
Ultra Fast Cycle-Accurate Compiled Emulation of
Inorder Pipelined Architectures�

Stefan Farfeleder1, Andreas Krall1, and Nigel Horspool2

1 Institut für Computersprachen, TU Wien, Austria
{stefanf, andi}@complang.tuwien.ac.at

2 Department of Computer Science, University of Victoria, Canada
nigelh@uvic.ca

Abstract. Emulation of one architecture on another is useful when the architec-
ture is under design, when software must be ported to a new platform or is being
developed for systems which are still under development, or for embedded sys-
tems that have insufficient resources to support the software development process.
Emulation using an interpreter is typically slower than normal execution by up to
3 orders of magnitude. Our approach instead translates the program from the orig-
inal architecture to another architecture while faithfully preserving its semantics
at the lowest level. The emulation speeds are comparable to, and often faster than,
programs running on the original architecture. Partial evaluation of architectural
features is used to achieve such impressive performance, while permitting accu-
rate statistics collection. Accuracy is at the level of the number of clock cycles
spent executing each instruction (hence the description cycle-accurate).

1 Introduction

Emulation of instruction sets of different architectures is common. Originally, all em-
ulators were interpreter-based. An interpreter mimics the execution of a standard com-
puter by repeatedly fetching an instruction, decoding that instruction, and then execut-
ing it. The implementation is straightforward and allows insertion of monitoring code
into the interpreter to gather any desired statistics. SimpleScalar and some other mod-
ern simulators still use interpretation because it allows cycle-accurate emulation of all
features of today’s complex architectures with out-of-order instruction execution [1].

The biggest disadvantage with interpreters is their extremely slow execution speed,
which can be three to five orders of magnitude slower. Improving emulation speed is
clearly desirable. In this paper, we describe techniques which achieve a speed-up by
about three orders of magnitude — making the emulated program on a PC faster than
on the original architecture.

2 Related Work

One technique for improving emulation speeds is memoization. Micro architecture
states and the resulting simulator actions are cached. Then the emulation can be “fast

� This research was supported in part by Infineon and the Christian Doppler Forschungsge-
sellschaft.

T.D. Hämäläinen et al. (Eds.): SAMOS 2005, LNCS 3553, pp. 222–231, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 223

forwarded” whenever a cached state is reached. Schnarr and Larus [2] improved the
speed of FastSim by 5 to 12 when emulating an architecture similar to a MIPS R10000.
The speed can be further improved by using subroutine threaded interpreters which
cache changed program parts [3].

Translating emulators are orders of magnitude faster than interpreters. Binary trans-
lation was first used for functional simulation of other architectures. A static binary
translator takes a complete program, determines the program structure and translates
the program into an equivalent one on the host architecture. Problems arise when in-
direct branches cannot be resolved at compile time or self-modifying code is used. A
solution is to combine the translated program with an interpreter which is used in such a
case. Binary translators have been successfully used for the simulation of the IBM 370
architecture [4] and for the migration of programs from the MIPS architecture to the
Alpha architecture [5]. In contrast, dynamic binary translators convert short sequences
of linear code into native code of the host architecture at runtime. This is the approach
embodied in the Transmeta Crusoe architecture [6].

Shade [7] performs functional emulation and instrumentation, where collecting
traces and similar information incurs a 2.8 - 6.1 slowdown. Embra [8] is a functional
CPU model in SimOS and runs about 10 to 30 times slower by translating target instruc-
tions into the native instructions of the host. Bintrans [9] is a retargetable binary trans-
lator. From a description of the source and target architectures, a dynamic binary trans-
lator is automatically generated which executes programs between 1.8 and 2.5 times
slower than the original.

Binary translation is tied to a fixed host architecture. Compiled emulation is more
flexible because it generates C (or other high-level) source code for the emulated pro-
gram. The compiler can optimize away most of the intermediate computations and thus
improve performance. Mills et al. [10] generate one function for the complete program
implementing branches by a switch statement. Amicel and Bodin [11] used assembly
language source as the input language and generated C/C++ machine code. Retargetable
compiled emulation has been successfully applied by Pees et al. [12].

3 The xDSPcore Processor Architecture

The simulated processor, xDSPcore [13], is a five-way variable-length very long in-
struction word (VLIW) load/store digital signal processor (DSP) with pipelined inorder
execution. Up to five instructions are executed in each cycle. It supports some common
extensions for the DSP domain, such as SIMD (single instruction multiple data) instruc-
tions, multiply-accumulate instructions, various addressing modes for loads and stores,
fixed point arithmetic, predicated execution, etc. The processor’s register file consists
of two banks, one for data registers, the other for address registers. Each data register is
40 bits wide, but can also be used as a 32 bit register, or as two registers of 16 bit width
(“shared registers”, “overlapping registers”, “register pairs”).

The xDSPcore is a pipelined architecture. Some instructions need more than one
execution stage. Register operands are read at the beginning and written at the end of
the pipeline stage where they are needed. Branches have delay slots which can be filled
with any instruction bundle. The xDSPcore’s hardware loop instructions allow a fixed



224 S. Farfeleder, A. Krall, and N. Horspool

number of repetitions of a piece of code without having to manage the loop counter in
the code itself.

The simulated processor can make two memory accesses per cycle if they are to
different banks, otherwise an additional memory access cycle is needed. There is no
data cache, but there is an instruction buffer. The instruction buffer minimizes memory
accesses and thus reduces power consumption on the xDSPcore. It has eight slots. Each
slot holds one fetch bundle, which consists of four instruction words, plus an executed
bit. The executed bit is set after all four of the instruction words are executed. The slot
can be recycled and its contents overwritten by another instruction bundle only after the
executed bit has been set. The xDSPcore’s fetch unit reads one fetch bundle per cycle
and writes it in a round-robin manner to the next slot in the buffer, omitting the write if
that bundle is already cached or if the buffer slot does not have its executed bit set. A
second unit, the aligner unit, reads four fetch bundles from the buffer and issues a stall
if an instruction word needed for the next instruction bundle is missing.

4 Simulator Details

The requirements of our simulator were:

– fastest possible execution,
– cycle and state accurate,
– debugger support (single stepping, breakpoints),
– convenient architecture specification,
– portability (should run on common 32 and 64 bit computers).

The performance and portability requirements require compiled emulation. The as-
sembly language source of the program to be emulated is translated into an equivalent
C program which emulates the whole functionality of the simulated architecture. De-
spite difficulties caused when emulating a pipelined parallel architecture, basic blocks
and loops are used as translation units. To handle unpredictable computed jumps and to
support debugging, a full interpreter is integrated with the compiled emulator. Control
is passed back and forth between the two components as required. The interpreter has a
GUI which displays assembler source, and supports single-stepping and breakpoints.

For extending the architecture and for easy retargeting to other architectures, the
syntax and semantics of the instruction set are specified in a XML configuration file. In
the following sections, we describe how various problems in the emulator are solved.

4.1 XML Configuration File

Both the interpreter and the compiled emulator read their configurations from an XML
file. It describes the complete instruction set and the hardware configuration for the
register file, the pipeline, the instruction buffer, etc. The description of an instruction
includes the execution semantics and additional text used for automatic documentation
generation and to describe calling conventions. Figure 1 shows a slightly simplified
and edited version of the XML description of the ld (Load) instruction. The instruction
reads the value of an address register at the beginning of stage EX1, adds 2 to the register



Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 225

<instruction>
<mnemonic>ld</mnemonic>
<operands>
<operand>ADDR_REG</operand>
<operand>LX_DX_RX_REG</operand>

</operands>
<syntax>(op1)+, op2</syntax>
<semantics>
<execute>READ_OP1</execute>
<execute>MOD_OP1</execute>
<execute>MEM_READ</execute>
<execute>WRITE_OP2</execute>

</semantics>
</instruction>

<map key="READ_OP1">
<timing>EX1,begin</timing>
<code>tmp1 = %op1</code>
<code>tmp2 = %op1 + 2</code>

</map>
<map key="MOD_OP1">
<timing>EX1,end</timing>
<code>%op1 = tmp2</code>

</map>
<map key="MEM_READ">
<timing>EX2,begin</timing>
<code>tmp3 = mem[tmp1]</code>

</map>
<map key="WRITE_OP2">
<timing>EX2,end</timing>
<code>%op2 = tmp3</code>

</map>

Fig. 1. ld instruction with timings in the XML file

at the end of EX1, uses the old value as the address for a memory read at the beginning
of stage EX2 and stores the read value into another register at the end of the stage.

The identifiers within the <execute> elements reference other places in the XML
file (shown in Figure 1), where the timings and the code that has to be generated for
such an instruction part are stored. This separation of concerns facilitates maintenance
– since many instructions share common parts, changes can be made at a single place.

The <operands> and <syntax> elements shown in Figure 1 are used for the assem-
bler front-end. After an assembler line is split into simple tokens, checks are made as to
whether the syntax and the types of the operands match the information found here.

4.2 Dividing the Instruction Bundles into Basic Blocks

The instruction bundles are traversed to find all basic block leaders. A leader is an
instruction bundle that meets one or more of the following requirements:

1. it is a target of a branch instruction,
2. it starts the body of a hardware loop, or
3. it follows a branch instruction or the end of a hardware loop body.

For those branch instructions that have a branch delay, the instructions in the branch
delay slots are appended to the branch instruction’s basic block. If an additional branch
is executed in a branch delay slot, only the first instruction of the target basic block is
executed. In this case, a duplicate basic block which contains only the first instruction
is generated. Each of these basic blocks is translated into a single C function in the
generated output. This keeps the functions small, resulting in short compilation times
and good optimization by the C compiler.



226 S. Farfeleder, A. Krall, and N. Horspool

EX1 begin tmp1 = r0
tmp2 = r0 + 2

end r0 = tmp2
EX2 begin tmp3 = mem[tmp1]

end l0 = tmp3

Fig. 2. Code for ld (r0)+, l0

4.3 Generating Code for Instructions

Consider an actual instruction with real operands, like ld (r0)+, l0. The placehold-
ers for the operands that were shown in Figure 1 are simply filled with the actual
operands. Figure 2 depicts the code generated for this instruction. The identifiers start-
ing with tmp in the table are temporary variables used to cache register values or
computed values. The C compiler should optimize unnecessary copies away. These
temporaries also solve interdependencies between different pipeline stages of overlap-
ping instructions in an elegant way.

Many arithmetic instructions can be implemented by a single C operator. Other
instructions like multiply-accumulate, bit insertion or saturated computations do not
have direct C counterparts. They are implemented by groups of operations or small
inline functions which are read from the XML file.

4.4 Control Flow

Each generated C function returns the number of the next basic block to be be executed.
This number is used as an index into an array of function pointers to locate the next
basic block’s function. The compiled simulator’s main loop has the following simple
structure:

int bbnr = <number of starting block>;
while ((bbnr = bbptr[bbnr]()) >= 0) ;

A software stack simulates the hardware stack for subroutine calls. At a call, the
number of the basic block following the call instruction is pushed onto the stack, the
called function number is returned and is thus executed next. A return instruction pops
a function number from the stack and returns it.

4.5 Instructions Crossing Basic Block Boundaries

Consider the assembler code show in Figure 3. Because the EX2 stage of the ld instruc-
tion is executed at the same time as movr’s EX1 stage and because register l0 is written
at the end of a cycle, register l1 receives l0’s old value. Therefore executing the whole
ld instruction at the end of the basic block which contains the br instruction would
give wrong results. To resolve these conflicts, the code fragments of ld’s EX2 stage are
moved into the basic block that begins with the label foo: and will be executed there
in the correct order. The decision whether those moved code parts need to be executed
is determined by a global variable that remembers the last executed basic block.

Basic blocks can be duplicated to improve performance. For every predecessor Pi of
basic block B which has leftover pipeline stages, a specialized version Bi of basic block



Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 227

br foo
nop
ld (r0)+, l0
...
foo:
movr l0, l1

Fig. 3. Overlapping between ld and movr

B is generated. It includes the code for the leftover pipeline stages. A global simulator
switch determines the code generation scheme. In the previous example, the basic block
is duplicated. Only one of them executes the second part of ld.

4.6 Simulating the Instruction Buffer

The addresses of the currently cached fetch bundles are stored in an array, as are the
executed bits. At the beginning of each bundle, an attempt is made to insert the next
fetch bundle’s address into the array. A second table is used for a reverse-lookup be-
cause simulating the fully associative lookup would require up to eight comparisons per
check. This second table associates each possible fetch bundle address with an index
into the address array.

All instruction words between the program counter and the fetch counter are always
held in the instruction buffer. Thus if one knows that the fetch counter is ahead of
the instruction pointer by a sufficient amount, the check whether the instruction words
needed for the execution of the next bundle are available can be omitted. To simulate
this statically, the following strategy is applied. The program counter is initially set to
the address of the first instruction bundle and the fetch counter is set to the address of
the first fetch bundle. Program flow is simulated by adding four to the fetch counter and
the amount of memory used by the instruction bundle to the program counter at every
step. If the fetch counter does not exceed the program counter, there is no guarantee
that the bundle is in the buffer. In this case, extra code is generated which performs a
look-up for the needed address and to simulate a stall if it could not be found.

As already stated, executing a branch instruction sets the fetch counter and all exe-
cuted bits. Code to simulate these actions is executed at the start of the destination basic
block. When that destination block can be reached by both branching and by sequential
execution, two versions of the block are compiled — one with and one without the ex-
tra code to set the fetch counter and the executed bits. Finally code to set the executed
bit in the instruction buffer is inserted after all instruction words of a fetch bundle are
executed.

Simulating the instruction buffer is expensive. Techniques to decrease the costs by
computing extensive lookup tables at compile time are being explored.

4.7 Hardware Loops

The loop instruction is simulated by pushing a function pointer to the loop body’s first
basic block and the iteration count onto a stack. At the end of the loop, the counter
is decremented; if it reaches zero, the following basic block gets executed, otherwise
execution continues with the beginning of the loop body as found on the stack.



228 S. Farfeleder, A. Krall, and N. Horspool

If a hardware loop consists of a single basic block, the simulator optimizes the loop
into a C for(;;) statement, thus eliminating the overhead caused by a function call for
each iteration and enabling the C compiler to apply further optimizations. If a hardware
loop is sufficiently small to fit into the instruction buffer, a different optimization can be
performed. The loop body is unrolled three times; the first copy simulates the buffer as
described in the previous section for the first iteration, the second one repeats the body
n− 2 times. Since the instruction words are already buffered, the fetch simulation can
be completely omitted. Finally the third copy of the body simulates the last iteration of
the loop.

4.8 Memory Stalls

The xDSPcore has two memory ports, the X port covering the lower half of the data
memory and the Y port covering the upper half. Two memory accesses are possible in a
single cycle only if they do not use the same port, otherwise a pipeline stall occurs and
the second access is deferred to the next cycle.

If two memory accesses are detected in a bundle, code to test whether the two mem-
ory addresses use the same port has to be inserted. If tmp1 and tmp2 are temporary
variables holding the values of two address registers that are used to access memory,
then the code to check if a stall occurs is similar to this:

if (!((tmp1 ˆ tmp2) >> 15)) {
... /* issue a stall */

}

4.9 Collected Statistics

Each basic block has an associated counter which has to be incremented at runtime
when entered. Using these counters, the dynamic number of executed instructions, bun-
dles, the average number of instructions in a bundle, the frequency of each instruc-
tion, etc., can easily be computed. The number of memory stalls and aligner stalls are
also counted. In addition, the emulator maintains extra counters for .PROFILE pseudo-
instructions that are generated by the C compiler. They are used for feedback-driven
optimization.

5 Experimental Results

Six sample programs, which represent typical applications for the xDSPcore proces-
sor, were used in our experiments: blowfish (symmetric block ciphering), dct8x8/dct32
(discrete cosinus transformations), g721 (voice compression), serpent (cryptographic
algorithm) and viterbi (Viterbi decoder). The sizes of these programs and other char-
acteristics are listed in Table 1. The dynamic parallelism column shows the average
number of instructions executed in each cycle. The parallelism and the dynamic aver-
age basic block length have a significant effect on how efficiently the program can be
emulated.

The left part of table 2 shows the speed of the six programs on a simple interpreter.
Because statistics gathering has such a large effect on emulation speed, the speed is



Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 229

Table 1. Characteristics of Test Programs

Source size Object size Dynamic Average basic
parallelism block length

blowfish 25.8 kB 32 kB 1.91 14.38
dct8x8 43.9 kB 7 kB 1.85 7.48
dct32 35.8 kB 34 kB 2.14 8.73
g721 28.5 kB 5 kB 1.29 6.57
serpent 144.1 kB 46 kB 1.68 8.31
viterbi 36.6 kB 23 kB 1.21 216.85

Table 2. Emulation Speeds with an Interpreter and Compiler

interpreted compiled
with statistics without statistics with instr. buffer without instr. buffer

blowfish .083 MHz .207 MHz 165 MHz 302 MHz
dct8x8 .082 MHz .205 MHz 95 MHz 190 MHz
dct32 .071 MHz .187 MHz 105 MHz 204 MHz
g721 .078 MHz .198 MHz 78 MHz 259 MHz
serpent .040 MHz .208 MHz 120 MHz 258 MHz
viterbi .094 MHz .214 MHz 181 MHz 566 MHz

Table 3. Resources Needed to Create the Compiled Simulation

Generation Compile C code Binary
time (s) time (s) size (kB) size (kB)

blowfish 3.22 3.06 316 257
dct8x8 3.32 4.51 421 396
dct32 3.27 5.13 780 542
g721 4.97 7.47 454 404
serpent 9.41 24.36 2081 1518
viterbi 3.50 60.85 475 411

shown with statistics gathering enabled and disabled. The right part of table 2 shows
the execution speed of each of the programs when emulated with Compiled Emulation.
The two columns show the cost of emulating the instruction buffer of the xDSPcore ar-
chitecture. However it is necessary for guaranteeing cycle-accurate performance statis-
tics. Statistics gathering has negligible effect on timings for the compiled emulation.
Therefore, separate timing data is not shown for this case in the table.

The effective speed-up through using the compiled technique versus interpretation
can be estimated by comparing the numbers in the “with statistics” column of Table 2
with the numbers in the “with instruction buffer” column of Table 2. The speed-ups
range from 1000 to 3000. It can be seen that the largest speed-ups occur for the programs
which have the longest basic blocks.

Finally, Table 3 shows the resources needed to generate and compile the emulated
programs. Although the compiled programs are much larger than the original programs



230 S. Farfeleder, A. Krall, and N. Horspool

on the xDSPcore platform, it should be remembered that they are executed on a much
more powerful computer where memory is not a limitation. All measurements were
made on an AMD Opteron 2Ghz CPU. The C code was translated by the Intel compiler
with the -O3 optimization level.

6 Conclusion

We have presented a novel approach for retargetable emulation of an architecture with
some challenging features which include pipelining, a VLIW design, banked memory
and an instruction cache. By generating C code which represents a translation of the
original program at the basic block level, and which embodies the particular features
of the emulated architecture, we have achieved impressive performance results. To our
knowledge, we are the first to exploit partial evaluation of emulated features and ex-
tensive code duplication of the emulated program. The emulation speed is up to 3000
times faster than an interpreter while still maintaining a faithful simulation of the origi-
nal architecture down to the number of clock cycles consumed.

References

1. Austin, T., Larson, E., Ernst, D.: SimpleScalar: An infrastructure for computer system mod-
eling. Computer 35 (2002) 59–67

2. Schnarr, E., Larus, J.: Fast out-of-order processor simulation using memoization. In: Pro-
ceedings of the 8th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VIII), ACM SIGPLAN, ACM (1998) 283–294

3. Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., Hoffmann, A.: A universal
technique for fast and flexible instruction-set architecture simulation. In: Proceedings of the
39th conference on Design automation, ACM Press (2002) 22–27

4. May, C.: Mimic: a fast system/370 simulator. In: Papers of the Symposium on Interpreters
and interpretive techniques, ACM Press (1987) 1–13

5. Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., Robinson, S.G.: Binary translation. Com-
munications of the ACM 36 (1993) 69–81

6. Dehnert, J.C., Grant, B.K., Banning, J.P., Johnson, R., Kistler, T., Klaiber, A., Mattson, J.:
The transmeta code morphing software: Using speculation, recovery, and adaptive retransla-
tion to address real-life challenges. In: Proceedings of the International Symposium on Code
Generation and Optimization (CGO ’03). (2003)

7. Cmelik, B., Keppel, D.: Shade: A fast instruction-set simulator for execution profiling.
ACM SIGMETRICS Performance Evaluation Review 22 (1994) 128–137 Special Issue on
Proceedings of the 1994 Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’94; 16–20 May 1994; Vanderbilt University, Nashville, TN, USA).

8. Witchel, E., Rosenblum, M.: Embra: Fast and flexible machine simulation. In: Proceed-
ings of the ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. Volume 24,1 of ACM SIGMETRICS Performance Evaluation Review.,
New York, ACM Press (1996) 68–79

9. Probst, M.: Dynamic binary translation. In: UKUUG Linux Developer’s Conference 2002.
(2002)

10. Mills, C., Ahalt, S.C., Fowler, J.: Compiled instruction set simulation. Software – Practice
and Experience 21 (1991) 877–889



Ultra Fast Cycle-Accurate Compiled Emulation of Inorder Pipelined Architectures 231

11. Amicel, R., Bodin, F.: A new system for high-performance cycle-accurate compiled simu-
lation. In: 5th International Workshop on Software and Compilers for Embedded Systems.
(2001)

12. Pees, S., Hoffmann, A., Meyr, H.: Retargetable compiled simulation of embedded proces-
sors using a machine description language. ACM Transactions on Design Automation of
Electronic Systems. 5 (2000) 815–834

13. Krall, A., Hirnschrott, U., Panis, C., Pryanishnikov, I.: xDSPcore: A Compiler-Based Con-
figurable Digital Signal Processor. IEEE Micro 24 (2004) 67–78

14. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. Computer
35 (2002) 50–58


	Introduction
	Related Work
	The xDSPcore Processor Architecture
	Simulator Details
	XML Configuration File
	Dividing the Instruction Bundles into Basic Blocks
	Generating Code for Instructions
	Control Flow
	Instructions Crossing Basic Block Boundaries
	Simulating the Instruction Buffer
	Hardware Loops
	Memory Stalls
	Collected Statistics

	Experimental Results
	Conclusion

