Adaptive Inlining and On-Stack Replacement in the CACAO
Virtual Machine

Edwin Steiner

Andreas Krall

Christian Thalinger

Technische Universitaet Wien
Institut fuer Computersprachen
Argentinierstr. 8
A-1040 Wien, Austria

{edwin,andi,twisti}@complang.tuwien.ac.at

ABSTRACT

Method inlining is a well-known and effective optimization
technique for object-oriented programs. In the context of
dynamic compilation, method inlining can be used as an
adaptive optimization in order to eliminate the overhead of
frequently executed calls. This work presents an implemen-
tation of method inlining in the CACAQ virtual machine.
On-stack replacement is used for installing optimized code
and for deoptimizing code when optimistic assumptions of
the optimizer are broken by dynamic class loading. Three
inlining heuristics are compared using empirical results from
a set of benchmark programs. The best heuristic eliminates
51.5% up to 99.96% of all executed calls and improves exe-
cution time up to 18%.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—code gen-
eration, run-time environments

General Terms

Performance

Keywords

virtual machines, method inlining, on-stack replacement,
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1. INTRODUCTION

Modern object oriented programming languages offer so-
phisticated abstraction mechanisms to the programmer like
classes or virtual methods. The challenge for a language
implementation is to support these abstractions with as lit-
tle overhead as possible. Additionally a virtual machine
has to support features as exceptions, automatic garbage
collection, multiple threads of execution, synchronization
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mechanisms, and dynamic class loading. In such an envi-
ronment, classical program optimizations often have to be
modified in order to still be applicable and effective. Object-
oriented programming styles favor lots of very small subrou-
tines (methods) and frequent, deeply nested calls.

An important technique for minimizing the call overhead
is inlining. Inlining refers to replacing subroutine calls with
a modified version of the body of the called subroutine. This
effectively reverts the abstraction introduced by the pro-
grammer, eliminating call overhead, and providing larger
scopes for subsequent optimization. There are, however,
several issues which complicate inlining: First, inlining is
not without costs. Excessive inlining can greatly increase
compiled code size. Another complication is caused by poly-
morphic calls that must be dispatched at runtime. The re-
ceivers of such calls cannot be determined at compile time,
making straight-forward inlining impossible.

In the presence of dynamic class loading, parts of the
program code may only become available during execution
of the program. This precludes the use of classic whole-
program optimizations. However, it is possible to modify
optimizations such that they act upon preliminary results
obtained at runtime. In order to guarantee correctness, such
speculative optimization must be supplemented by mecha-
nisms that track the assumptions made during optimization
and take proper measures as soon as any assumption be-
comes invalid.

Replacing program code during runtime poses great chal-
lenges for a virtual machine. Particular difficulties arise with
on-stack replacement, i.e. replacing the code of methods that
are currently activated. Nevertheless, on-stack replacement
allows timely replacement of methods that execute for a very
long time and enables speculative optimizations like inlin-
ing currently-monomorphic calls without paying the runtime
cost of guard code to protect the optimized call sites.

The techniques described in this work have been imple-
mented in CACAO [15], an open source Java virtual ma-
chine providing just-in-time compilation for many different
architectures (www.cacaojvm.org).

2. RELATED WORK

Inlining can be counted among the most effective optimiz-
ing program transformations for a variety of programming
languages, with examples of execution time improvements
of 5 to 28% [18] for CLU 15% [8] for C code, 24% [4] for
intermediate code, and 10 to 44% [13] or up to 40% [2] for
Java programs.



Arnold, Fink, Sarkar, and Sweeney conducted a compar-
ative study [2] of inlining heuristics. They demonstrated
that the effectiveness of inlining rises with the precision of
available profile data. In particular, heuristics based on a
dynamic call graph with edge weights proved to outperform
all algorithms using coarser data, even if given much nar-
rower limits for code expansion.

Ishizaki et al. [13] reported that inlining only very small
methods gave performance improvements to within 15% of
the peak performance, while increasing compilation time by
only 6% on average. On the other hand, in order to obtain
the peak performance, an increase of compile time by up to
50% had to be accepted.

Object-oriented languages typically make use of dynam-
ically dispatched wvirtual methods. The purpose of devirtu-
alization is to identify virtual call sites that can be proven
to be monomorphic and turn them into statically bound
calls. Dean, Grove, and Chambers proposed class hierarchy
analysis [9] (CHA) as a means to limit the set of potential
receivers of virtual calls.

Lee et al. [16] reported that in the Java programs of the
SPECjvm98 benchmark suite, about 85% of virtual calls are
monomorphic and about 90% have a single target method.

Guarded inlining techniques can be used to inline methods
that cannot be proven to be monomorphic. Detlefs and
Agesen proposed the method test [10] as a refinement of the
class test for guarded inlining. Arnold and Ryder introduced
thin guards [3] in order to further reduce the cost of guarded
inlining.

The Jalapeno Virtual Machine [1] developed by Burke et
al. [5] was the first compile-only system for dynamic opti-
mizing compilation of Java code.

The Java HotSpot™ Server Compiler [17] uses a mixed-
mode approach for executing Java code. HotSpot employs
method-entry and backward-branch counters to select hot
methods for compilation. On-stack replacement is used for
deoptimization and for replacing long-running methods.

Suganuma et al. [19] developed another mixed-mode
framework that provides a three-level optimizing compiler, a
lightweight continuous sampling profiler, and an instrument-
ing profiler. Their instrumenting profiler allows dynamic
installation and de-installation of profiling code at method
entries by code patching.

On-stack replacement was first described by Chambers
and Ungar in the context of deferred compilation in the Self-
91 compiler [7]. Holzle, Chambers and Ungar subsequently
used on-stack replacement for debugging optimized code via
deoptimization [12]. The interrupt points defined by the
authors are analogous to the replacement points used in this
paper.

In his PhD Thesis [6] Chambers described scope descrip-
tions and byte code mappings created by the SELF Com-
piler in order to facilitate deoptimization. He also presented
dependency links as a means to record assumptions and per-
form selective code invalidation.

Fink and Qian implemented and evaluated [11] on-stack
replacement in the Jikes RVM. Their design compiles a spe-
cialized version of the method for each activation that is re-
placed. Each version has a specialized prologue prepended
to the original bytecode that sets up local variables and the
stack and then jumps to the current program counter. An
advantage of this scheme is that it requires minimal changes
to the underlying compilers and that it may provide addi-

tional opportunities for optimization. On the other hand
more compiled code has to be generated.

3. ADAPTIVE OPTIMIZATION FRAME-
WORK

Adaptive optimization refers to the application of opti-
mization techniques at runtime by monitoring the behavior
of the running program and using the collected data to guide
optimization decisions. Several parts of a virtual machine
have to cooperate to make adaptive optimization possible.
This section briefly describes the modules that are respon-
sible for profiling, recompilation, and optimization in the
CACAQO virtual machine.

CACADO O is an open source research Java Virtual Machine.
The native code generation is based on a JIT compiler with
a compile-only approach.

3.1 Modules

In order to provide adaptive optimizations, several mod-
ules of the virtual machine must work together. Figure 1
shows the most important modules and how they interface
with each other.

The JIT compiler is responsible for compiling bytecode to
machine code. The code repository manages the generated
machine code, including the invalidation of obsolete code.
In the method database properties of methods and assump-
tions about methods are kept. The replacement mechanism
performs replacement of old versions of compiled code with
new versions, including on-stack replacement. The replace-
ment module also provides services to the garbage collector,
like setting traps, reading the source state, and writing back
a modified source state. The linker determines object lay-
out, performs method overwriting, and builds the virtual
method and interface tables. The inliner is a separate pass
in the compiler that performs the inlining transformation.
The inliner is depicted as a module in order to emphasize its
separation from other parts of the compiler and to clearly
show its interaction with the method database. The exact
garbage collector interfaces with the replacement mechanism
for setting GC traps, finding live objects in the source state,
and redirecting references after compaction. The architec-
ture layer bundles architecture-dependent functions needed
by the replacement mechanism.

3.2 Adaptive Recompilation

As the optimizing compiler has higher compile time and
can produce larger code (by inlining) than the baseline com-
piler, it should only be used for code that is executed fre-
quently enough to amortize these costs. CACAO uses in-
strumentation of the code generated by the baseline com-
piler in order to select methods for which recompilation is
likely to be profitable.

In CACAO a method can go through a sequence of states
and transitions.

The baseline compiler generates code for the method and
inserts countdown traps in order to trigger recompilation
after a certain number of method entries or loop iterations.
The majority of methods does never reach this threshold
(see Section 5).

When a method triggers a countdown trap, it is recom-
piled with instrumentation code for creating a dynamic pro-
file of the method, including execution counts for each basic
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Figure 1: Modules of the adaptive optimization
framework

block. Countdown traps are used to limit the time the code
runs with full instrumentation.

When the instrumented code triggers recompilation, it is
recompiled by the optimizing compiler. The optimized code
contains no intrusive instrumentation.

3.3 Inlining M echanism

The input to the inlining mechanism is the intermedi-
ate representation (IR) of a method—subsequently called
the root method—possibly augmented with profiling infor-
mation. The output is an intermediate representation of
the root method in which selected INVOKE instructions have
been replaced by inlined code (which in turn may include
inlined code of nested callees).

3.4 Inlining Decisions

When the compiler has determined whether a call site
can be inlined, it must decide whether the call site should
be inlined. In order to make these inlining decisions, three
heuristic algorithms have been implemented in CACAO.

3.4.1 Aggressive Depth-first Inlining

When the depth-first algorithm finds a call site that can be
inlined, it inserts the corresponding node into the inlining
tree, parses the callee, and enters a recursive analysis of
the callee’s code. Only two conditions limit the building of
the inline tree. Call sites below a certain depth from the
root node are not inlined and, when code expansion reaches
a certain limit, inlining is stopped. For the experimental
results given in Section 5 a maximum inlining depth of 3
was used and inlining was stopped when the resulting code
would have had more than ten times as many basic blocks
as the original root method. The final inlining tree used was
the tree before adding the callee that crossed this threshold.

A variation of this scheme was also implemented, in which
inlining is completely cancelled for a root method if the code
expansion threshold is reached. So the root method is ei-
ther left unchanged, or all monomorphic call sites down to
the maximum inlining depth are inline expanded. As can
be seen in Section 5, this variation caused much less overall

code expansion than the one described above, with compa-
rable execution times in some cases. However, there were
also benchmarks for which this all-or-nothing variation per-
formed significantly worse.

3.4.2 Aggressive Breadth-first Inlining

The breadth-first algorithm first inlines all possible call
sites in the root method. After that it inlines the call sites
in the previously inlined callees. The algorithm iterates,
inlining call sites at a certain depth only after all candidate
call sites at lower depths have been inlined. Inlining stops
when code expansion—either measured as the increase in
intermediate instructions or the increase in basic blocks—
reaches a threshold.

3.4.3 Knapsack Heuristics

In contrast to the aggressive heuristics, another algorithm
was implemented that tries to select only inlining candidates
with an attractive ratio of expected benefit to expected cost
of inlining. The algorithm is a variant of the greedy heuris-
tics used to approximately solve the KNAPSACK problem:
The algorithm starts with a certain inlining budget and at
each step selects the call site for inlining that has the high-
est ratio of benefit to cost of all candidates fitting within the
budget. The costs of the selected site are subtracted from
the budget. Then the selected callee is parsed and all of the
contained call sites that could be inlined are added to the
set of candidate call sites. The algorithm iterates until there
is no candidate left that fits within the remaining budget.

The hardest problem when implementing this algorithm
is calculating good estimates of the benefits and costs of
inlining a call site.

3.5 Requirements of Adaptive Optimization

There are several requirements on the replacement mech-
anism when used for adaptive optimizations.

Newly compiled versions of methods must be installed to
replace older versions. As the new versions are usually better
optimized, the replacement should happen as soon as possi-
ble. An important case are methods that are rarely entered
or left but contain frequently executed loops. Such methods
should be replaced on-stack, i.e. while they are activated.

When code optimized on preliminary assumptions be-
comes invalid, this code must be replaced before it can cre-
ate an inconsistent program state. This requires replacement
traps that can be set at the start of invalidated code regions.

Old and new versions of code may differ in the allocations
of variables. For example, one version may keep a value in
a register, while another version puts the same value on the
stack.

By changing inlining decisions, the grouping of source-
level frames into machine-level stack frames can change. The
replacement mechanism must be able to translate in both
directions between code that performs a machine-level call,
and code that is inlined within the same compilation unit.

4. ON-STACK REPLACEMENT

In the context of on-stack replacement it is fundamental
to distinguish two different representations of program state.
The machine-level state, hereafter called the execution
state, which depends on compiler optimizations and the
source-level state, hereafter called the source state—a rep-
resentation that is independent of any optimizations used.



The source-level state is the state that would have been cre-
ated by interpreting the unmodified bytecode of the program
up to the current point. Thus all optimizations that preserve
the semantics of the program are transparent with respect
to the source-level state. This allows the source-level state
to serve as a common ground for translating state between
differently optimized versions of the same program.

The following sections give a definition of these concepts.

4.1 Execution State

We define the ezxecution state to be the machine-level
snapshot of a thread at a certain time. The execution state
of a thread comprises the current values of the CPU registers
and the contents of the machine stack of this thread.

4.2 Source State

The source state of a thread comprises the currently active
stack frames of the Java virtual machine stack. (Our notion
of source frame is equivalent to the JVM scope descriptor
in [11].)

For each source-level stack frame the currently execut-
ing method, the bytecode position within this method, the
types and values of local variables that are currently live in
the frame, the types and values of the operand stack slots
that are currently live in the frame and the object that the
method synchronizes on, if any, are given.

The most important property of the source state is that at
any given point in the execution of the program the source
state is independent of any past optimization decisions. In
other words, all optimizations are transparent with regard
to the source state. Thus when we revert optimization de-
cisions at some point, program correctness is guaranteed if
we replace the current execution state by a new execution
state corresponding to exactly the same source state.

In order to be able to recreate an execution state from the
source state, we also need the values of all saved registers
before the activation of the bottom-most stack frame of the
source state and the value of the stack pointer at this time.

4.3 Replacement Points

A replacement point is a position in compiled code where
we have sufficient information to reconstruct the source state
from the execution state taken at this point. We will here-
after use the term replacement point to refer to both the
actual compiled code position and the data structure asso-
ciated with this position that is needed for the transforma-
tions between execution state and source state.

We call a replacement point P mappable if it is guaran-
teed that all compiled versions of the containing method
will have a replacement point corresponding to the same
program point as P. Replacement points used for switching
between differently compiled versions of a method must be
mappable.

Notice that a replacement point at a call site has two as-
pects, depending on how it is reached during replacement: If
execution is trapped at the point of invocation, all variables
reaching the call site are live, including the arguments to the
call. If, on the other hand, the replacement point is reached
in the course of unwinding activation records, only the vari-
ables living through the call are guaranteed to be live. This
has important consequences for the instance argument of
non-static methods: When such a method is active while
a replacement point is reached, there is no guarantee that

there is a live variable referring to the object instance of this
invocation.

5. RESULTS

This section reports experimental results obtained with
CACAO and the SPECjvm98 benchmark suite using adap-
tive inlining on an i386 architecture (Intel Pentium M). The
SPECjvm98 is the standard benchmark suite for evaluating
Java virtual machines.

The programs of the SPECjvm98 benchmark suite were
executed with recompilation triggered by countdown traps.
Hot methods were recompiled with inlining and without in-
strumentation code. The benchmarks were also run with
recompilation done by the baseline compiler (no inlining).
The purpose of the latter runs, in which recompilation was
only used to remove instrumentation code, was to separately
measure the overhead introduced by the countdown traps.

As Figure 2 shows, depth-first heuristics performed well
for compress and mtrt, improving overall execution time by
8.6% and 15% respectively. However, for mpegaudio per-
formance got slightly worse, although over 80% of executed
method calls were eliminated (see Figure 3). In this case,
side effects of inlining degrade code quality. The large num-
ber of eliminated calls, however, indicates that even in this
case the potential benefits of inlining could be great. Better
performance may be expected when a linear scan register
allocator and copy elimination are available in CACAOQO re-
placing the simple register allocator [14].

The downside of aggressive depth-first inlining is severe
expansion of compiled code size. Thus a version of depth-
first inlining was implemented that completely cancels in-
lining for a root method if the code expansion threshold is
reached. As to be expected, this change reduces code expan-
sion significantly The modified algorithm, however, yields
bad results for two benchmarks. In the case of javac execu-
tion time increases by significant five percents compared to
the unoptimized case. Clearly, a more sophisticated solution
is needed to limit code expansion.

Aggressive breadth-first inlining was implemented in order
to obtain more balanced inlining trees than those built by
depth-first inlining. For the results presented in Figure 2,
expansion of intermediate code was limited to a factor of
five. For some benchmarks, breadth-first inlining yielded
performance better than or comparable to depth-first inlin-
ing with less code expansion. Total code expansion is still
high, especially for javac, which also becomes slower than
the baseline version by 4%.

The knapsack algorithm was the only algorithm that im-
proved execution time for all benchmarks in the SPECjvm98
suite. As can be seen in Figure 2, the variance of the
achieved speedups is very large, with improvements ranging
from 0.8% to 18.2%. The knapsack heuristics eliminated on
average over 72% of executed method calls (somewhat less
than aggressive depth-first inlining which eliminated over
76%).

Figure 3 shows how effective the various heuristics were
in reducing the dynamic number of executed calls for each
benchmark. The numbers show that adaptive inlining could
in all cases reduce the number of calls significantly. In the
case of compress, only 0.05% of the original number of calls
was performed when using aggressive depth-first inlining.

For each recompiled method the change of code size rel-
ative to the code generated by the baseline compiler was



measured. Here we present the results for the Knapsack
heuristic. Table 1 show the frequency distribution of the
expansion factor, and its geometric mean and maximum.
Note that these factors refer to individual recompiled meth-
ods and not to total code size change. An interesting obser-
vation is that in many cases, inlining does not increase the
size of the compiled code at all, and quite often even reduces
it. The reason for this can probably be found in the object-
oriented programming style that favors very small methods,
for example getter/setter methods containing a single state-
ment, and empty initializers. Code size expansion—while
for some benchmarks and heuristics rarer than reduction—
still dominates on the whole.

6. CONCLUSION

Current virtual machines use dynamic compilation and
adaptive optimization in order to deliver high performance
while keeping compilation times low. A framework for adap-
tive optimization has been implemented in the CACAQ vir-
tual machine using sophisticated on-stack replacement of ac-
tive methods. The replacement mechanism can switch be-
tween unoptimized and optimized code in both directions
and between different optimized versions. Stack frames can
be combined or split, as replacement translates between in-
lined and non-inlined method calls.

Adaptive inlining supports several heuristics for making
inlining decisions. Of the implemented heuristics, a variant
of the greedy knapsack algorithm proved to yield the best
overall performance. Improvements of execution time up to
18% were achieved for the SPECjvm98 benchmark suite. As
adaptive inlining could eliminate up to 99.96% and on aver-
age over 70% of the executed calls, further improvements can
be expected when a linear scan register allocator is available
in CACAO.
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Figure 2: Relative execution times with inlining
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Figure 3: Relative number of executed calls
factor compress jess db javac mpegaudio mtrt jack
<0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
<0.5 0.0% 1.1% 0.0% 5.9% 0.0% 0.9% 2.0%
<1.0 29.3%  232%  26.2% 29.4% 44.0%  353%  25.5%
<20 41.5%  24.7"%  31.0% 31.0% 32.0% 37.9%  25.5%
<5.0 29.3%  40.5%  34.5% 27.9% 21.3%  224%  38.7%
<10.0 0.0% 8.9% 6.0% 4.9% 1.3% 2.6% 5.9%
> 10.0 0.0% 1.6% 2.4% 0.9% 1.3% 0.9% 2.5%
geometric mean 1.5 2.0 1.8 1.5 1.4 1.5 1.9
maximal 3.7 24.1 12.5 16.8 13.0 12.2 20.0
total size (unopt) 327376 429301 338273 620963 653582 385663 498019
total size (opt) 375996 640347 422720 1163337 794648 534157 802259
change +15%  +49%  +25% +87% +22%  +39%  +61%

Table 1: Code size change through inlining and recompilation, knapsack heuristics



