
DSPxPlore – Design Space Exploration Methodology
for an Embedded DSP Core

ABSTRACT 
High mask and production costs for the newest CMOS silicon 
technologies increase the pressure to develop hardware platforms 
useable for different applications or variants of the same 
application. To provide flexibility for these platforms the need on 
software programmable embedded processors is increasing. To 
close the gap concerning consumed silicon area and power 
dissipation between optimized hardware implementations and 
software based solutions, it is necessary to adapt the subsystem of 
the embedded processor to application specific requirements. 
DSPxPlore can be used to explore the design space of RISC based 
embedded core architectures. At an early stage of the project the 
main architectural requirements of the application code can be 
identified in order to meet the area and power dissipation 
requirements. During the development process DSPxPlore 
supports fine-tuning of the subsystem architecture (e.g. 
modifications of the binary coding of instructions). DSPxPlore is 
part of a development project for a configurable DSP core.   
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1. INTRODUCTION 
Decreasing feature size and increasing system complexity enables 
to map complex system functions onto one die (SoC, System-on-
Chip) or into one package (SiP, System in a Package). High mask 
and production costs for the newest silicon technologies increases 
the need of platform solutions, enabling to use the same silicon 
for several applications. Providing flexibility to the platform 
solutions allowing to realize several applications with the same 
silicon, embedded software programmable cores can be used. 
Therefore the importance of embedded processors like 
microcontrollers, protocol processors and digital signal processors 
(DSP) is increasing.  

One aspect of using dedicated hardware implementations instead 
of software based solutions is the degree of efficiency in terms of 
consumed silicon area and power dissipation. To overcome the 
efficiency drawbacks of software based solutions without loosing 
the advantage of flexible platform architectures, providers of 
embedded core architectures provides the possibility to modify 
their core architectures to application specific requirements [1][2]. 

Making use of the additional degree of freedom the requirements 
of the application have to be understood. Quite often the core 
decisions are done by the most experienced engineers focusing on 
the aspects �what is already available?� and �what has been 
already proven in silicon?� to reduce the risk. Different 
requirements of the applications lead to not optimal solutions 
concerning consumed silicon area and power consumption by 
using one core subsystem. In the price-critical consumer IC 
market this can be crucial for the own market position and the 
revenues. 

This paper introduces DSPxPlore, a design space exploration 
methodology for an embedded configurable DSP processor. 
DSPxPlore can be used to understand the requirements of the 
application code on the processor architectures in an early stage of 
the project. During the development project DSPxPlore can be 
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used to fine-tune the chosen architecture. The first part introduces 
the RISC based DSP core architecture used as basis for 
DSPxPlore. The introduced methodology is not limited to this 
architecture. The second part is used to discuss the design space 
of RISC based DSP core architectures. The influence of 
configuration parameters concerning consumed silicon area and 
power dissipation of the core subsystem is illustrated. The third 
part introduces the DSPxPlore methodology. DSPxPlore is based 
on an optimizing C-Compiler (about 5 to 10% overhead compared 
with manual assembly coding) and a cycle-true Instruction Set 
Simulator (ISS), based on a configurable component framework. 
A XML-based configuration file contains a description of the 
chosen core architecture and is used to configure the tool chain 
and to automatically update the documentation for the DSP core. 
The last section covers some exploration examples and gives an 
outlook for future work. 

2. ARCHITECTURAL INTRODUCTION 
This section is used to give a short introduction of the DSP 
architecture DSPxPlore has been developed for. The main 
architectural features and the instruction set have been defined 
under consideration of low silicon area and power dissipation of 
the DSP subsystem and to enable the development of an 
optimizing C-Compiler (about 5-10% overhead compared with 
manual assembler coding). An example architecture has been 
chosen for this paper and will be shortly introduced in this 
section. 

 

 
Figure 1: Core Overview 

The proposed DSP core features a modified Dual-Harvard load-
store architecture (an overview is illustrated in Figure 1) [3]. An 
independent data bus connects the program memory with the DSP 
core, an instruction buffer is used to execute loop constructs 
power efficient [4]. Data and program memory are featuring 
different address spaces [5]. The bit width of the ports in Figure 1 
is scaleable, which allows application specific adaptation of 
memory bandwidth. 

The core is featuring a RISC like 3-phase pipeline, instruction 
fetch, decode and execute. The three phases can be split over 
several clock cycles. The example architecture illustrated in 
Figure 2 is using five clock cycles for the three pipeline phases. 

The instruction fetch phase is split over a fetch and an align clock 
cycle, the decode stage takes one clock cycle, the execution phase 
is split over two clock cycles (EX1, EX2). Splitting of a pipeline 
phase over several clock cycles enables to reach higher clock 
frequencies. But additional pipeline stages in the fetch phase 

increases the number of branch delays, additional clock cycles for 
the execution phase leads to increased load-in-use and define-in-
use dependencies [6]. Therefore deeper pipeline structures can 
lead to a decreased overall system performance due to data and 
control dependencies in the application code. 

 

 
Figure 2: Pipeline 

The instructions are divided into three operation classes: 
load/store instructions, used to transfer data between the data 
memory and the register file, arithmetic/logic instructions 
performing calculations on register values, and branch 
instructions influencing the program flow. Each instruction 
consists of one or two instruction words. The size of the native 
instruction word for the example architecture is 20 bit; the 
optional second word is used for long immediate values and 
offsets (parallel word as in Figure 3).  

 
Figure 3: instruction coding 

All arithmetic instructions support 3 operands, which prevents 
data copy functions between different registers of the register file. 
All features of the DSP core are coded inside the instruction set; 
no mode bits are used to increase code density. The drawbacks of 
using mode bits are limitations during instruction scheduling 
when moving instructions between different mode sections [7]. As 
illustrated in Figure 3 the first three bits of the instruction words 
are used for assigning the operation class and the alignment 
information.  

 
Figure 4: parallelism 

The number of possible parallel executed instructions is scaleable. 
The example architecture enables the execution of up to five 
instructions in parallel. It is possible to execute two load/store, 
two arithmetic and one branch instruction in parallel (illustrated in 
Figure 4). The chosen programming model is VLIW (Very long 
instruction Word), which implies static scheduling (data and 
control dependencies are analyzed and resolved in software). The 
drawback of traditional VLIW architectures featuring low code 
density is solved by xLIW (a scalable long instruction word) [8]. 
xLIW is based on VLES (Variable long execution set) and 
additionally supports a decreased program memory port. For this 
purpose also the already mentioned instruction buffer is used [9].  
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The example architecture supports two busses to data memory. 
Therefore two independent AGUs (address generation unit) are 
available. Each of the AGU can make use of each of the address 
registers (no banked address register). If two parallel generated 
addresses access the same physical memory block, the core 
hardware automatically detects the hazard and serializes the 
memory operations. Data memory operations exceeding the 
physical size of the memory port are realized as consecutive 
memory operations at the same data bus. 

All common DSP address modes like memory direct, register 
direct and register indirect addressing are supported. The auto in-
/decrement address operation supports pre- and post address 
calculation and an efficient stack frame addressing. The size of the 
modulo buffer is programmable; the start address of the buffer has 
to be aligned. This is a compromise between hardware effort and 
supported features. 

 
Figure 5: register files 

Load-store architecture implies that all operands for the arithmetic 
instructions reside in registers. Therefore the register file has an 
important role. The structure of the register file and the size and 
the number of registers is configurable; for the example 
architecture a register file as in Figure 5 is used. It is split into two 
parts, a data register file, and an address register file. 

 

Figure 6: data register file 

The data register file as in Figure 6 consists of 8 accumulators, 8 
long registers or 16 data registers. Two consecutive data registers 
can be addressed as a long register. A long register including 
guard bits (for higher precision calculation) can be addressed as 
accumulator. The size of the operands can be modified application 
specific. The registers inside the register file are orthogonal, 
which means that none of them is assigned to a certain instruction. 
The drawback of an orthogonal register file is the crossbar to 

enable mapping of the read and write ports to each of the 
registers.   

3. DESIGN SPACE FOR RISC BASED DSP 
ARCHITECTURES 
This section is used to introduce the available design space for 
RISC based DSP subsystems with influence on area consumption, 
power dissipation and overall system performance. The example 
architecture is used to illustrate the main architectural features. 
The influence of some of the parameters is illustrated by first 
exploration results. 

3.1 Register File 
The register file in load-store architectures has a central role. All 
arithmetic instructions are fetching their operands from the 
register file and store their results into the register file. Therefore 
the number of supported registers of the register file influences the 
performance parameters of the DSP subsystem.   

Supporting less register reduces the necessary core area but can 
lead to additional spill code. Spill code is added if no registers are 
available to store a result. In this case register file content has to 
be stored to data memory to free register resources. If any of the 
spilled data is needed again, it has to be reloaded from memory. 
The added spill code increases the demand on program memory 
and therefore decreases the code density of the application code. 
Further it increases execution time and therefore decreases system 
performance. 

Supporting a larger register file with more entries increases the 
core area and again has influence on code density. More entries 
require more coding space to address the register entries � 
especially considering the orthogonal requirement to enable the 
development of an optimizing C-Compiler banking registers or 
supporting registers for special functions is not possible. 

 

Figure 7: register file (64-bit accu) 

It is possible to change the structure of the register file. Figure 7 is 
used to illustrate an example for a 64-bit data register file (e.g. 
used for a 64-bit/quad MAC architecture). The register file on the 
left side of Figure 7 has a similar structure as the register file in 
Figure 5; instead of using guard bits the accumulator supports 64-
bit. The number of addressable data registers has not been 
doubled; the necessary coding space for the additional data 
registers has influence on the code density. If an application code 
requires the use of more than 16 data registers to reduce the spill 
code a register file like in Figure 7 can support up to 32 data 
register. The same register file on the right side of Figure 7 has a 
different structure. Eight of the data registers are mapped onto the 
first two accumulator registers, the remaining eight are split onto 
the next six accumulator registers. 
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3.2 Data paths 
Increasing the number of data paths and parallel executed 
instructions increase the maximum possible calculation power of 
core architectures. Providing the possibility to execute several 
instructions in parallel requires the availability of operands. 
Therefore a balanced relation between memory bandwidth, 
number of independent load/store instructions and the number of 
arithmetic data paths characterize the possible performance of 
core architectures. 

Table 1: ILP 

Tjaden 
and Flynn 

31 library 
programs 

  1,2-
3,2 

1,9 

Kuck 
et.al. 

20 Fortran 
programs 

  1,2-17 4 

Rieseman
n, Foster 

7 Fortran/ 
assembler 

1,2-3 1,8 1,4-
1,6 

1,6 

Jouppy 8 modulo2 
programs 

1,6-
2,2 

1,9 2,4-
3,3 

2,8 

Lam, 
Wilson 

6SPECmar
ks+4others 

1,5-
2,8 

2,1 2-293  

Additional influence comes from the application program 
executed on the core architecture. Control and data dependencies 
can lead to a low usage of the provided core resources. In Table 1 
some examples for ILP (instruction level parallelism) can be 
found. The benchmark examples are based on general purpose 
code (column 3,4) as also scientific code (column 5,6). The 
average ILP in these examples is about two to three instructions.  

Traditional algorithms executed on DSP cores are filtering 
operations. Filter algorithms are characterized by an inner loop, 
where a significant amount of execution time is spent. These inner 
loops (considering software pipelining) can make efficient use of 
parallel provided resources. Therefore the ILP for this kind of 
algorithms is higher than that for general purpose code. The MAC 
(multiply and accumulate) instruction is typical used for e.g. FIR 
filter algorithms. Therefore the performance of DSP cores is 
measured in the number of provided MAC instructions per second 
and in the number of clock cycles needed for execution 
(considering the define-in-use dependency). 

  Changing the number and kind of data paths has influence on the 
core hardware. If the changes in the data path structure have 
influence on the instruction set (by adding or removing 
instructions) the code density is influenced. Changes of the data 
path structure have influence on the execution bundle. Therefore 
after changing the data path structure, it is necessary to verify if 
the average relation between the size of the fetch and execution 
bundle is still balanced and that the memory bandwidth still fits to 
the data path structure. 

3.3 Memory bandwidth 
The memory bandwidth is closely related to the data path 
parameter. Providing a lot of parallelism with insufficient memory 
bandwidth is resulting in bad usage of available core resources. 
The size of the memory ports has influence on power dissipation 
and consumed silicon area of a DSP subsystem.  

Data memory port: Today most of the commercial available DSP 
cores are supporting two independent data memory busses. 
Supporting additional busses increases the flexibility of data 
transfer and several algorithms e.g. FFT algorithms can make use 
of it. But the drawback of more memory ports is the hardware 
effort for additional AGUs (Address Generation Unit) and the 
wiring effort to the memory sub system.  

Program memory port: For most of the commercial available DSP 
cores, the size of the program memory port is equal to the 
maximum number of parallel executed instructions. Similar as for 
the data memory port, the wiring is influencing area and power 
consumption. One possibility to decouple the size of the program 
memory port with the provided parallelism of the execution unit is 
the usage of an instruction buffer, as mentioned in section 2. 

3.4 Instruction size/encoding 
The instruction set describes the functionality supported by the 
core architecture. The mapping of the instruction set to binary 
instruction words has significant influence on the area 
consumption of the core sub system, because the memory used to 
store the instructions is dominating the area consumption. 

In Figure 8 an example for different mappings of the same 
instruction set to two different instruction layouts is illustrated. In 
the right example, the instruction set has been mapped using 
instructions with a native size of 16-bit, using 32 bit for the 
remaining instructions, which cannot be mapped to the native 
instructions set like three operand arithmetic instructions. For the 
example of the left column a native instruction word size of 20 bit 
is used, allowing to map all instructions into the native instruction 
word size. The second word is only used for long immediate 
values and offsets. Considering a certain algorithm (e.g. some 
control code as in Figure 8) the smaller native instruction word 
size is providing a lower overall code effort. This can be different 
for another code example, which e.g. requires three operand 
instructions, coded more efficient in the longer native instruction 
word. 

 

Figure 8: example for instruction set mapping 

The binary coding is influencing the switching activity at the 
program memory port and therefore the mapping of the 
instruction set to a certain binary coding has influence on the 
power dissipation of the DSP subsystem. More often used 
instructions can be coded more efficiently resulting in an 
increased code density. Also reordering of instructions inside the 
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same execution bundle can be performed in order to decrease 
power dissipation at the program memory bus [10][11][12].    

3.5 Instruction buffer size 
The instruction buffer mentioned in section 2 is not available in 
each core, but shall be mentioned for the core architecture 
introduced in section 2. For this core the instruction buffer is used 
to compensate the memory bandwidth mismatch between fetch 
and execution bundle and also to execute loop constructs power 
efficient by reducing the number of memory accesses. To make 
use of this feature, the size of the instruction buffer has to be 
scalable to adapt the instruction buffer to application code specific 
requirements. Power efficient loop handling can only be achieved, 
if the loop body fits into the buffer. Therefore the chosen size of 
the instruction buffer has influence onto the power dissipation of 
the core subsystem. On the other side providing a buffer with 
many entries leads to a significant increase on core area.  

3.6 Pipeline stages 
Increasing the number of pipeline stages allows increasing the 
reachable core frequency. Higher core frequencies lead to 
increased power dissipation due to the need of a higher supply 
voltage and an increased switching activity [13]. 

Increasing the number of pipeline stages also increases the core 
complexity, because additional hardware circuits like bypass are 
getting necessary to reduce the increased dependency between 
instructions of different pipeline stages [14][15][16]. 

Increasing the number of pipeline stages can even lead to a 
decrease of system performance due to control and data 
dependencies. Therefore a balanced pipeline structure considering 
dependencies of the application code and physical aspects of 
technology are important to obtain a good cost ratio between area 
consumption, power dissipation and system performance. 
Classifying core subsystems by MIPS, MOPs or MMACs or any 
other similar parameter is misleading: for an embedded core the 
core performance has to be classified, how efficient an application 
code can make use of the available core resources. 

Increasing the number of pipeline stages for the fetch phase of the 
pipeline relaxes the timing at the program memory but increases 
the number of branch delays. Additional hardware circuits have to 
be introduced to compensate the unused branch delays [17][18]. 
Predicated execution can help to reduce the number of branch 
delays by reducing the number of conditional branch instructions 
[19]. 

Adding pipeline stages to speed up the execution phase and to 
relax the timing at the data memory ports leads to an increased 
define-in-use and load-in-use dependency. Bypass logic can be 
used to reduce the dependencies but again by increasing core 
complexity.  

3.7 Summary 
This section has been used to briefly introduce the architectural 
features of RISC based core architectures (with focus on DSP 
cores) which are significant influencing the area consumption and 
power dissipation of the core subsystem. None of these 
parameters can be considered isolated; changing one of them 
influences several others. There is not a single shot solution 

satisfying the requirements of all applications efficient. The 
application code executed on a core architecture make a certain 
core configuration efficient. To understand the requirements of an 
application code, the following section is used to introduce a 
design space exploration methodology for RISC based core 
subsystems. 

4. EXPLORATION METHODOLOGY 
The DSP core architecture introduced in section 2 allows adapting 
the architectural features introduced in section 3. Providing a 
configurable DSP core architecture to meet application specific 
requirements enables to reduce area consumption and power 
dissipation. To find the optimal core architecture (optimal for one 
application) it is important to understand the application specific 
requirements.  

For this purpose DSPxPlore is introduced. DSPxPlore can be used 
to analyze the influence of certain core subsystem configurations 
on the system parameter core area, power dissipation and overall 
system performance. During the product development process 
DSPxPlore supports a fine tuning of the core subsystem. The 
exploration methodology is based on an optimizing C-Compiler 
and a configurable ISS (instruction set simulator). 

 

Figure 9: DSPxPlore Overview 

In Figure 9 an overview of the exploration methodology is 
illustrated. An optimizing C- compiler is used to generate static 
analysis results. A cycle true Instruction Set Simulator (ISS) is 
used for evaluation of dynamic results. Both results together can 
be used to analyze the application specific requirements to the 
core subsystem. The chosen core configuration is located in an 
XML-based configuration file, which is used by both tools. 

4.1 Static analysis 
To obtain reasonable accurate results for static analysis it is 
necessary to use a C-Compiler that generates near-optimal 
assembly code (compared to manually optimized code). If the 
quality of the C-Compiler is poor, the generated results can be 
misleading and architectural decisions can lead to a suboptimal 
solution. The C-Compiler for the core architecture introduced in 
section 2 provides an accuracy of about 5-10% overhead 
compared with manual coding.  Some of the generated static 
evaluation results are 
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4.1.1 code size 
The memory of a DSP subsystem is dominating the silicon area 
consumption. Therefore a high code density reduces area 
consumption. An example for the parameter code size is 
illustrated in Figure 10. The number of instructions necessary to 
port the application code to the chosen core architecture is 
counted and the required long instructions are summed up. The 
chosen instruction word length is normalized to bytes to have a 
comparable value. The example architecture is using a 20-bit 
native instruction word and therefore the number of counted 
instructions have to be multiplied by 2,5 to get the code effort in 
bytes. Instructions with long words are counting double.  

 

Figure 10: code size analysis 

4.1.2 parallelism 
The analysis result parallelism gives an indication of the usage of 
the provided core resources. Data and control dependencies in the 
application code restrict the execution of parallel instructions and 
leads to a poor use of the available processor resources. The 
example in Figure 11 illustrates the dependency problem (on the 
left side a summary, on the right side more in detail).  

 

  

Figure 11: bundle assignment 

Only a few execution bundles can make use of the parallel units 
(the example architecture provides to execute five instructions in 

parallel).  DSP architectures like the C62x from Texas 
Instruments will not have a higher usage of the core resources, 
even if its relative performance (calculated as number of possible 
parallel instructions multiplied with the reachable clock 
frequency) provides higher numbers [20]. 

4.1.3 instruction histogram 
The instruction histogram analysis result provides a list of the 
used instructions and their static occurrence inside the application 
code. This result can be used to optimize the instruction set during 
fine tuning of the core subsystem (e.g. optimized coding of 
frequently used instructions). 

4.1.4 immediate values 
The size of the immediate values can be analyzed already during 
the static process. This gives an indication about the needed 
coding space inside the instruction set. These results (similar as in 
Figure 8) can be used to choose the optimal size for the native 
instruction word.  

4.1.5 delay slots 
The number of delay slots can significantly influence the overall 
system performance of a DSP subsystem. Delay slots are caused 
by branch instructions or function calls. Increasing the number of 
pipeline cycles during the fetch phase results in more delay slots. 
Some of the delay slots can be filled with useful instructions, the 
others are lost cycles.  

4.2 Dynamic analysis 
To weight the static analysis results, dynamic analysis are 
necessary. A cycle true instruction set simulator (ISS) is used to 
obtain the results. xSIM, the ISS used for the core introduced in 
section 2 is based on a configurable component framework. An 
XML based configuration file is used to define the chosen core 
configuration. Some of the dynamic results are  

4.2.1 program memory fetch 
The fetch of instructions from program memory significantly 
influences the power dissipation of the DSP subsystem. Therefore 
reducing the switching at the program memory port can be used to 
reduce power dissipation. The number of fetch cycles from 
program memory is analyzed, the fetch frequency of the different 
fetch bundles is counted and the alignment analysis for loop and 
branch constructs is considered. 

4.2.2 unused program memory 
The DSP core introduced in section 2 features an instruction 
buffer to overcome the bandwidth mismatch between fetch and 
maximum execution bundle size and to execute loop constructs 
power efficient. Especially during breaks in the program flow 
already fetched program data are not executed. This parameter is 
used to analyze which code sections have been fetched but not 
executed and can be used to reduce the switching at the program 
memory port. 

4.2.3 execution count per bundle 
Counting the execution frequency of each execution bundle can 
be used to identify hot spots and to optimize the HW/SW 
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partitioning (e.g. deciding which parts can be more efficient 
implemented in hardware). Together with the static parallelism 
analysis the provided parallelism can be classified and the number 
of data paths adjusted to the requirements of the application code. 
The results can be visualized by xSIM, which easies the 
interpretation of the results. 

4.2.4 execution count per instruction 
The list of used instructions generated during static analysis is 
extended by the execution count of instructions. With this 
information the instruction set and the binary coding can be 
optimized, increasing code density and decreasing switching 
activity at the program memory port. Frequently executed 
instructions can be coded more efficient, not used instructions 
even removed.  

4.2.5 stall cycles 
During execution of application code stall cycles can take place. 
During the stall cycles the core is not contributing to the system 
performance of the DSP subsystem. This can be caused e.g. by 
simultaneous memory access to the same physical memory block 
or by missing program data, due to an empty instruction buffer 
(e.g. at not aligned branch targets). This information can be used 
to identify possible reasons and to modify the core architecture 
and the application code to prevent useless stall cycles. 

5. RESULTS 
This section is used to illustrate some of the results using 
DSPxPlore. The set of benchmark examples consists of traditional 
DSP functions like FFT and code examples of the area of 
cryptology but also of control code examples e.g. framing 
algorithms.  

For the results in Table 2 the size of the register file has been 
modified. The number in the first column is equal to the number 
of supported accumulator register.  

Table 2: register size evaluation 

#regs bundles inst. delay nops code size 

4 24008 35284 2473 47263 

8 17041 26544 2722 31810 

16 14507 23046 2826 26497 

Increasing the number of registers relaxes the register pressure for 
register allocation, resulting in a decreased code effort. In the 
second row the number of available registers has been increased 
from four to eight leading to a reduced code effort of about 50%. 
Doubling the register file again from eight to 16 accumulator 
registers increases the code density only by about additional 17%. 
The algorithm examples cannot make use of the additional 
registers. The results in Table 2 do not include the influence on 
the coding space due to the increased number of registers. The 
coding used for the comparison supports the medium sized 
register file; considering also the difference in the coding space 
will reduce the absolute distance between the result values. 

Table 3: parallelism analysis 

model bundles inst. delay nops code size 

0 1M-
1A-1B 

21070 27962 2694 33441 

1 2M-
1A-1B 

20783 28022 2714 33441 

2 1M-
2A-1B 

18194 27728 2862 33196 

3 2M-
2A-1B 

17872 27871 2866 33421 

4 2M-
3A-1B 

17347 27890 2958 33558 

The first column in Table 3 indicates the number of parallel 
executed instructions: The M for load/store instructions, A for 
arithmetic/logic instructions and B for branch instructions. As 
expected adding more units in parallel decreases the number of 
necessary execution bundles (column three in Table 3). Data and 
control dependencies reduce the effect of further added units. One 
remark concerning the increase of the number of branch delay 
NOPs: During compilation, the C-Compiler has been configured 
to execute the instructions as early as possible. Providing more 
parallelism leads to shorter branch distances and therefore fewer 
instructions are available to fill delay slots. The number of 
necessary NOP instructions for filling delay slot is increasing. 

Table 4: model 0, branch delay slots 

branch 
delay 

bundles inst. delay nops code 
size 

2 21051 27943 2694 33422 

3 22544 29438 2686 34868 

4 24118 31004 2664 36432 

For the results in Table 4 (model 0) and Table 5 (model 4) the 
same core models as for the results of Table 3 are used. The 
parameter on the left side is the number of branch delays. 
Additional branch delays caused by further clock cycles used for 
the fetch phase of the pipeline e.g. to relax the timing at the 
program memory port, leads to an increased number of 
instructions and therefore to a decreased code density (e.g. due to 
additional NOP instructions to fill delay slots). 

Table 5: model 4, branch delay slots 

branch 
delay 

bundles inst. delay nops code 
size 

2 17324 27867 2959 33537 

3 18897 29451 2966 35121 

4 20524 31055 2947 36725 

Comparing the results for model 0 and model 4, as expected the 
number of necessary execution bundles is decreasing. The 
configuration for the results of Table 4 supports to execute only 
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three instructions in parallel, the configuration used in Table 5 up 
to six instructions in parallel.  

6.  OUTLOOK 
DSPxPlore is used to understand the requirements of the 
application code on the core architecture, to identify hot spots and 
to optimize the HW/SW partitioning. DSPxPlore is still an expert 
system. For interpretation of the generated results and the related 
modifications of the core architecture a deep understanding of the 
core architecture, the configuration parameter and the influence of 
the chosen configuration onto silicon area and power 
consumption is necessary. In the next development phase it will 
be possible to get easier understandable feedback from 
DSPxPlore. This enables the system architect optimizing his core 
subsystem for application specific requirements and to gets hints 
for further optimizations. 

7.  SUMMARY 
DSPxPlore is a design space exploration methodology for RISC 
based embedded cores. Analyzing application specific 
requirements in an early stage of the project enables to modify the 
core subsystem and therefore to obtain low silicon area 
consumption and low power dissipation. During the design 
process DSPxPlore can be used for fine tuning of the core 
subsystem e.g. optimization of the binary coding to reduce power 
dissipation. With the application specific optimized core 
subsystems it is possible to reduce the gap between a dedicated 
hardware implementation and a core based solution providing the 
flexibility of software programmability. DSPxPlore is part of a 
project for a configurable DSP core. 
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