
Vectorization in PyPy’s
Tracing Just-In-Time

Compiler
Richard Plangger

Andreas Krall

TU Vienna - Institut für Computersprachen

Mai 24, 2016

Andreas Krall, Richard Plangger 1 / 41

Outline

Meta-Interpreter
An approach to VM construction

Vectorization Algorithm
High level view to some important details

Embedding it into a TJIT
Details about the implementation

Benchmark Results
Andreas Krall, Richard Plangger 2 / 41

Meta-Interpreter

Andreas Krall, Richard Plangger 3 / 41

A bird’s eye view

1 Virtual machine for Python
2 Tracing JIT compiler
3 Moving gnerational GC (Mark and sweep, incremental)
4 Extensible/modular architecture

But we did not build a TJIT/GC for Python

Andreas Krall, Richard Plangger 4 / 41

JITs are often strongly tied to interpreter & language internals

Components, newly invented over and over
• Bytecode/AST to IR
• Optimizer
• Register allocator
• Code generation

Those are (amongst others) tricky to get right and require a lot of work

Andreas Krall, Richard Plangger 5 / 41

RPython

High level language to aid VM construction
1 Import the complete program

Initialisation can use full Python

2 Process the code object (abstract interpretation)
Yields control flow and data flow

3 Annotation

Deduce types starting from the interp. entry point

4 RTyping

Converts graphs to low level operations

5 Codegeneration

Emits C code that is later compiled

Andreas Krall, Richard Plangger 6 / 41

Andreas Krall, Richard Plangger 7 / 41

Andreas Krall, Richard Plangger 8 / 41

Terminology

•
Translation: Transforming an interpreter to an executable

•
Tracer: Attached to the interpreter, records it’s steps

•
Jit Code: Code the tracer executes to record steps

•
Trace: Linear sequence of instructions
Single entry, multi exit

•
Guard: Instruction to ensure correctness
Bails out of the trace if it fails

•
Bridge: A trace that is attached to a guard
Attaching a bridge is also called “stitching”

Andreas Krall, Richard Plangger 9 / 41

Tracing JIT
Trace: List of instructions (Single entry, multi exit)

1 # Inner Loop

2 i = 0

3 while i < X:

4 x = func(i * 33)

5 i f x != 0:

6 break

7 p[i] .x = x / / 2

8 i += 1

Andreas Krall, Richard Plangger 10 / 41

Tracing JIT (II)
Procedure of building trace tree is “recursive”
• JitDriver used to be able to trace a dispatch loop
• Entering and leaving another JitDriver supported
• Function tracing

Andreas Krall, Richard Plangger 11 / 41

Vectorization Algorithm

Andreas Krall, Richard Plangger 12 / 41

Superword parallelism
Element wise addition of two vectors

Single Instruction Multiple Data

Hardware supported (e.g. SSE, NEON, ...)

Andreas Krall, Richard Plangger 13 / 41

Motivation

NumPy, a versatile array processing library

?

Why does NumPy on PyPy not work out of the box

GC Scheme + C level API of CPython

Solution was needed to optimize the array
processing

Potential to use it in regular Python programs

Andreas Krall, Richard Plangger 14 / 41

Vectorization

Contradicting goals in a JIT compiler
1 Time & space requirements
2 Traces instead of regions
3 Specifically targeting SIMD instructions

Traces might contain enough parallelism

Andreas Krall, Richard Plangger 15 / 41

Building blocks

1 Loop unrolling
if necessary

2 Data structures to express dependencies
3 Analysis step
4 Transformation
5 Adapted code generation

Andreas Krall, Richard Plangger 16 / 41

Data Dependency
Graph representation of instruction dependencies.

• True dependency
• Anti dependency
• Output dependency
• (Control dependency)

Andreas Krall, Richard Plangger 17 / 41

Ubiquitous guard exists

Introduces many dependencies
Need to be eliminated, no validity preserving transformation possible

Code motion moves guard as early as possible

Move a path of pure operations earlier

Andreas Krall, Richard Plangger 18 / 41

Instruction Parallelism
Analysis step to group instructions
A simple greedy comparison of operations initiated by load/store
operations

• O(n2) to compare each instruction with another
n ... # trace instructions

• Only load/store instructions are considered at first
• Extension phase follows dependencies

To reveal other parallel instructions

Grouping of “isomorphic” instructions
Same IR opcode and argument types

Andreas Krall, Richard Plangger 19 / 41

Instruction Parallelism (II)

Resulting information contains
1 Pairs: Tuple of parallel isomorphic instructions
2 Pack: N-Tuple of parallel isomorphic instructions

Transformation pass
Can be done by re-scheduling the trace considering pairs and packs

Code generation

Andreas Krall, Richard Plangger 20 / 41

Scheduling

Work through the dependency graph:
1 Pick, remove and emit a schedulable node
2 Remove edges and recompute the set of schedulable

nodes

Pack dependencies
Cycle can only be broken by partly/fully removing the pack restriction

Andreas Krall, Richard Plangger 21 / 41

Scheduling II

Additional enhancements done while scheduling:f
1 Vector cropping. Size of the input vector is too big/small

Integer sign extensions

2 Vector slot movement
Conversion 32-bit float to 64-bit float

3 Invariant scalar/constant expansion
4 Inline scalar/constant expansion

Andreas Krall, Richard Plangger 22 / 41

Example

1 i = 0

2 while i < R:

3 b[i] = a[i] + 1

4 i = i + 1

5

1 x = load(a , i)

2 z = x + 1

3 store (b, i , z)

4 guard(i+1 < R)

5 # iteration i+1

6 y = load(a , i+1)

7 w = y + 1

8 store (b, i+1,w)

9 guard(i+2 < R)

10

Andreas Krall, Richard Plangger 23 / 41

Example

1 i = 0

2 while i < R:

3 b[i] = a[i] + 1

4 i = i + 1

5

1 x = load(a , i)

2 z = x + 1

3 store (b, i , z)

4 guard(i+1 < R)

5 # iteration i+1

6 y = load(a , i+1)

7 w = y + 1

8 store (b, i+1,w)

9 guard(i+2 < R)

10

Andreas Krall, Richard Plangger 23 / 41

Tracing complications

1 x = load(a , i)

2 z = x + 1

3 store (b, i , z)

4 guard(i+1 < R)

5 y = load(a , i+1)

6 w = y + 1

7 store (b, i+1,w)

8 guard(i+2 < R)

9

?

Store operations independent

Counter example: Guard fails, but
store(b,i+1,w) already executed.

Valid to execute guard earlier

Andreas Krall, Richard Plangger 24 / 41

“Guard Early Exit”

1 guard(i+1 < R)

2 guard(i+2 < R)

3 x = load(a , i)

4 z = x + 1

5 store (b, i , z)

6 # guard(i+1 < R)

7 y = load(a , i+1)

8 w = y + 1

9 store (b, i+1,w)

10 # guard(i+2 < R)

11

Move guards to an earlier place.
Scheduling reorders instructions.

!

Pure operations must precede

guards

Andreas Krall, Richard Plangger 25 / 41

“Guard Early Exit”

1 guard(i+1 < R)

2 guard(i+2 < R)

3 x = load(a , i)

4 z = x + 1

5 store (b, i , z)

6 # guard(i+1 < R)

7 y = load(a , i+1)

8 w = y + 1

9 store (b, i+1,w)

10 # guard(i+2 < R)

11

Move guards to an earlier place.
Scheduling reorders instructions.

!

Pure operations must precede

guards

Andreas Krall, Richard Plangger 25 / 41

1 guard(i+1 < R)

2 guard(i+2 < R)

3 guard(i+3 < R)

4 x = load(a , i)

5 z = x + 1

6 store (b, i , z)

7 y = load(a , i+1)

8 w = y + 1

9 store (b, i+1,w)

10 v = load(a , i+2)

11 q = v + 1

12 store (b, i+2,q)

13

Andreas Krall, Richard Plangger 26 / 41

1 guard(i+1 < R)

2 guard(i+2 < R)

3 guard(i+3 < R)

4 x = load(a , i)

5 z = x + 1

6 store (b, i , z)

7 y = load(a , i+1)

8 w = y + 1

9 store (b, i+1,w)

10 v = load(a , i+2)

11 q = v + 1

12 store (b, i+2,q)

13

Andreas Krall, Richard Plangger 27 / 41

1 guard(i+1 < R)

2 guard(i+2 < R)

3 guard(i+3 < R)

4 x = load(a , i)

5 z = x + 1

6 store (b, i , z)

7 y = load(a , i+1)

8 w = y + 1

9 store (b, i+1,w)

10 v = load(a , i+2)

11 q = v + 1

12 store (b, i+2,q)

13

Andreas Krall, Richard Plangger 28 / 41

Packing
1 guard(i+1 < R)

2 guard(i+2 < R)

3 guard(i+3 < R)

4 x = load(a , i)

5 z = x + 1

6 store (b, i , z)

7 y = load(a , i+1)

8 w = y + 1

9 store (b, i+1,w)

10 v = load(a , i+2)

11 q = v + 1

12 store (b, i+2,q)

13

Packs are a representation of

vector instructions

1 Independent instructions
2 Isomorphic instruction pairs/packs

Andreas Krall, Richard Plangger 29 / 41

Vector loop

1 label (a ,b, i ,R)

2 guard(i+3 < R)

3 [x,y,v] = vec_load(a , i)

4 [z ,w,q] = [x,y,v] + [1 ,1 ,1]

5 vec_store (b, i , [z ,w,q])

6 jump(a ,b, i+3,R)

Andreas Krall, Richard Plangger 30 / 41

Embedding it into PyPy

Andreas Krall, Richard Plangger 31 / 41

Embedding it into PyPy

Optimization just before backend assembly

• Just after the “unrolling optimization”
Guard strength reduction, invariant code motion, object
virtualization

Roughly 4000 lines of code
+ 4000 for testing

Andreas Krall, Richard Plangger 32 / 41

Accumulation

Reduction cannot be represented
Need to carry information out of trace loops and recognize the pattern

Chained computations can be matched, saved as

accumulation pack

1 Use an accumulation vector to save the computation
In each slot only a part of the information is stored

2 Several points need the resulting value
“Flush” the real value (e.g. sum: horizontal add)

3 Scheduling pass needs to be adapted slightly

Andreas Krall, Richard Plangger 33 / 41

Speculative ABC optimization

Array bound checks are not fully eliminated
Loop bounds and array bounds are checked

Speculative step to remove guarding instructions.

If the loop bound is smaller than the length of the array, no
IndexError cannot occur on that array.
Transitive relation introduced that is checked before the vector loop

Andreas Krall, Richard Plangger 34 / 41

Version trace loops

?

Switch back to interpreter always necessary?

Several iterations needed to complete the loop (odd vector length)

1 Directly attach versions of the loop to the loop exit
2 As well as to guards for ABC

No need to switch back to the interpreter

Andreas Krall, Richard Plangger 35 / 41

Extensions

The following has been added:
• Constant/Scalar expansion
• Accumulation
• Speculative ABC optimization for array accesses
• Trace Loop versioning

Future work
• Aligned memory access not yet supported
• No reordering support of interleaved formats

Andreas Krall, Richard Plangger 36 / 41

Evaluation

Andreas Krall, Richard Plangger 37 / 41

Optimization time

Count Instruction count Unroll factor Microseconds
6 12-16 2 101.47
5 17-19 4 158.46
2 17 8 224.03
2 17 16 396.60

Andreas Krall, Richard Plangger 38 / 41

Benchmark programs
Name CPython PyPy VecOpt VecOpt Speedup
arc-distance 0.07898 0.1813 0.1608 1.1

diffusion 0.5603 5.665 3.889 1.5

evolve 0.1967 1.815 1.728 1.1

fft 0.9507 0.2981 0.2955 1.0
harris 0.3485 3.119 1.504 2.1

l2norm 0.564 1.73 1.634 1.1

lstsqr 0.3844 1.506 1.39 1.1

multiple-sum 0.1432 0.6341 0.25 1.1

rosen 0.5795 3.498 3.438 1.0
specialconvolve 0.4713 3.876 2.649 1.5

vibr-energy 0.2784 0.7552 0.699 1.1

wave 2.191 1.114 1.166 0.9
wdist 2.927 1.202 1.179 1.0

Andreas Krall, Richard Plangger 39 / 41

Python programs

an
y

do
t

so
m

ad
d fir

rg
bt

oy
uv

su
m

0

1

2

3

4

1.
57

0.
86

2.
03

1 1 1 1

1.
88

1.
18

2.
47

1.
85

1.
44

1.
16 1.

49

S
pe

ed
up

PyPy speedup
VecOpt speedup

Andreas Krall, Richard Plangger 40 / 41

Questions?

Andreas Krall, Richard Plangger 41 / 41

