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Abstract—Shape analysis is a static pointer analysis tech-
nique that models heap-allocated data structures in greater
detail than the typical pointer analysis does. To a compiler, this
information is crucial for deciding wether two expressions refer
to the same memory location, as a great number of analyses
depend on this aliasing information.

Various shape analyses have been introduced but their
relation in terms of precision often remains unclear as analyses
cannot be compared directly due to different representations
of analysis results.

The aim of this work is to make the precision of shape
analysis results comparable. Our solution is based on extracting
alias information from shape analysis results. We also propose
a significant improvement in precision over an existing 3-valued
logic based algorithm to compute alias sets from shape graphs.

Using this method we are able to compare the precision of
graph-based shape analyses. We demonstrate our algorithm by
comparing the precision of two classic examples of graph-based
shape analyses, proposed by Sagiv, Reps & Wilhelm (SRW) and
Nielson, Nielson & Hankin (NNH) which were implemented for
C++ in the SATIrE program analysis framework. Comparison
of the computed alias sets gives a measure of quality by which
NNH is more precise than SRW shape analysis for each of our
benchmarks.

Keywords-pointer aliasing; shape analysis; pointer analysis;
shape graph; alias set; precision;

I. INTRODUCTION

A program analysis can be evaluated with respect to per-
formance and precision. The performance relates to the com-
putational complexity of the algorithm used for computing
the desired properties of a given program, whereas precision
can be considered a challenge for answering questions about
programs and reasoning on whether those questions can be
answered at all. Within recent years different approaches
have been presented for taming the problem of analyzing
programs that create heap-allocated data structures. These
objects are linked via pointers and can form arbitrary data
structures. Programs that operate on these data structures
use and modify variables and refer to specific objects within
data structures or share single objects. Here the well-known
aliasing problem comes into play.

The question of whether two variables form an alias
pair has been attacked by approaches like points-to analysis

and shape analysis. Both approaches allow to extract alias
information from the computed analysis results. Points-to
analyses focus more on the connections between pointer
variables on the stack and model the heap very coarsely,
while shape analyses model the connections between heap-
allocated data structures in great detail. Points-to analysis
was tailored towards scalability and being applied to larger
programs by providing an acceptable level of precision,
whereas shape analysis aims at establishing precise proper-
ties of a program at an acceptable level of run-time. Recently
notable advances have been made in making shape analysis
scalable to larger programs as well [1], [2]. Therefore the
interesting question arises how precise a given shape analysis
is compared to another shape analysis or to some points-to
analysis.

We present a significant improvement to the algorithm
given by Reps, Sagiv, and Wilhelm [3][Formula (12.23), p.
12.32.] for computing alias information from shape analysis
results and show that the results are indeed useful for
determining a measure of precision by which given shape
analyses differ in quality. We selected two well-known
shape analyses for demonstrating the usefulness of such an
evaluation and give an exact method for determining the
relative precision factor for a given program.

The shape analysis published by Sagiv, Reps, and Wilhelm
[4], [5] determines for each program location a single shape
graph which approximates the possible shapes of heap-
allocated data structures. The other shape analysis of interest,
published by F. Nielson, H.R. Nielson, and C. Hankin [6],
determines a set of shape graphs for each program point.
We shall term the first analysis SRW analysis and the latter
NNH analysis.

The comparison turns out to be interesting because even
though the representation of null-pointers is different, the
union of the set of shapes computed by NNH, is very similar
to the single graph computed by SRW analysis. Notwith-
standing we are able to show that there exists substantially
more precise aliasing information in the NNH-computed set
of shape graphs.

To shed more light on the subject of precision we deter-



mine alias pair sets that can be computed from both analysis
results and compare those. This method of comparison can
be applied to all kinds of pointer analyses from which
aliasing information can be extracted.

The rationale behind comparing alias sets is that the
effectiveness of many compiler optimizations depends on
the quality of aliasing information. In this way, the shape
analysis that produces fewer conservative results is enabling
more optimizations and thus offers the better analysis infor-
mation. Still, this metric sets aside that some aliasing pairs
(i. e., in loops) are more important than others.

We propose an improved algorithm to extract the aliasing
information inherent in the computed shape analysis results.
Our algorithm obtains more precise aliasing information
than previously presented algorithms. Using this algorithm
to leverage all available information in shape analysis results
and compute alias pair sets, we are able to determine
a relative measure of alias set sizes. The differences are
significant and suggest that the question “how precise is the
analysis” is best answered in relation to another analysis and
can be pinned down to a specific factor of precision for any
given program.

II. COMPUTING 3-VALUED ALIAS SETS

Alias sets have traditionally been grouped into must- and
may-alias sets, where must-aliases are a subset of the may-
aliases. With the use of 3-valued alias sets a finer grained
classification is possible. It allows to separate those may-
aliases which are not must-aliases into another set, which
we shall call strict may-alias set. This set represents all ex-
pression pairs for which an analysis was not able to produce
a better result than the most conservative answer, i. e., that
the expressions may alias. Two expressions that definitely
alias (expressions that are must-aliases) no longer add to
the size of the set that includes the conservative answer.
Our evaluation in section IV benefits from this distinction
because it allows a more detailed comparison between shape
analysis results. We first introduce terminology and continue
with the presentation of our algorithm afterwards.

A. Terminology

Three-valued alias sets make differences in precision
more directly visible than the traditional must/may-alias
classification. We therefore add the term “strict may-alias
set” to the traditional terms.

must-alias Two pointer expressions ev and ew are said to
be must-aliases at program point pt if all execution paths
in program P ending at pt produce a structure in run-time
memory in which both ev and ew refer to the same concrete
location.

no-alias Two pointer expressions ev and ew are said to be
not aliased at program point pt if there exists no execution
path in program P ending at pt that produces a structure

a b

� -no-alias � -strict may-alias � -must-alias

� -no-alias � -may-alias

}
3-valued}
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Figure 1. Relation between traditional and 3-valued alias sets.

in run-time memory in which ev and ew refer to the same
concrete location.

strict may-alias Two pointer expressions ev and ew are said
to be strict may-aliases at program point pt if they are
neither must-aliases nor no-aliases.

may-alias Two pointer expressions ev and ew are said to
be may-aliases at program point pt if they are either must-
aliases or strict may-aliases.

Using above definitions, two pointer expressions ev and
ew are strict may-aliases only if they cannot be identified
as no-aliases or must-aliases. This is always the case when
there exist some execution paths in which both ev and ew
refer to the same concrete location, and some in which they
do not; and, even more importantly, when the information
obtained by the analysis does not include enough informa-
tion to decide wether two expressions referring to the same
abstract location also refer to the same concrete location.

Figure 1 graphically shows the differences between the
traditional alias sets and our three-valued alias sets. The
most conservative result in both representations is that
every expression is strictly may-aliased with every other
expression. But we can improve this result by identifying
expression pairs as unaliased or must-aliased expressions by
interpreting what a shape analysis collected about the heap
structure. The more is known about the heap, the smaller the
set of strict may-aliases becomes. In the traditional may-
alias classification, however, the may-alias term subsumes
both strict may-aliases and must-aliases and hence fails to
represent improvements in precision that allow to turn strict
may-aliases into must-aliases. In Fig. 1 such improvements
correspond to a move of barrier b to the left. Using 3-valued
alias sets this is seen as a reduction of the strict may-alias
set while in the traditional partitioning no change can be
observed.

B. Extracting Alias-Sets from Shape Graphs

The alias computation algorithm for which we contribute
a significant increase in precision is due to [3][Formula
(12.23), p. 12.32.]. For two pointer expressions and a given
set of compatible shape graphs [6] it computes the aliasing
relation of the expression pair at that program point. To
obtain alias sets, the algorithm is applied to all combi-
nations of pointer expressions in the program. Therefore
the algorithm can be directly applied to the results of the
NNH analysis. SRW shape graphs can be easily converted
to NNH compatible sets of shape graphs. Our efficient



implementation [7] fuses conversion and alias computation
for SRW shape graphs.

We present the algorithm as Functions ALIAS TYPE
(Alg. 1) and ALIAS TYPE SG (Alg. 2), showing the dif-
ferences between the original algorithm and our proposed
improvement side-by-side in Alg. 2 line 15.
In the following we assume availability of these functions:

NODES(SG, Expr)
Ordered list of heap nodes in shape graph SG that
lie on the access path described by the pointer
expression Expr

SELS(Expr)
List of selectors in the pointer expression Expr

FIRST(List)
First element of List

SECOND(List)
Second element of List

LAST(List)
Last element of List

REST(List)
Sub-list starting with the second element of List

REV(List)
Elements of List in reversed order

C. Imprecision in the Original Algorithm

The original algorithm (cf. Alg. 1 and 2) returns 0, 1
2 , or 1

meaning that the queried expressions are unaliased, strictly
may-aliased, or must-aliased, respectively. It has two sources
of imprecision that can cause the conservative result 1

2 : First,
different execution paths leading to pt may produce different
heaps. Only if ev and ew refer to the same location in every
(no) execution path, ev, ew are must-aliases (not aliased).
In every other case the answer has to be 1

2 as it cannot be
decided at compile-time which of the execution paths will
be taken at run-time (see the early exits in lines 7 and 13 in
procedure ALIAS TYPE).

The other reason for 1
2 -results lies in the abstraction

mechanism of SRW and NNH shape graphs. Abstract lo-
cations directly pointed to by a variable get labeled with
that variable. As these abstract locations have names they are
easily discernable from other abstract locations, so whenever
two pointer expressions end at the same abstract location it
is also clear that the pointer expressions refer to the same
concrete location if, and only if, the edges actually exist
in the concrete shape graph. For heap locations not directly
pointed to by a variable this is different as these locations are
represented by the single abstract summary location n∅. This
limits abstract shape graphs to a finite size bounded by the
number of variables in the program and ensures termination
of the shape analysis, but also introduces imprecision: two
expressions having the summary location n∅ as their final
node could be aliased or not, irrespective of the summary
location’s sharing. Two expressions ending at n∅ therefore
must be classified as strict may-aliases (cf. line 15) in

the original algorithm shown in the box to the right in
Algorithm 2, ALIAS TYPE SG.

Algorithm 1 Determine Aliasing between pointer expres-
sions ev and ew for all shape graphs SGSpt at pt

1: procedure ALIAS TYPE(SGSpt, ev, ew)
2: SG← any graph in SGSpt

3: Alias← ALIAS TYPE SG(SG, ev, ew)
4: if Alias = 1

2 then
5: no further tests required if
6: 1

2 in at least one SG
7: return 1

2
8: end if
9: for all SG ∈ SGSpt do

10: if Alias 6= ALIAS TYPE SG(SG, ev, ew) then
11: no further tests required if aliasing
12: differs in two SGs
13: return 1

2
14: end if
15: end for
16: return Alias
17: end procedure

D. More Precision with Common Tails

The “common tails” improvement we present is able to
reduce the imprecision caused by the summary location
abstraction. Instead of looking only at the final node of two
pointer expressions to decide their aliasing, our algorithm
takes a sequence of selectors at the end of both access paths
into account. For the improved algorithm we replaced line
15 of the original algorithm with a call to the CTAIL function
given in Alg. 3.

If two pointer access paths described by expressions ev
and ew meet at some intermediate node that is not the
summary location and from there on have the same sequence
of selectors (i. e. a “common tail”), then the paths not only
have the same subsequent nodes including the final node, but
the corresponding expressions ev and ew also refer to the
same concrete location, even if the final node is the summary
location n∅. This follows from an invariant of compatible
shape graphs: source node and selector of a named location
uniquely determine the target, i. e., the ‘sel’ field of an object
in memory always points to the same address, no matter
through what pointer expression the object was reached.

In the absence of such a “common tail”, i. e., when there
is no intermediate node where the expressions meet, the
two paths could still meet at their final node. For named
nodes this is easily detected even in the original algorithm;
if the final node is the summary location n∅ we have two
cases: (i) The summary location is unshared and represents
only heap nodes pointed to by at most one heap node, so
this last indirection cannot introduce aliasing. Knowing that



Algorithm 2 Determine Aliasing between pointer expres-
sions ev and ew in a single shape graph SG

1: procedure ALIAS TYPE SG(SG, ev, ew)
2: nodesv ← NODES(SG, ev)
3: nodesw ← NODES(SG, ew)
4: if [ ] = nodesv ∨ [ ] = nodesw then
5: at least one expression does not point to
6: a node in SG
7: return 0
8: else if LAST(nodesv) = LAST(nodesw) then
9: if LAST(nodesv) 6= n∅ then

10: both expressions end at the same
11: named location
12: return 1
13: else
14: both expressions end at the summary location
15: our “common tails” improvement

nv ← REV(NODES(SG, ev))
nw ← REV(NODES(SG, ev))
selsv ← REV(SELS(ev))
selsw ← REV(SELS(ew))
return CTAIL(nv, selsv, nw, selsw)

original
algorithm

return 1
2

16: end if
17: else
18: expressions end at different locations
19: return 0
20: end if
21: end procedure

there was no common tail, the improved algorithm concludes
that the paths end at different concrete locations and hence
are not aliased. (ii) If the summary location is shared it
means that at least one of the concrete nodes represented
by n∅ has two (or more) incoming edges originating at a
heap node. From the analysis information, however, it is not
recoverable whether the paths end at one of the shared or
unshared concrete nodes represented by n∅, so 1

2 must be
the answer whenever expressions end at the shared summary
location without a “common tail”.

Figure 2 compares the results obtained by the origi-
nal (ORIG) and our improved alias computation algorithm
(CTAIL). The “common tail” extension improves what can
be said about pointer expression pairs in all cases, except
when the expressions reach the shared summary location
without a “common tail”.

III. IMPLEMENTATION

The shape analyses and alias computation algorithms were
implemented for a subset of C++ using the SATIrE program
analysis framework.

The data flow analyzers were built using PAG [8], a tool
for generating analyzers from high-level functional specifica-
tions. The source-to-source architecture used for the analysis

Algorithm 3 Common Tails Algorithm
1: procedure CTAIL(nodesv, selsv, nodesw, selsw)
2: if FIRST(selsv) = FIRST(selsw)

∧ SECOND(nodesv) = SECOND(nodesw) then
3: selector and source equal on both paths...
4: if SECOND(nodesv) = n∅ then
5: ...but sources could be different
6: concrete locations, keep looking
7: return CTAIL(

REST(nodesv), REST(selsv),
REST(nodesw), REST(selsw))

8: else
9: ...and both paths have a named node

10: as common source
11: return 1
12: end if
13: else
14: reached n∅ via different paths
15: if IS SHARED(n∅) then
16: return 1

2
17: else
18: return 0
19: end if
20: end if
21: end procedure

Algorithm: ORIG Algorithm: CTAIL

n∅ /∈ is n∅ ∈ is n∅ /∈ is n∅ ∈ is
with 1

2
1
2 1 1

without 1
2

1
2 0 1

2

n∅ ∈ (/∈) is: the summary location is shared (unshared).
with (without): there is a (no) intermediate node from which
both expressions share a common tail of selectors.

Figure 2. Alias classification computed by original (ORIG) and our
improved algorithm (CTAIL) under different conditions.

was ROSE [9]. These systems were integrated using the
SATIrE static program analysis framework being developed
at Vienna University of Technology1 and University of
Applied Sciences Technikum Wien2. SATIrE is described in
[10]. Recent releases of SATIrE3 include the implementation
of the shape analyses as examples.

In their original formulation [4] [6], the algorithms were
formulated for an intra-procedural language. We extended
the algorithms to be used inter-procedurally for a subset of
C++ that is focused on pointer expressions operating on the

1http://www.tuwien.ac.at/
2http://www.technikum-wien.at/
3SATIrE 0.8.5 available at
http://www.complang.tuwien.ac.at/satire/



heap.
The shape analyses are used to demonstrate the extraction

of alias information from shape graphs and to experimen-
tally compare the precision of their abstractions. Within a
compiler, the shape analyses would be used in conjunction
with other alias analyses focusing on the various other C++
constructs that could possibly introduce aliasing. Our im-
plementation specifically does not cover aliasing introduced
by the following language constructs, which therefore lie
outside our language subset:
• Stack-based aliasing introduced by expressions of the

form x = &y. The shape analyses do not support the
address-of operator.

• Aliasing that is the product of pointer arithemtic.
• Aliasing introduced through the use of references.
• Aliasing introduced by unions and anonymous unions.
A detailed description of the implementation itself and the

C++ subset that it covers is given by Pavlu [7].

IV. EVALUATION

To evaluate the precision of the algorithms, we analyzed
C++ procedures that operate on linked lists.4 The same set
of list operations was used as benchmark in Rinetzky and
Sagiv [11]. The programs ‘insert’ and ‘reverse’ previously
analyzed by Sagiv, Reps & Wilhelm [5] were also added to
our benchmark programs.

For every list operation we have two programs: Each
operation is applied to linked lists created by unrolled code
(nb), and to lists created in a loop (lp). The nb case does
not contain branches; the shape analysis only needs to
approximate the list creation for a single program execution
path. In the lp case, infinitely many execution paths need to
be approximated.

The analyzed C++ procedures and running times on a
single core of a quad-core Intel R© Xeon R© E5450 (12MB
Cache, 3.00 GHz, 1333 MHz FSB, 24GB RAM) machine
using 8GB RAM running Linux (Debian 4.3.2-1.1, Kernel
2.6.30-perfctr) are listed in Tables II and III. Running times
were averaged over five runs to guard against measuring
side-effects.

A. Precision: Original vs. Common Tails Algorithm

The columns labeled 0, 1
2 and 1 in Table II show the

number of unaliased pointer expressions, strict may-aliases
and must-aliases, respectively. The column labeled N shows
the number of possible alias pairs over all expressions for
all statements in the program.

If no aliases are found in a program, N equals the size of
the no-alias set. Generally, the set sizes for 0, 1

2 and 1 add
up to N .

In SRW shape graphs each edge is possibly null,
i. e., nonexistent. No must-alias information can therefore be

4All benchmarks available at:
http://www.complang.tuwien.ac.at/vpavlu/

extracted from SRW shape graphs, so the 1-column shows
0 occurrences for all benchmarks analysed with SRW.

Note that CTAIL provides a more precise classification
of aliases for each of our benchmarks, i. e., some pointer
expression pairs that ORIG identifies as strict may-aliases can
be more precisely identified as not aliased or must-aliases
by our “common tails” algorithm. The number of strict may-
aliases is thus reduced; columns δsrw and δnnh of Table II
give the factor by which the set size of strict may-aliases
can be turned into more precise results when using CTAIL.
The better the shape analysis results (cf. next section), the
greater the gain of replacing ORIG with CTAIL: while CTAIL
improves strict may-alias classifications in SRW by a factor
ranging from 1.14 to 2.03, the improvement for NNH is in
the range of 1.31 to 5.05.

Note also that every pointer expression pair identified by
ORIG as 0 or 1 can also be found in the respective set
computed by CTAIL. CTAIL is always at least as precise
as ORIG, and often succeeds in computing a more precise
classification of aliasing in pointer expressions.

B. Precision: SRW vs. NNH

Using the number of strict may-aliases obtained with the
CTAIL algorithm as measure of analysis precision we argue
that the NNH shape analysis is more precise (∆CTAIL) than
the SRW shape analysis; in our benchmarks, NNH is more
precise by a factor of 1.62 on average, as can be seen in
Table I.

When comparing SRW and NNH by means of may-aliases
(instead of strict may-aliases) extracted from shape graphs
by the original algorithm, the shape analyses show different
levels of precision in only a small number of benchmarks,
and when they do, it’s only by a small amount: a factor of
1.03 on average.

Table I
COMPARISON OF SRW AND NNH SHAPE ANALYSIS RESULTS BASED ON
MAY- AND STRICT MAY-ALIASES. ∆CTAIL (∆ORIG ) IS THE FACTOR THAT

NNH IS MORE PRECISE THAN SRW USING THE CTAIL (ORIG)
ALGORITHM.

Bench May (1 ∪ 1
2

) Strict May ( 1
2

)
∆ORIG ∆CTAIL ∆ORIG ∆CTAIL

delallnb 1.00 1.32 1.07 1.52
delalllp 1.00 1.34 1.01 1.38
insertnb 1.00 1.22 1.05 1.33
insertlp 1.00 1.23 1.01 1.25
removenb 1.02 1.23 1.09 1.50
removelp 1.02 1.26 1.03 1.26
searchnb 1.03 2.21 1.08 2.68
searchlp 1.04 2.32 1.05 2.40
appendnb 1.00 1.33 1.13 1.77
appendlp 1.00 1.34 1.01 1.36
mergenb 1.16 1.31 1.21 1.39
mergelp 1.00 1.23 1.00 1.24
reversenb 1.05 1.61 1.10 1.91
reverselp 1.05 1.64 1.06 1.67
Average 1.03 1.47 1.06 1.62



Note that every pointer expression pair identified as un-
aliased using SRW shape analysis results is also unaliased
in the information extracted from NNH shape graphs. But
NNH can also identify additional pointer expression pairs
as unaliased or even as must-aliased. NNH is strictly more
precise than SRW for all of our benchmarks.

C. Running Time

As can be seen in Figure 3, overall runtime of shape
analysis and alias extraction does not increase significantly
when replacing ORIG with CTAIL analyzing NNH shape
graphs. And for SRW shape graphs the cost added by CTAIL
is even below the precision of our measurements (column
“p1” in Table III), as in two cases (searchnb, appendlp) this
cost turns out to be negative. Table III also gives the absolute
running time in seconds for the shape analyses (columns
labeled “shape”) and alias extraction algorithms (columns
labeled “alias”).

Extracting the aliasing information from shape graphs is
expensive already in the original algorithm. This is due to the
approach of querying all pointer expression pairs avaialable
in a program for their aliasing at every program point. Let
|Exp?| be the number of pointer expressions in the given
benchmark, and |Stmt?| the number of statements, then the
number of considered alias pairs N is:

N =
|Exp?|2

2
· |Stmt?|

Note that the differences in running time of the shape
analyses (comparing the columns labeled “shape” in ORIG
and CTAIL, cf. Table III) is, again, due to measuring impre-
cisions only, as the underlying shape analysis algorithm is
in no way altered when the alias computation – performed
as separate post-processing pass – is performed using CTAIL
instead of ORIG.

Switching the underlying shape analysis from SRW to
NNH, however, increases running time significantly. Not
only does the NNH shape analysis take longer (Psh in
Table III), but the alias computation is also much more
time-consuming (Psh+al in Table III). This is a result of the
vast number of shape graphs contained in the shape graph
sets used by NNH. The choice between ORIG and CTAIL,
however, is negligeable here.

V. RELATED WORK

A vast amount of work has been published on pointer
analysis, Hind [12] gives a survey of the field. Our work
compares two of the most precise shape analysis algorithms
known [5], [6] for their relative quality. We do this by
comparing alias pairs extracted from shape graphs.

Shapiro and Horwitz [13] compared pointer analyses in
combination with subsequent analyses that rely on alias
analysis’ results. It was found that using a more precise
pointer analysis (Andersen’s) not only leads in general to

 0.9

 0.95

 1

 1.05

 1.1

delallnb

delalllp

insertnb

insertlp

rem
ove

nb

rem
ove

lp

search
nb

search
lp

append
nb

append
lp

m
erge

nb

m
erge

lp

reverse
nb

reverse
lp

R
un

ni
ng

 T
im

e 
[O

R
IG

 v
s.

 C
T

A
IL

] f
or

 N
N

H

Benchmark Programs

Figure 3. Running times of CTAIL performed on NNH shape graphs
(cf. Column p2 in Table III), scaled to the running times of ORIG.

“transitively” more precise results, i. e., more precise results
of the subsequent analysis, but also causes the client analysis
to run faster.

Our method of comparison also uses alias information
as required by following optimization passes in a compiler.
The proposed method can be applied to all pointer analyses
from which aliasing information can be extracted. We are
therefore able to compare the precision of shape analyses
to that of pointer analyses and give an overview of related
work in the fields of alias- and shape analysis.

Emami et. al. [14] suggest that the aliasing problem for
statically allocated data (typically on the stack) and dynami-
cally allocated data (typically on the heap) should be decou-
pled. Analysis of pointers in statically allocated data is easier
because the set of locations in static memory is finite, known
at compile time, and is usually already named (variables).
Analysis of heap-directed pointers is complicated by the fact
that locations in the heap don’t have names and recursive
data structures give rise to a theoretically unbounded number
of locations. It has been shown [15], [16] that the may-
alias and must-alias problems are undecidable for programs
with dynamic storage and recursive data structures. The
must-alias problem is not even recursively enumerable for
the same class of programs. An algorithm trying to solve
the aliasing problem must therefore come up with a good
approximation that also ensures termination.

The simplest form of alias analysis uses an “address-
taken” approach: all pointers are said to alias with all
variables whose address “was taken” in the program, i. e. all
variables that the address-of operator (&) has been applied
to. This also includes all heap-allocated objects. While this
analysis is very simple and linear in the size of the program,
it is also very imprecise as it uses a single solution set ( [17],
[18]).

Steensgaard [19] describes a points-to analysis that takes
almost linear time but is substantially more precise than the



address-taken analysis [18]. Steensgaard’s algorithm uses a
type system to describe the store: the type of a variable
represents locations possibly pointed to by the variable.
Types of memory locations that may be pointed to by the
same pointer are unified (merged). This kind of analysis is
therefore also called unification- or equality-based pointer
analysis. It is one of the fastest algorithms for finding aliases
but is less precise than other flow-insensitive analyses.

Andersen [20] extracts subset constraints from a pro-
gram reflecting which locations must be included in the
points-to set of which variable. The set of constraints is
then solved. Algorithms based on this technique are called
Andersen-style, inclusion- or subset-based pointer analyses.
Andersen’s algorithm does not perform the merging found
in Steensgaard’s algorithm. Inclusion-based analyses are
the most precise flow-insensitive, context-insensitive pointer
alias analyses.

Recent work on points-to analysis either tries to make
unification-based (Steensgaard) analyses more precise or
inclusion-based (Andersen) analyses more efficient. Manuvir
Das [21] gives a hybrid algorithm that is almost as pre-
cise as Andersen’s algorithm but scales almost as well as
Steensgaard’s on real programs. Hardekopf and Lin [22]
considerably improve the efficiency of the state of the art
in inclusion-based analyses ( [23]–[25]) by introducing two
online cycle detection techniques. Online cycle detection
looks for cycles in the constraint graph and collapses their
components into single nodes to reduce complexity.

Results in [17], [18] suggest that flow-sensitivity alone
does not offer much gain in precision over Andersen-
style flow-insensitive analyses. For context-sensitive anal-
yses without flow-sensitivity the results are not as clear. Ac-
cording to Michael Hind [12] and Foster et. al. [26] context-
sensitivity brings little or no improvements to Andersen-style
analyses, but can be beneficial for simpler equality-based
analyses.

The algorithm described in [27], [28] combines context-
sensitivity by cloning and an explicit heap model with an
efficient flow-insensitive unification-based algorithm called
data structure analysis (DSA).

Jones and Muchnick [29] were the first to study the shape
analysis problem for languages with destructive updating.
Each program point has attached a set of finite shape graphs
to model the heap. The same concept of sets of shape
graphs is also used in NNH [6], but the mechanism to make
the shape graphs finite differs: Jones and Muchnick [29]
limit paths in their shape graphs to a fixed length k (k-
limiting), while NNH [6] uses the naming scheme also found
in SRW [4], [5] that labels nodes with the names of those
variables that directly point to them. As the number of
variables in a program is finite it follows that the number
of named nodes in a shape graph using this naming scheme
is also finite. All heap locations not directly pointed to by a
variable give rise to an additional node called the summary

node.
Due to the possible exponential blow-up in k-limited

graphs, a small k is often chosen; beyond k no information is
retained and conservative assumptions have to be made. To
remedy this problem Chase et. al. [30] do not use k-limiting,
but summarize shape graph nodes in different summary
nodes according to their allocation site instead. They follow
Jones and Muchnick [31] in that they also use a single shape
graph instead of sets of shape graphs. Their algorithm is able
to perform strong updates only under certain conditions.

The analysis of Sagiv, Reps, and Wilhelm [4], [5] was
the first shape analysis to always perform strong updates for
the elementary transfer functions. Their labelling scheme
accounts for a worst case graph size of 2|Var?| (Var? is
the set of variables in the program), whereas in NNH [6]
sets of shape graphs are used to represent the heap, further
increasing the number of shape graph nodes stored at each
program point to 22

|Var?| in the worst case. In previous
sections we showed how these two algorithms can be
evaluated w. r. t. computed alias pair sets.

Deutsch [32] uses access paths to abstract the structure of
the heap. Instead of k-limiting the paths, regular expressions
are used to make them finite. It is not clear whether
Deutsch [32] or SRW [4] produce more precise results.

Sagiv, Reps, and Wilhelm present a parametric framework
for shape analyses [33], [34] based on 3-valued logic [35].
Instantiations of this framework use 3-valued logical struc-
tures instead of shape graphs to carry the analysis informa-
tion. The authors claim that use of this framework brings
several advantages: the abstract semantics are easier to
derive from the concrete semantics and there is no need for a
proof as the soundness of all instantiations of the framework
follows from the single Embedding Theorem. But instru-
mentation predicates required for the instantiation need to
be defined and proven correct: “It is open to debate whether
these are more or less burdensome tasks than those one faces
with more standard approaches to abstract interpretation.”
[34, p. 278]. Previous work on shape analysis (i. e., graph-
based shape analyses) could be implemented as instantiation
of the 3-valued logic analysis (TVLA) framework, but some
of these algorithms are more efficient than instantiations of
the framework would be [34, p. 279]. Recent advances [2]
show that the run-time of TVLA based analyses can be
further improved. Another approach is based on separation
logic and analyzes each procedure independently of its
caller [1], increasing the potential to scale.

VI. CONCLUSION

We have presented a novel algorithm for the extraction of
alias information from shape graphs. Instead of looking only
at the final node of two pointer expressions, our algorithm
takes a sequence of selectors at the end of two pointer
expressions into account to decide their alias relation. This
“common tails” algorithm is significantly more precise than



the previously known method [3] to extract alias information
from shape graphs.

We argued in favor of separating must-aliases from the
traditional notion of may-aliases. Expression pairs for which
only the conservative answer (that the expressions possibly
alias) can be given, should be isolated in a separate category
that we called strict may-aliases.

For a standard set of graph-based shape analysis bench-
marks we have observed that our “common tails” algorithm
accounts for improved precision by a factor of 1.21 to 5.05
over the original algorithm, as measured by a reduction of
the strict may-alias set.

Our work then experimentally compared two of the most
precise shape analysis algorithms for their relative quality.
The goal was to determine a measure of precision for a
given program which allows to rate the quality of one
shape analysis in relation to the other. As program property
we selected the aliasing information that is available in
shape graphs of these two analyses, as many compiler
optimizations also depend on aliasing information.

The experimental results allowed us to derive a novel
measure of precision for each benchmark, showing that
NNH is always more precise than SRW for each of our
benchmarks. The size of strict may-alias sets differs by a
factor of 1.62 on average for our benchmarks.

We also presented measurements of the run-times of the
SRW- and NNH analysis, as well as for the computation
of the alias information. The measurements showed that we
can determine the precision factor used for our comparison
within reasonable time.

The proposed technique of comparing shape analyses by
the size of derived strict may-alias sets can be applied to
all kinds of pointer analyses that allow the extraction of
alias information. It is therefore also possible to compare
the precision of graph-based shape analyses to logic-based
shape analyses or even to points-to analyses.
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