplate
attribute, value of �s and loc and whether a suggestion is
correct (prediction value 1.0) or not (0.0) in the context
of the other features. A higher value computed by such a
model is considered to be a better match. We use linear
regression models because they are very efficient at computing
the weights of all suggestions.

V. EVALUATION

To test hypotheses H1 and H2 we implemented the en-
hancements in our tool DODT (Domain Ontology Design
Tool). We set up an evaluation with three different industrial
projects: DMS (Doors Management System) which controls
aircraft doors, an airbag controller that decides if an airbag
should be deployed and a power-switch used in the powertrain
domain. For each project a domain ontology was extracted
from domain documents using term and relation extraction
techniques and some manual pruning and refinement. Table
II gives information about the requirements and the domain
ontologies of the projects.

We took the following approach to measure the difference
between the baseline suggestion order (alpha) and the orders
evolving from the research questions RQ1 (sem-rel), RQ2
(locality) and the ML order. First we looked for all places
where a requirement phrase p (one or more words of the
requirement) matched one of our suggestions. In case several
suggestions matched at the same position, we used the longest
one. Then we computed the suggestion list our algorithm
yielded and measured at which position in this list the expected
phrase p was ranked. This we repeated for all substrings of
p of length zero to five and for all suggestion orders. The
requirements were added to our guidance system in the same
order that is used in the projects. We argue the average index
is a good measure for the performance of a suggestion order
as the user sees the first N entries (depending on the window
size) and has to scroll down for further entries. Fig. 2 shows
a screenshot of our tool presenting suggestions. To avoid
overfitting to the evaluation data we used a three-fold cross-
validation for the ML order, i.e., for each project we trained
the model using data from the other two projects.

Table III presents our results. It shows the arithmetic means
and standard deviations for all suggestion orders, project and
lengths. For example: If an Airbag project user enters the first
two letters of a phrase, the expected suggestion will be on
average at index 5.94 for the alpha order and at index 1.91
for the ML order. In Fig. 2 the index of the suggestion “enter
SafeAct mode” is two.

All three suggestion orders using semantic relatedness
and/or locality are an improvement over the baseline order
with regards to the index of the correct suggestion when
comparing means. The ML order generally performs best
except for DMS at lengths 4 and 5 where sem-rel performs
better. We tested statistical significance using a Student’s t-test
with a confidence level of 95% (rejecting the null hypothesis
of identical distributions). The improvements are significant
for ML (DMS: len4, Airbag: all, Powertrain: all), for sem-
rel (len3, all, len2) and for locality (len1, all, len2).
For longer lengths the improvements are not significant. With
these restrictions in mind, we claim our hypotheses to be true.
We achieve the biggest improvements at length zero (start
of a new phrase) because here the alpha suggestion order
is basically random while our proposed orders rank related
suggestions first. At longer phrases this advantage decreases

TABLE III
SUGGESTION RESULTS

alpha sem-rel locality ML
len avg � avg � avg � avg �

DMS
0 134.9 135.1 81.43 101.4 102.7 124.9 69.39 103.9
1 6.99 14.32 4.02 9.09 5.50 14.09 3.69 7.22
2 1.66 3.00 1.03 2.56 1.34 2.92 0.89 1.95
3 0.98 2.44 0.70 2.29 0.85 2.35 0.61 1.26
4 0.68 1.39 0.48 1.19 0.61 1.32 0.56 1.13
5 0.57 1.33 0.43 1.18 0.53 1.28 0.50 1.16

Airbag
0 353.0 332.7 161.9 228.9 204.7 264.0 100.1 196.5
1 29.00 67.16 13.74 31.79 18.54 55.27 8.53 31.40
2 5.94 28.01 2.77 8.06 3.56 16.76 1.89 7.35
3 3.15 5.40 1.81 4.02 1.79 3.77 1.15 2.96
4 1.18 1.98 0.90 1.79 0.88 1.72 0.61 1.42
5 0.64 1.42 0.49 1.28 0.50 1.23 0.33 0.89

Powertrain
0 224.9 200.7 154.4 175.2 153.8 176.1 107.5 154.8
1 28.95 56.13 19.50 48.31 15.55 38.69 9.42 28.99
2 2.80 6.02 2.03 5.18 2.36 5.48 1.15 2.86
3 1.95 5.27 1.40 4.68 1.65 4.84 0.84 2.27
4 1.74 5.30 1.19 4.62 1.45 4.80 0.86 2.39
5 1.67 5.37 1.15 4.68 1.37 4.81 0.83 2.36

Fig. 2. DODT Screenshot showing Suggestions

because filtering often reduces the suggestions to a small set
of very similar ones which is more difficult to rank in a good
way, especially if there is a long common prefix.

A. Threats to Validity
The quality of the suggestion order depends on the ontology

quality, especially on the links for the semantic relatedness.
The process to create the domain ontology involved a selection
and validation by a domain expert.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented two enhancements to our se-
mantic guidance system. The first one is taking the semantic
relatedness between concepts in a requirement statement into
account. The probability that we want to use concepts that
are semantically related to concepts already occurring in the
requirement is increased. The second enhancement is taking
the locality of domain terms with regards to their occurrence
location in the requirements document into account. For our
guidance system this means that the probability for reuse of
spatially related concepts is increased. We defined orders on
suggestions to exploit these properties and implemented them
in our tool. An evaluation using three sets of industrial require-
ments showed that both properties lead to an improvement of
the suggestion quality.

More research needs to be done on deriving phrases from
ontology concepts and relations. There are grammatical forms

in our requirements, e.g., gerunds, which could be supported
additionally. However, this needs to be evaluated carefully as
there is a trade-off between convenience for the requirements
engineer and achieving requirements consistency by using the
same phrases in all requirements.

Finally we plan to research ontology extraction methods
that are specialized to extract exactly the kind of concepts and
relations we are interested in.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement
No 100016 and from specific national programs and/or funding
authorities.

REFERENCES

[1] N. Fuchs, U. Schwertel, and R. Schwitter, “Attempto Controlled English
- Not Just Another Logic Specification Language,” in LOPSTR 1999.
Springer, 1999, pp. 1–20.

[2] J. Leite and A. Franco, “A Strategy for Conceptual Model Acquisition,”
in Requirements Engineering, 1993., Proceedings of IEEE International
Symposium on. IEEE, 1993, pp. 243–246.

[3] S. Körner and T. Brumm, “Natural Language Specification Improvement
with Ontologies,” International Journal of Semantic Computing (IJSC),
vol. 3, no. 4, pp. 445–470, 2010.

[4] M. Kitamura, R. Hasegawa, H. Kaiya, and M. Saeki, “A Supporting Tool
for Requirements Elicitation Using a Domain Ontology,” in ICSOFT
2009. Springer, 2009, pp. 128–140.

[5] I. Omoronyia, G. Sindre, T. Stålhane, S. Biffl, T. Moser, and
W. Sunindyo, “A Domain Ontology Building Process for Guiding
Requirements Elicitation,” in REFSQ 2010. Springer, 2010, pp. 188–
202.

[6] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, I. Omoronyia, and
H. Zojer, “Ontology-Driven Guidance for Requirements Elicitation,” in
ESWC 2011. Springer, 2011, pp. 212–226.

[7] R. Cobleigh, G. Avrunin, and L. Clarke, “User Guidance for Creating
Precise and Accessible Property Specifications,” in 14th International
Symposium on Foundations of Software Engineering. ACM, 2006, pp.
208–218.

[8] W. Maalej and A. Thurimella, “Towards a Research Agenda for Rec-
ommendation Systems in Requirements Engineering,” in 2009 Second
International Workshop on Managing Requirements Knowledge. IEEE
Computer Society, 2009, pp. 32–39.

[9] J. Romero-Mariona, H. Ziv, and D. Richardson, “SRRS: A Recom-
mendation System for Security Requirements,” in Proceedings of the
2008 International Workshop on Recommendation Systems for Software
Engineering. ACM, 2008, pp. 50–52.

[10] Y. Chen, G. Xue, and Y. Yu, “Advertising Keyword Suggestion Based
on Concept Hierarchy,” in Proceedings of the International Conference
on Web Search and Web Data Mining. ACM, 2008, pp. 251–260.

[11] P. Resnik, “Using Information Content to Evaluate Semantic Similarity
in a Taxonomy,” in Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence. Morgan Kaufmann Publishers Inc.,
1995, pp. 448–453.

[12] A. Budanitsky and G. Hirst, “Evaluating WordNet-based Measures
of Lexical Semantic Relatedness,” Computational Linguistics, vol. 32,
no. 1, pp. 13–47, 2006.

[13] E. Yeh, D. Ramage, C. Manning, E. Agirre, and A. Soroa, “Wikiwalk:
random walks on wikipedia for semantic relatedness,” in Proceedings
of the 2009 Workshop on Graph-based Methods for Natural Language
Processing. Association for Computational Linguistics, 2009, pp. 41–
49.

[14] E. Hull, K. Jackson, and J. Dick, Requirements Engineering. Springer,
2005.

[15] A. Post, I. Menzel, and A. Podelski, “Applying Restricted English
Grammar on Automotive Requirements - Does it Work? A Case Study,”
in REFSQ 2011. Springer, 2011, pp. 166–180.

[16] S. Konrad and B. Cheng, “Real-time Specification Patterns,” in Pro-
ceedings of the 27th International Conference on Software Engineering.
ACM, 2005, pp. 372–381.

[17] R. Studer, V. Benjamins, and D. Fensel, “Knowledge Engineering:
Principles and Methods,” Data & knowledge engineering, vol. 25, no.
1-2, pp. 161–197, 1998.

[18] X. Xu, J. Huang, J. Wan, and C. Jiang, “A Method for Measuring Seman-
tic Similarity of Concepts in the Same Ontology,” in 2008 International
Multi-symposiums on Computer and Computational Sciences. IEEE,
2008, pp. 207–213.

