
Fast and Accurate Simulation using the LLVM
Compiler Framework ?

Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler

Christian Doppler Laboratory: Compilation Techniques for Embedded Processors
Institute of Computer Languages, Vienna University of Technology

{brandner,andi}@complang.tuwien.ac.at

Abstract. Development of future generation computer architectures re-
quires fast and accurate simulation tools that allow to test, verify, and
analyze the behavior of the given architecture along with the intended
workload. We present a simulation framework based on a structural ar-
chitecture description language that uses the open source compiler in-
frastructure LLVM to dynamically translate instruction sequences of the
simulated architecture into machine instructions of the host machine.
We show that the optimizations in the simulator and the LLVM com-
piler lead to an outstanding runtime performance: A 5-stage MIPS core
is simulated at a peak performance of up to 800 MHz.

1 Introduction

Computer architects designing future generation processor architectures heavily
depend on simulation tools to pinpoint performance bottlenecks and gain further
insight into the behavior of the given architecture under realistic workloads. In
order to actually achieve improvements, the simulation is required to deliver
accurate data as fast as possible. Combining these two opposing requirements is
hard, and often leads to unsatisfactory solutions.

Instruction set simulation (ISS) eliminates much of the overhead by focusing
on the architecture state that is visible to programmers according to the in-
struction set architecture. Other architectural features are only modeled if this
is necessary, for example to guarantee correctness. The majority of ISS tools rely
on the following techniques: (1) interpretation, (2) static compilation, and (3)
dynamic compilation. Interpretation offers the lowest simulation speed, but is
relatively easy to adopt for a new architecture. The two compilation techniques
translate instruction sequences of the simulated architecture into machine in-
struction of the host machine. In the case of static systems this is done offline,
i.e., before the simulation is actually run. Dynamic compilation systems perform
this translation during the simulation run. Both compilation techniques are of-
ten combined with an interpreter, in the case of dynamic compilation to lower

? This work is supported in part by ON DEMAND Microelectronics and the Christian
Doppler Forschungsgesellschaft.



the translation overhead, for static compilers to allow the execution of code that
is not statically known.

We present a retargetable dynamic-compiling simulation framework based
on the open source compiler infrastructure LLVM [LA04]. The LLVM just-in-
time compiler generates high-quality code, such that the achieved simulation
speed reaches up to several hundred MHz. Retargeting the simulator requires
only minimal programming effort, because all architectural features are derived
from an architecture model specified using a structural architecture description
language (ADL). Our ADL also allows to derive other software tools, such as a
C compiler [BEK07], from the same architecture model.

2 Related Work

Techniques for computer architecture simulation have been heavily researched,
[YL06] gives a broad overview on frameworks, benchmarks and methodology.
SimOS supports several independent simulators including Embra [WR96], a
high-performance simulator based on dynamic compilation. Shade [CK94] is a
dynamic binary translator offering a rich and highly optimized profiling and trac-
ing interface. Bala et.al. present Dynamo [BDB00] a dynamic optimizer that im-
proves the runtime of programs by profiling it’s execution and applying optimiza-
tions accordingly. Nohl et.al [NBS+02] present a retargetable dynamic-compiling
simulator based on the LISA architecture description language. Other ADLs al-
low to derive retargetable static-compiling simulators [PHM00,RBMD03,FKH07].

The LLVM [LA04] compiler infrastructure provides facilities to build highly
optimizing static and dynamic compilers. Besides the static compilers for various
programming languages (C/C++, Scheme, etc.) and architectures, LLVM is also
used in various projects relying on dynamic code generation. SVA [CLDA07]
extends LLVM to define a secure virtual architecture. The Linux Kernel has
been ported to SVA, and allows to execute a complete operating system within
a safe virtual machine. Geoffray et.al [GTCF08] use LLVM to develop a Java
virtual machine that is competitive compared with open source and commercial
Java implementations.

3 Simulator Implementation

Our simulation framework is based on an architecture description language, i.e.,
all architecture dependent simulation functions are derived from a concise archi-
tecture model. This includes all data registers, pipeline registers and memories
required to capture the architecture state, and interpreter and compiler speci-
fications for all instructions that faithfully model the execution of instructions
within the pipeline.

The generated simulator executes input programs using a mixed-approach by
interpretation and direct execution of host machine instructions. Compilation is
done dynamically during the simulation in two phases: basic block and region
compilation. Basic blocks are compiled to linear simulation functions that do



not contain any control flow, which allows fast translation. Hot basic blocks are
in turn compiled into a more general structure called region.

Dynamic compilation with LLVM

LLVM contains a complete set of high-level compiler optimizations, ranging from
simple scalar simplifications to complex loop transformations. Prior to the actual
code generation, various optimization passes are invoked by our simulator to
increase the simulation speed. Deciding which optimizations to apply is a delicate
task, and is highly dependent on the currently simulated program, the simulated
architecture and the host machine.

The basic unit of translation in LLVM is a function, which has a single entry.
The dynamically compiled functions follow the regular ABI conventions of the
host architecture and thus contain some overhead caused by saving and restoring
state. Basic blocks are translated to simple linear functions that do not contain
any control except function exits. For all instructions comprising a basic block
dedicated code generation functions are invoked that emit LLVM intermediate
code modeling the instruction’s execution. Buffering and shadow registers are
used to simulate parallel events. Because of pipelining intermediate code for an
instruction may cross basic blocks boundaries. We use basic block duplication
to specialize a block when it has multiple predecessors. In all of our benchmark
programs and architectures the increase in the number of basic blocks is less
than 5.4%.

Hot basic blocks are compiled into regions when a specified threshold has
been reached. Starting from a seed block the region is incrementally enlarged
by adding basic blocks that can be reached from within the region built so
far. A region is compiled to a LLVM function and may thus contain only a
single entry, but we do not impose other restrictions on regions, specifically
regions may contain loops. The LLVM intermediate code of a region is built
from function calls to the corresponding LLVM functions of the blocks. The
LLVM optimization passes eliminate most of these calls by inlining, in addition
other advanced optimizations are applied to regions.

The compile time of the LLVM compiler is quite high (up to 100 times com-
pared to other Java just-in-time compilers [GTCF08]). For some benchmark
programs the compile time reaches 90% of the overall execution time. Therefore,
the simulator does some optimizations on its own to reduce the number of inter-
mediate code instructions. The simulator has more knowledge about constants,
e.g. a register is always zero, and the use of data-forwarding. Constant expres-
sion evaluation and dead code elimination are thus performed internally by the
simulator. Global values are loaded in a local copy on function entry and saved
at function exit.

4 Evaluation

The evaluation was done for two different architectures, the MIPS, with a pipeline
similar to the MIPS R2000, and the CHILI, a symmetrical 4-way VLIW archi-



Cycles Cycles
Benchmark LOC MIPS CHILI Benchmark LOC MIPS CHILI

prime 38 20459k 435607k bitcount 925 48227 41718
jpeg 26106 36151k 17815k blowfish 1924 14877k 28305k
crc32 281 645303k 1389091k stringsearch 3259 8426k 11413k
sha 269 162018k 278669k adpcm 300 26623k 51285k
dijkstra 179 350441k 644530k gsm 6033 109551k 136304k
rijndael 1778 32619k 61327k

Model LOC Instructions Registers Pipeline-Stages

MIPS-r2000 1054 54 32 5
CHILI 1650 771 64 7

Table 1. Benchmarks and architecture models used in the evaluation.

prime jpeg crc32 sha dijkstra bitcount blowfish stringsearch adpcm gsm rijndael AVG

0,1MHz

1,0MHz

10,0MHz

100,0MHz

1000,0MHz

77,6MHz

4,0MHz

482,5MHz

99,6MHz111,9MHz

0,5MHz

8,3MHz
3,5MHz

73,5MHz

10,6MHz

4,2MHz

79,7MHz

Translator MIPS
Translator CHILI
Interpreter MIPS
Interpreter CHILI

Fig. 1. Simulation speed in MHz for CHILI and MIPS with compilation enabled and
disabled – note the logarithmic scale

tecture with delayed branches. A large subset of the MiBench suite was used
to measure the simulation characteristics of embedded benchmarks. The bench-
marks were compiled with optimization enabled (-O) using gcc version 3.4.6 and
gcc version 4.2.0 for MIPS and CHILI respectively. All tests were performed on
a single core AMD Athlon(tm) 64 Processor 3500+ with 2200 MHz and 1 GB of
RAM running a 32-Bit Linux operating system.

We compared the simulation speeds of the interpreter and translator for
both architectures (see Fig. 1). The MIPS simulator reaches about 3.2 MHz, the
CHILI simulator about 0.7 MHz. The translator is up to 500 times faster for the
longer running benchmarks and reaches up to 480 MHz. On average the MIPS
simulator executes at a speed of 43 MHz, the CHILI simulator even reaches
79 MHz on average. Fig. 2 shows the peak simulation speed over time for three
benchmarks for the MIPS architecture. With all optimizations enabled a peak
simulation speed of 800 MHz can be reached for the blowfish benchmark. For
the very short running bitcount benchmark the translator is slower since the
compile time cannot be compensated.



10k 100k 1M 10M 100M 1000M 10000M
0MHz

1MHz

10MHz

100MHz

1000MHz

jpeg crc32 blowfish

Fig. 2. Simulation speed over time for the MIPS architecture

prime
jpeg

crc32
sha

dijkstra
bitcount

blowfish
stringsearch

adpcm
gsm

rijndael
AVG

0

20

40

60

80

100

Region BasicBlock Interpreter

Fig. 3. Ratio of simulated cycles using the interpreter, JIT-compiled code in basic
blocks, and compiled code in regions for the MIPS and CHILI architecture.

Fig. 3 shows the relative number of cycles simulated using interpretation or
execution of JIT-compiled code in basic blocks and regions. Except for bitcount
interpretation is only used to simulate a small fraction of the overall cycles, on
average 11.7% for CHILI and 11% for MIPS. For crc32 the complete main loop
is compiled to a single region resulting in very high simulation speed.

5 Conclusion

We have presented a simulation framework for fast cycle-accurate emulation of
computer architectures based on the LLVM compiler infrastructure. All archi-
tecture dependent simulation functions are derived from structural architecture
specifications that can also be used to generate a VHDL processor model and a
C compiler. The LLVM just-in-time compiler is used to compile basic blocks and
non-linear regions of the simulated program to native code of the host machine.
Optimizations of the simulator generator and the compiler framework enable a
peak performance of the simulation speed of up to 800 MHz for the MIPS ar-
chitecture. Future work on reducing the compile time is necessary to reduce the
gap between the average simulation speed of 47 MHz for the MIPS (79 MHz for
the VLIW CHILI) and the peak performance.



References

[BDB00] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A
transparent dynamic optimization system. In PLDI ’00: Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation, pages 1–12. ACM, 2000.

[BEK07] Florian Brandner, Dietmar Ebner, and Andreas Krall. Compiler generation
from structural architecture descriptions. In CASES ’07: Proceedings of the
2007 international conference on Compilers, architecture, and synthesis for
embedded systems, pages 13–22. ACM, 2007.

[CK94] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for
execution profiling. In SIGMETRICS ’94: Proceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, pages 128–137. ACM, 1994.

[CLDA07] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Se-
cure Virtual Architecture: A safe execution environment for commodity
operating systems. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, pages 351–366. ACM, 2007.

[FKH07] Stefan Farfeleder, Andreas Krall, and Nigel Horspool. Ultra fast cycle-
accurate compiled emulation of inorder pipelined architectures. EUROMI-
CRO Journal of Systems Architecture, 53(8):501–510, 2007.

[GTCF08] Nicolas Geoffray, Gaël Thomas, Charles Clément, and Bertil Folliot. A
lazy developer approach: Building a JVM with third party software. In
PPPJ ’08: Proceedings of the 6th International Symposium on Principles
and Practice of Programming in Java, pages 73–82. ACM, 2008.

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO ’04: Proceedings of the
International Symposium on Code Generation and Optimization, page 75.
IEEE Computer Society, 2004.

[NBS+02] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich
Meyr, and Andreas Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In DAC ’02: Proceedings of the 39th
Conference on Design Automation, pages 22–27. ACM, 2002.

[PHM00] Stefan Pees, Andreas Hoffmann, and Heinrich Meyr. Retargeting of com-
piled simulators for digital signal processors using a machine description
language. In DATE ’00: Proceedings of the Conference on Design, Automa-
tion and Test in Europe, pages 669–673. ACM, 2000.

[RBMD03] Mehrdad Reshadi, Nikhil Bansal, Prabhat Mishra, and Nikil Dutt.
An efficient retargetable framework for instruction-set simulation. In
CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP International
Conference on Hardware/Software Co-Design and System Synthesis, pages
13–18. ACM, 2003.

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine
simulation. In SIGMETRICS ’96: Proceedings of the 1996 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer
Systems, pages 68–79. ACM, 1996.

[YL06] Joshua J. Yi and Fellow-David J. Lilja. Simulation of computer archi-
tectures: Simulators, benchmarks, methodologies, and recommendations.
IEEE Transactions on Computers, 55(3):268–280, 2006.


