ADAPTIVE INLINING AND ON-STACK REPLACEMENT IN THE CACAO VIRTUAL MACHINE

Institut für Computersprachen Technische Universtät Wien Austria

Edwin Steiner

Andreas Krall

Christian Thalinger

Overview

- Introduction
- Adaptive Optimization Framework
 - Modules of the Framework
 - Adaptive Recompilation
 - Inlining
- On-Stack Replacement
 - Execution/Source State
 - Replacement Points
- Empirical Evaluation
- Conclusion and Further Work

Introduction

- object oriented programming style
- optimize program by method inlining
- virtual (synchronized) methods, exceptions
- dynamic class loading (undo)
- adaptive optimization
- CACAO JIT for multiple architectures

Modules of the Adaptive Optimization Framework

Adaptive Recompilation

- baseline compiler (countdown traps)
- recompilation with instrumentation
- recompilation with optimizations
- deoptimization when assumptions become invalid
- on-stack replacement

Inlining

- inlining works on intermediate representation
- profile guided (caller of hot methods)
- inlining heuristics
 - aggressive depth-first
 - aggressive breadth-first
 - knapsack

On-Stack Replacement

- execution state
 - snapshot of registers and machine stack
- source state
 - values of Java variables and Java operand stack
- replacement points
 - allocation of data
 - traps

Execution Times and Number of Executed Calls

Code Size Changes (Knapsack Heuristics)

Conclusion

- adaptive compilation framework for CACAO
- different inlining heuristics evaluated
- up to 99% of calls eliminated
- up to 18% speedup
- further improvements by linear scan register allocator expected
- www.cacaojvm.org