
DSPxPlore – Design Space Exploration Methodology
for an Embedded DSP Core

ABSTRACT
High mask and production costs for the newest CMOS silicon
technologies increase the pressure to develop hardware platforms
useable for different applications or variants of the same
application. To provide flexibility for these platforms the need on
software programmable embedded processors is increasing. To
close the gap concerning consumed silicon area and power
dissipation between optimized hardware implementations and
software based solutions, it is necessary to adapt the subsystem of
the embedded processor to application specific requirements.
DSPxPlore can be used to explore the design space of RISC based
embedded core architectures. At an early stage of the project the
main architectural requirements of the application code can be
identified in order to meet the area and power dissipation
requirements. During the development process DSPxPlore
supports fine-tuning of the subsystem architecture (e.g.
modifications of the binary coding of instructions). DSPxPlore is
part of a development project for a configurable DSP core.

Keywords
DSPxPlore, Design Space Exploration, embedded DSP

1. INTRODUCTION
Decreasing feature size and increasing system complexity enables
to map complex system functions onto one die (SoC, System-on-
Chip) or into one package (SiP, System in a Package). High mask
and production costs for the newest silicon technologies increases
the need of platform solutions, enabling to use the same silicon
for several applications. Providing flexibility to the platform
solutions allowing to realize several applications with the same
silicon, embedded software programmable cores can be used.
Therefore the importance of embedded processors like
microcontrollers, protocol processors and digital signal processors
(DSP) is increasing.

One aspect of using dedicated hardware implementations instead
of software based solutions is the degree of efficiency in terms of
consumed silicon area and power dissipation. To overcome the
efficiency drawbacks of software based solutions without loosing
the advantage of flexible platform architectures, providers of
embedded core architectures provides the possibility to modify
their core architectures to application specific requirements [1][2].

Making use of the additional degree of freedom the requirements
of the application have to be understood. Quite often the core
decisions are done by the most experienced engineers focusing on
the aspects �what is already available?� and �what has been
already proven in silicon?� to reduce the risk. Different
requirements of the applications lead to not optimal solutions
concerning consumed silicon area and power consumption by
using one core subsystem. In the price-critical consumer IC
market this can be crucial for the own market position and the
revenues.

This paper introduces DSPxPlore, a design space exploration
methodology for an embedded configurable DSP processor.
DSPxPlore can be used to understand the requirements of the
application code on the processor architectures in an early stage of
the project. During the development project DSPxPlore can be

Christian Panis
Carinthian Tech Institute

Europastrasse 4

A-9524 Villach, Austria

+43 4242 90500 2124

c.panis@cti.ac.at

Ulrich Hirnschrott
Vienna University of Technology

Argentinierstrasse 8

A-1040 Vienna, Austria

+43 1 58801 58520

uli@complang.tuwien.ac.at

Gunther Laure
Infineon Technologies Austria

Siemensstrasse 2

A-9524 Villach, Austria

+43 4242 305 0

gunnar2@sbox.tu-graz.ac.at
Wolfgang Lazian

Infineon Technologies Austria

Siemensstrasse 2

A-9524 Villach, Austria

+43 4242 305 0

lazian@sbox.tu-graz.ac.at

Jari Nurmi
Tampere University of Technology

P.O.Box 553

FIN-33101 Tampere

+358 3 3115 3884

jari.nurmi@tut.fi

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage,
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a
fee.
SAC�04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04...$5.00

876

2004 ACM Symposium on Applied Computing

used to fine-tune the chosen architecture. The first part introduces
the RISC based DSP core architecture used as basis for
DSPxPlore. The introduced methodology is not limited to this
architecture. The second part is used to discuss the design space
of RISC based DSP core architectures. The influence of
configuration parameters concerning consumed silicon area and
power dissipation of the core subsystem is illustrated. The third
part introduces the DSPxPlore methodology. DSPxPlore is based
on an optimizing C-Compiler (about 5 to 10% overhead compared
with manual assembly coding) and a cycle-true Instruction Set
Simulator (ISS), based on a configurable component framework.
A XML-based configuration file contains a description of the
chosen core architecture and is used to configure the tool chain
and to automatically update the documentation for the DSP core.
The last section covers some exploration examples and gives an
outlook for future work.

2. ARCHITECTURAL INTRODUCTION
This section is used to give a short introduction of the DSP
architecture DSPxPlore has been developed for. The main
architectural features and the instruction set have been defined
under consideration of low silicon area and power dissipation of
the DSP subsystem and to enable the development of an
optimizing C-Compiler (about 5-10% overhead compared with
manual assembler coding). An example architecture has been
chosen for this paper and will be shortly introduced in this
section.

Figure 1: Core Overview

The proposed DSP core features a modified Dual-Harvard load-
store architecture (an overview is illustrated in Figure 1) [3]. An
independent data bus connects the program memory with the DSP
core, an instruction buffer is used to execute loop constructs
power efficient [4]. Data and program memory are featuring
different address spaces [5]. The bit width of the ports in Figure 1
is scaleable, which allows application specific adaptation of
memory bandwidth.

The core is featuring a RISC like 3-phase pipeline, instruction
fetch, decode and execute. The three phases can be split over
several clock cycles. The example architecture illustrated in
Figure 2 is using five clock cycles for the three pipeline phases.

The instruction fetch phase is split over a fetch and an align clock
cycle, the decode stage takes one clock cycle, the execution phase
is split over two clock cycles (EX1, EX2). Splitting of a pipeline
phase over several clock cycles enables to reach higher clock
frequencies. But additional pipeline stages in the fetch phase

increases the number of branch delays, additional clock cycles for
the execution phase leads to increased load-in-use and define-in-
use dependencies [6]. Therefore deeper pipeline structures can
lead to a decreased overall system performance due to data and
control dependencies in the application code.

Figure 2: Pipeline

The instructions are divided into three operation classes:
load/store instructions, used to transfer data between the data
memory and the register file, arithmetic/logic instructions
performing calculations on register values, and branch
instructions influencing the program flow. Each instruction
consists of one or two instruction words. The size of the native
instruction word for the example architecture is 20 bit; the
optional second word is used for long immediate values and
offsets (parallel word as in Figure 3).

Figure 3: instruction coding

All arithmetic instructions support 3 operands, which prevents
data copy functions between different registers of the register file.
All features of the DSP core are coded inside the instruction set;
no mode bits are used to increase code density. The drawbacks of
using mode bits are limitations during instruction scheduling
when moving instructions between different mode sections [7]. As
illustrated in Figure 3 the first three bits of the instruction words
are used for assigning the operation class and the alignment
information.

Figure 4: parallelism

The number of possible parallel executed instructions is scaleable.
The example architecture enables the execution of up to five
instructions in parallel. It is possible to execute two load/store,
two arithmetic and one branch instruction in parallel (illustrated in
Figure 4). The chosen programming model is VLIW (Very long
instruction Word), which implies static scheduling (data and
control dependencies are analyzed and resolved in software). The
drawback of traditional VLIW architectures featuring low code
density is solved by xLIW (a scalable long instruction word) [8].
xLIW is based on VLES (Variable long execution set) and
additionally supports a decreased program memory port. For this
purpose also the already mentioned instruction buffer is used [9].

877

The example architecture supports two busses to data memory.
Therefore two independent AGUs (address generation unit) are
available. Each of the AGU can make use of each of the address
registers (no banked address register). If two parallel generated
addresses access the same physical memory block, the core
hardware automatically detects the hazard and serializes the
memory operations. Data memory operations exceeding the
physical size of the memory port are realized as consecutive
memory operations at the same data bus.

All common DSP address modes like memory direct, register
direct and register indirect addressing are supported. The auto in-
/decrement address operation supports pre- and post address
calculation and an efficient stack frame addressing. The size of the
modulo buffer is programmable; the start address of the buffer has
to be aligned. This is a compromise between hardware effort and
supported features.

Figure 5: register files

Load-store architecture implies that all operands for the arithmetic
instructions reside in registers. Therefore the register file has an
important role. The structure of the register file and the size and
the number of registers is configurable; for the example
architecture a register file as in Figure 5 is used. It is split into two
parts, a data register file, and an address register file.

Figure 6: data register file

The data register file as in Figure 6 consists of 8 accumulators, 8
long registers or 16 data registers. Two consecutive data registers
can be addressed as a long register. A long register including
guard bits (for higher precision calculation) can be addressed as
accumulator. The size of the operands can be modified application
specific. The registers inside the register file are orthogonal,
which means that none of them is assigned to a certain instruction.
The drawback of an orthogonal register file is the crossbar to

enable mapping of the read and write ports to each of the
registers.

3. DESIGN SPACE FOR RISC BASED DSP
ARCHITECTURES
This section is used to introduce the available design space for
RISC based DSP subsystems with influence on area consumption,
power dissipation and overall system performance. The example
architecture is used to illustrate the main architectural features.
The influence of some of the parameters is illustrated by first
exploration results.

3.1 Register File
The register file in load-store architectures has a central role. All
arithmetic instructions are fetching their operands from the
register file and store their results into the register file. Therefore
the number of supported registers of the register file influences the
performance parameters of the DSP subsystem.

Supporting less register reduces the necessary core area but can
lead to additional spill code. Spill code is added if no registers are
available to store a result. In this case register file content has to
be stored to data memory to free register resources. If any of the
spilled data is needed again, it has to be reloaded from memory.
The added spill code increases the demand on program memory
and therefore decreases the code density of the application code.
Further it increases execution time and therefore decreases system
performance.

Supporting a larger register file with more entries increases the
core area and again has influence on code density. More entries
require more coding space to address the register entries �
especially considering the orthogonal requirement to enable the
development of an optimizing C-Compiler banking registers or
supporting registers for special functions is not possible.

Figure 7: register file (64-bit accu)

It is possible to change the structure of the register file. Figure 7 is
used to illustrate an example for a 64-bit data register file (e.g.
used for a 64-bit/quad MAC architecture). The register file on the
left side of Figure 7 has a similar structure as the register file in
Figure 5; instead of using guard bits the accumulator supports 64-
bit. The number of addressable data registers has not been
doubled; the necessary coding space for the additional data
registers has influence on the code density. If an application code
requires the use of more than 16 data registers to reduce the spill
code a register file like in Figure 7 can support up to 32 data
register. The same register file on the right side of Figure 7 has a
different structure. Eight of the data registers are mapped onto the
first two accumulator registers, the remaining eight are split onto
the next six accumulator registers.

878

3.2 Data paths
Increasing the number of data paths and parallel executed
instructions increase the maximum possible calculation power of
core architectures. Providing the possibility to execute several
instructions in parallel requires the availability of operands.
Therefore a balanced relation between memory bandwidth,
number of independent load/store instructions and the number of
arithmetic data paths characterize the possible performance of
core architectures.

Table 1: ILP

Tjaden
and Flynn

31 library
programs

 1,2-
3,2

1,9

Kuck
et.al.

20 Fortran
programs

 1,2-17 4

Rieseman
n, Foster

7 Fortran/
assembler

1,2-3 1,8 1,4-
1,6

1,6

Jouppy 8 modulo2
programs

1,6-
2,2

1,9 2,4-
3,3

2,8

Lam,
Wilson

6SPECmar
ks+4others

1,5-
2,8

2,1 2-293

Additional influence comes from the application program
executed on the core architecture. Control and data dependencies
can lead to a low usage of the provided core resources. In Table 1
some examples for ILP (instruction level parallelism) can be
found. The benchmark examples are based on general purpose
code (column 3,4) as also scientific code (column 5,6). The
average ILP in these examples is about two to three instructions.

Traditional algorithms executed on DSP cores are filtering
operations. Filter algorithms are characterized by an inner loop,
where a significant amount of execution time is spent. These inner
loops (considering software pipelining) can make efficient use of
parallel provided resources. Therefore the ILP for this kind of
algorithms is higher than that for general purpose code. The MAC
(multiply and accumulate) instruction is typical used for e.g. FIR
filter algorithms. Therefore the performance of DSP cores is
measured in the number of provided MAC instructions per second
and in the number of clock cycles needed for execution
(considering the define-in-use dependency).

 Changing the number and kind of data paths has influence on the
core hardware. If the changes in the data path structure have
influence on the instruction set (by adding or removing
instructions) the code density is influenced. Changes of the data
path structure have influence on the execution bundle. Therefore
after changing the data path structure, it is necessary to verify if
the average relation between the size of the fetch and execution
bundle is still balanced and that the memory bandwidth still fits to
the data path structure.

3.3 Memory bandwidth
The memory bandwidth is closely related to the data path
parameter. Providing a lot of parallelism with insufficient memory
bandwidth is resulting in bad usage of available core resources.
The size of the memory ports has influence on power dissipation
and consumed silicon area of a DSP subsystem.

Data memory port: Today most of the commercial available DSP
cores are supporting two independent data memory busses.
Supporting additional busses increases the flexibility of data
transfer and several algorithms e.g. FFT algorithms can make use
of it. But the drawback of more memory ports is the hardware
effort for additional AGUs (Address Generation Unit) and the
wiring effort to the memory sub system.

Program memory port: For most of the commercial available DSP
cores, the size of the program memory port is equal to the
maximum number of parallel executed instructions. Similar as for
the data memory port, the wiring is influencing area and power
consumption. One possibility to decouple the size of the program
memory port with the provided parallelism of the execution unit is
the usage of an instruction buffer, as mentioned in section 2.

3.4 Instruction size/encoding
The instruction set describes the functionality supported by the
core architecture. The mapping of the instruction set to binary
instruction words has significant influence on the area
consumption of the core sub system, because the memory used to
store the instructions is dominating the area consumption.

In Figure 8 an example for different mappings of the same
instruction set to two different instruction layouts is illustrated. In
the right example, the instruction set has been mapped using
instructions with a native size of 16-bit, using 32 bit for the
remaining instructions, which cannot be mapped to the native
instructions set like three operand arithmetic instructions. For the
example of the left column a native instruction word size of 20 bit
is used, allowing to map all instructions into the native instruction
word size. The second word is only used for long immediate
values and offsets. Considering a certain algorithm (e.g. some
control code as in Figure 8) the smaller native instruction word
size is providing a lower overall code effort. This can be different
for another code example, which e.g. requires three operand
instructions, coded more efficient in the longer native instruction
word.

Figure 8: example for instruction set mapping

The binary coding is influencing the switching activity at the
program memory port and therefore the mapping of the
instruction set to a certain binary coding has influence on the
power dissipation of the DSP subsystem. More often used
instructions can be coded more efficiently resulting in an
increased code density. Also reordering of instructions inside the

879

same execution bundle can be performed in order to decrease
power dissipation at the program memory bus [10][11][12].

3.5 Instruction buffer size
The instruction buffer mentioned in section 2 is not available in
each core, but shall be mentioned for the core architecture
introduced in section 2. For this core the instruction buffer is used
to compensate the memory bandwidth mismatch between fetch
and execution bundle and also to execute loop constructs power
efficient by reducing the number of memory accesses. To make
use of this feature, the size of the instruction buffer has to be
scalable to adapt the instruction buffer to application code specific
requirements. Power efficient loop handling can only be achieved,
if the loop body fits into the buffer. Therefore the chosen size of
the instruction buffer has influence onto the power dissipation of
the core subsystem. On the other side providing a buffer with
many entries leads to a significant increase on core area.

3.6 Pipeline stages
Increasing the number of pipeline stages allows increasing the
reachable core frequency. Higher core frequencies lead to
increased power dissipation due to the need of a higher supply
voltage and an increased switching activity [13].

Increasing the number of pipeline stages also increases the core
complexity, because additional hardware circuits like bypass are
getting necessary to reduce the increased dependency between
instructions of different pipeline stages [14][15][16].

Increasing the number of pipeline stages can even lead to a
decrease of system performance due to control and data
dependencies. Therefore a balanced pipeline structure considering
dependencies of the application code and physical aspects of
technology are important to obtain a good cost ratio between area
consumption, power dissipation and system performance.
Classifying core subsystems by MIPS, MOPs or MMACs or any
other similar parameter is misleading: for an embedded core the
core performance has to be classified, how efficient an application
code can make use of the available core resources.

Increasing the number of pipeline stages for the fetch phase of the
pipeline relaxes the timing at the program memory but increases
the number of branch delays. Additional hardware circuits have to
be introduced to compensate the unused branch delays [17][18].
Predicated execution can help to reduce the number of branch
delays by reducing the number of conditional branch instructions
[19].

Adding pipeline stages to speed up the execution phase and to
relax the timing at the data memory ports leads to an increased
define-in-use and load-in-use dependency. Bypass logic can be
used to reduce the dependencies but again by increasing core
complexity.

3.7 Summary
This section has been used to briefly introduce the architectural
features of RISC based core architectures (with focus on DSP
cores) which are significant influencing the area consumption and
power dissipation of the core subsystem. None of these
parameters can be considered isolated; changing one of them
influences several others. There is not a single shot solution

satisfying the requirements of all applications efficient. The
application code executed on a core architecture make a certain
core configuration efficient. To understand the requirements of an
application code, the following section is used to introduce a
design space exploration methodology for RISC based core
subsystems.

4. EXPLORATION METHODOLOGY
The DSP core architecture introduced in section 2 allows adapting
the architectural features introduced in section 3. Providing a
configurable DSP core architecture to meet application specific
requirements enables to reduce area consumption and power
dissipation. To find the optimal core architecture (optimal for one
application) it is important to understand the application specific
requirements.

For this purpose DSPxPlore is introduced. DSPxPlore can be used
to analyze the influence of certain core subsystem configurations
on the system parameter core area, power dissipation and overall
system performance. During the product development process
DSPxPlore supports a fine tuning of the core subsystem. The
exploration methodology is based on an optimizing C-Compiler
and a configurable ISS (instruction set simulator).

Figure 9: DSPxPlore Overview

In Figure 9 an overview of the exploration methodology is
illustrated. An optimizing C- compiler is used to generate static
analysis results. A cycle true Instruction Set Simulator (ISS) is
used for evaluation of dynamic results. Both results together can
be used to analyze the application specific requirements to the
core subsystem. The chosen core configuration is located in an
XML-based configuration file, which is used by both tools.

4.1 Static analysis
To obtain reasonable accurate results for static analysis it is
necessary to use a C-Compiler that generates near-optimal
assembly code (compared to manually optimized code). If the
quality of the C-Compiler is poor, the generated results can be
misleading and architectural decisions can lead to a suboptimal
solution. The C-Compiler for the core architecture introduced in
section 2 provides an accuracy of about 5-10% overhead
compared with manual coding. Some of the generated static
evaluation results are

880

4.1.1 code size
The memory of a DSP subsystem is dominating the silicon area
consumption. Therefore a high code density reduces area
consumption. An example for the parameter code size is
illustrated in Figure 10. The number of instructions necessary to
port the application code to the chosen core architecture is
counted and the required long instructions are summed up. The
chosen instruction word length is normalized to bytes to have a
comparable value. The example architecture is using a 20-bit
native instruction word and therefore the number of counted
instructions have to be multiplied by 2,5 to get the code effort in
bytes. Instructions with long words are counting double.

Figure 10: code size analysis

4.1.2 parallelism
The analysis result parallelism gives an indication of the usage of
the provided core resources. Data and control dependencies in the
application code restrict the execution of parallel instructions and
leads to a poor use of the available processor resources. The
example in Figure 11 illustrates the dependency problem (on the
left side a summary, on the right side more in detail).

Figure 11: bundle assignment

Only a few execution bundles can make use of the parallel units
(the example architecture provides to execute five instructions in

parallel). DSP architectures like the C62x from Texas
Instruments will not have a higher usage of the core resources,
even if its relative performance (calculated as number of possible
parallel instructions multiplied with the reachable clock
frequency) provides higher numbers [20].

4.1.3 instruction histogram
The instruction histogram analysis result provides a list of the
used instructions and their static occurrence inside the application
code. This result can be used to optimize the instruction set during
fine tuning of the core subsystem (e.g. optimized coding of
frequently used instructions).

4.1.4 immediate values
The size of the immediate values can be analyzed already during
the static process. This gives an indication about the needed
coding space inside the instruction set. These results (similar as in
Figure 8) can be used to choose the optimal size for the native
instruction word.

4.1.5 delay slots
The number of delay slots can significantly influence the overall
system performance of a DSP subsystem. Delay slots are caused
by branch instructions or function calls. Increasing the number of
pipeline cycles during the fetch phase results in more delay slots.
Some of the delay slots can be filled with useful instructions, the
others are lost cycles.

4.2 Dynamic analysis
To weight the static analysis results, dynamic analysis are
necessary. A cycle true instruction set simulator (ISS) is used to
obtain the results. xSIM, the ISS used for the core introduced in
section 2 is based on a configurable component framework. An
XML based configuration file is used to define the chosen core
configuration. Some of the dynamic results are

4.2.1 program memory fetch
The fetch of instructions from program memory significantly
influences the power dissipation of the DSP subsystem. Therefore
reducing the switching at the program memory port can be used to
reduce power dissipation. The number of fetch cycles from
program memory is analyzed, the fetch frequency of the different
fetch bundles is counted and the alignment analysis for loop and
branch constructs is considered.

4.2.2 unused program memory
The DSP core introduced in section 2 features an instruction
buffer to overcome the bandwidth mismatch between fetch and
maximum execution bundle size and to execute loop constructs
power efficient. Especially during breaks in the program flow
already fetched program data are not executed. This parameter is
used to analyze which code sections have been fetched but not
executed and can be used to reduce the switching at the program
memory port.

4.2.3 execution count per bundle
Counting the execution frequency of each execution bundle can
be used to identify hot spots and to optimize the HW/SW

881

partitioning (e.g. deciding which parts can be more efficient
implemented in hardware). Together with the static parallelism
analysis the provided parallelism can be classified and the number
of data paths adjusted to the requirements of the application code.
The results can be visualized by xSIM, which easies the
interpretation of the results.

4.2.4 execution count per instruction
The list of used instructions generated during static analysis is
extended by the execution count of instructions. With this
information the instruction set and the binary coding can be
optimized, increasing code density and decreasing switching
activity at the program memory port. Frequently executed
instructions can be coded more efficient, not used instructions
even removed.

4.2.5 stall cycles
During execution of application code stall cycles can take place.
During the stall cycles the core is not contributing to the system
performance of the DSP subsystem. This can be caused e.g. by
simultaneous memory access to the same physical memory block
or by missing program data, due to an empty instruction buffer
(e.g. at not aligned branch targets). This information can be used
to identify possible reasons and to modify the core architecture
and the application code to prevent useless stall cycles.

5. RESULTS
This section is used to illustrate some of the results using
DSPxPlore. The set of benchmark examples consists of traditional
DSP functions like FFT and code examples of the area of
cryptology but also of control code examples e.g. framing
algorithms.

For the results in Table 2 the size of the register file has been
modified. The number in the first column is equal to the number
of supported accumulator register.

Table 2: register size evaluation

#regs bundles inst. delay nops code size

4 24008 35284 2473 47263

8 17041 26544 2722 31810

16 14507 23046 2826 26497

Increasing the number of registers relaxes the register pressure for
register allocation, resulting in a decreased code effort. In the
second row the number of available registers has been increased
from four to eight leading to a reduced code effort of about 50%.
Doubling the register file again from eight to 16 accumulator
registers increases the code density only by about additional 17%.
The algorithm examples cannot make use of the additional
registers. The results in Table 2 do not include the influence on
the coding space due to the increased number of registers. The
coding used for the comparison supports the medium sized
register file; considering also the difference in the coding space
will reduce the absolute distance between the result values.

Table 3: parallelism analysis

model bundles inst. delay nops code size

0 1M-
1A-1B

21070 27962 2694 33441

1 2M-
1A-1B

20783 28022 2714 33441

2 1M-
2A-1B

18194 27728 2862 33196

3 2M-
2A-1B

17872 27871 2866 33421

4 2M-
3A-1B

17347 27890 2958 33558

The first column in Table 3 indicates the number of parallel
executed instructions: The M for load/store instructions, A for
arithmetic/logic instructions and B for branch instructions. As
expected adding more units in parallel decreases the number of
necessary execution bundles (column three in Table 3). Data and
control dependencies reduce the effect of further added units. One
remark concerning the increase of the number of branch delay
NOPs: During compilation, the C-Compiler has been configured
to execute the instructions as early as possible. Providing more
parallelism leads to shorter branch distances and therefore fewer
instructions are available to fill delay slots. The number of
necessary NOP instructions for filling delay slot is increasing.

Table 4: model 0, branch delay slots

branch
delay

bundles inst. delay nops code
size

2 21051 27943 2694 33422

3 22544 29438 2686 34868

4 24118 31004 2664 36432

For the results in Table 4 (model 0) and Table 5 (model 4) the
same core models as for the results of Table 3 are used. The
parameter on the left side is the number of branch delays.
Additional branch delays caused by further clock cycles used for
the fetch phase of the pipeline e.g. to relax the timing at the
program memory port, leads to an increased number of
instructions and therefore to a decreased code density (e.g. due to
additional NOP instructions to fill delay slots).

Table 5: model 4, branch delay slots

branch
delay

bundles inst. delay nops code
size

2 17324 27867 2959 33537

3 18897 29451 2966 35121

4 20524 31055 2947 36725

Comparing the results for model 0 and model 4, as expected the
number of necessary execution bundles is decreasing. The
configuration for the results of Table 4 supports to execute only

882

three instructions in parallel, the configuration used in Table 5 up
to six instructions in parallel.

6. OUTLOOK
DSPxPlore is used to understand the requirements of the
application code on the core architecture, to identify hot spots and
to optimize the HW/SW partitioning. DSPxPlore is still an expert
system. For interpretation of the generated results and the related
modifications of the core architecture a deep understanding of the
core architecture, the configuration parameter and the influence of
the chosen configuration onto silicon area and power
consumption is necessary. In the next development phase it will
be possible to get easier understandable feedback from
DSPxPlore. This enables the system architect optimizing his core
subsystem for application specific requirements and to gets hints
for further optimizations.

7. SUMMARY
DSPxPlore is a design space exploration methodology for RISC
based embedded cores. Analyzing application specific
requirements in an early stage of the project enables to modify the
core subsystem and therefore to obtain low silicon area
consumption and low power dissipation. During the design
process DSPxPlore can be used for fine tuning of the core
subsystem e.g. optimization of the binary coding to reduce power
dissipation. With the application specific optimized core
subsystems it is possible to reduce the gap between a dedicated
hardware implementation and a core based solution providing the
flexibility of software programmability. DSPxPlore is part of a
project for a configurable DSP core.

8. ACKNOWLEDGMENTS
The work has been supported by the Christian Doppler Lab for
Compilation Techniques for Embedded Processors and by the EC
with the project SOC-Mobinet (IST-2000-30094).

9. REFERENCES
[1] www.arc.com

[2] www.tensilica.com

[3] Hennessy, J. L., Patterson, D. A., Computer Architecture. A
Quantitative Approach, Morgan Kaufmann Publishers, San
Mateo CA, 1996.

[4] Panis, C., Bramberger, M., Grünbacher, H., and Nurmi, J., A
Scaleable Instruction Buffer for a Configurable DSP Core,
ESSCIRC 2003, Lissabon, Portugal, 2003.

[5] Lapsley, P., Bier, J., Shoham, A., and Lee, E.A., DSP
Processor Fundamentals, Architectures and Features, IEEE
Press, New York, 1997.

[6] Sima, D., Fountain, T., and Kacsuk, P., Advanced Computer
Architectures: A Design Space Approach, Addison Wesley
Publishing Company, Harlow, 1997.

[7] Morgan, R., Building an Optimizing Compiler, Digital Press,
1998.

[8] Panis, C., Leitner, R., Grünbacher, H., and Nurmi, J., xLIW
� a Scaleable Long Instruction Word, ISCAS 2003,
Bangkok, Thailand, 2003.

[9] Panis, C., Leitner, R., Grünbacher, H., and Nurmi, J., Align
Unit for a Configurable DSP Core, CSS 2003, Cancun,
Mexico, 2003.

[10] Hirnschrott, U., and Krall, A., VLIW Operation Refinement
for Reducing Energy Consumption, Proceedings of
International Symposium on System-on-Chip '03, Tampere,
2003.

[11] Shin, D., Kim, J., and Chang, N., An Operation
Rearrangement Technique for Power Optimization in
(VLIW) Instruction Fetch, ACM, Munich, 2001.

[12] Choi, K., and Chatterjee, A., Efficient Instruction-Level
Optimization Methodology for Low-Power Embedded
Systems, Proceedings of International Symposium on System
Synthesis ISSS 01, 2001.

[13] Chandrakasan, A., Sheng, S., and Brodersen, R., Low-Power
(CMOS) Digital Design, Design. JSSC, Nr.4, 1992.

[14] Smith J.E., A study of branch prediction strategies, in Proc.
8th ASCA, pp.135-48, 1981.

[15] Albert D. and Avnon D., Architecture of the Pentium
Microprocessors, IEEE Micro, Juni 1993.

[16] Heinrich J., MIPS1000 Microprocessor Users Manual Alpha
Draft 11.Oct, Mips Technologies Inc., Mountain View. Ca,
1994

[17] Motorola Inc., Power PC620 RISC Microprocessor
Technical Summary, MPC 620/D, Motorola Inc., 1994

[18] Lee J.K.F. and Smith A.J., Branch prediction strategies and
branch target buffer design, Computer 17(1), pp.6-22, 1984.

[19] Pnevmatikos D.N. and Soshi G.S., Guarded Execution and
branch prediction in dynamic ILP processors, In Proc. 21.
ISCA, pp. 120-9, 1994.

[20] Texas Instruments, TMS320C6000 CPU and Instruction Set
Reference Guide, Texas Instruments, 10.2000.

883

