
Dependence-Conscious Global Register AllocationWolfgang Ambrosch M. Anton Ertl Felix Beer Andreas KrallInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8, A-1040 Wienfanton,fbeer,andig@mips.complang.tuwien.ac.atTel.: (+43-1) 58801 f4459,3036,4462gAbstract. Register allocation and instruction scheduling are antagonisticoptimizations: Whichever is applied �rst, it will impede the other. To solvethis problem, we propose dependence-conscious colouring, a register alloca-tion method that takes the dependence graph used by the instruction schedu-ler into consideration. Dependence-conscious colouring consists of two parts:First, the interference graph is built by analysing the dependence graphs,resulting in fewer interference edges and less spilling than the conventionalpreordering approach. Second, during colouring the register selection keepsdependence paths short, ensuring good scheduling. Dependence-conscious co-louring reduces the number of interference edges by 7%{24% and antidepen-dences by 46%{100%.1 IntroductionGlobal register allocation and instruction scheduling are two standard compiler tech-niques. Register allocation reduces the tra�c between the processor and memory bykeeping frequently-used variables in registers. Instruction scheduling reduces thenumber of pipeline stalls (wait cycles) by reordering instructions.However, these techniques are antagonistic: Instruction scheduling tends to movedependent instructions apart. This lengthens the lifetimes of the values and increasesregister pressure, which in turn may cause more memory tra�c. On the other hand,the register allocator can assign the same register to two di�erent temporary values.This can reduce the opportunities for reordering instructions and it can increasethe number of pipeline stalls. So, the technique that is applied �rst will reduce thee�ectivity of the other technique. This problem is especially important for pipelinedand superscalar implementations of register-starved architectures, e.g., the Pentiumand the 68060.As an example, consider Figure 1: Conventional register allocation before sche-duling can introduce dependences that cause bad scheduling. The last instructionstalls for two cycles waiting for the result of the multiply. Scheduling before allo-cation uses more than the four available registers (the other registers hold globalvalues) and causes spilling to memory.To solve this dilemma, Goodman and Hsu developed DAG-driven register alloca-tion, a local register allocation algorithm that avoids introducing additional depen-dences if possible [GH88]. Inspired by DAG-driven register allocation, we createddependence-conscious colouring, a global register allocator that takes its e�ect on
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Fig. 1. Postpass scheduling vs. dependence-conscious colouring vs. prepass schedul-ing



scheduling into account. Figure 1 (middle) shows how this method can avoid ine�-ciencies: The register allocator is aware of the dependence graph and avoids intro-ducing expensive dependences by selecting the right registers. Note that, while thisexample considers only one basic block, dependence-conscious colouring is a globalregister allocator.The rest of the paper explains the data dependence graphs used in scheduling(Section 2), graph colouring register allocation (Section 3) and the two innovationsof dependence-conscious colouring: the minimal interference graph (Section 4) anddependence-conscious register selection (Section 5). Finally, preliminary results arepresented and dependence-conscious colouring is compared with other work.2 The Data Dependence GraphCurrent RISC processors achieve their high performance by exploiting parallelismthrough pipelining. As a consequence, the results of previous instructions are someti-mes not available when the next instruction can be executed. If the next instructionuses the result, it has to wait and the pipeline stalls. The problem of arranging theinstructions in a way that reduces the number of wait cycles is known as instructionscheduling. In this paper we consider only instruction scheduling within basic blocks.The basic data structure for instruction scheduling is the dependence graph[GM86]. Figure 1 shows (several variations of) a dependence graph. An edge frominstruction a to instruction b indicates that a must be executed before b to preservethe correctness of the overall program. Dependence edges must be drawn from writesto reads of the same register or memory location (
ow dependences), from reads towrites (anti dependences), and from writes to writes (output dependences). The de-pendence graph is essentially the expression evaluation graph (drawn up-side-down),with some edges added due to dependencies between memory accesses. Register al-location can add antidependences (write-after-read dependences) by allocating thesame register to several live ranges.Path lengths of the dependence graph play an important role in instruction sche-duling: There can be no schedule that is shorter than the critical path length. Theedge length of a 
ow (read-after-write) dependence is the latency of the parentinstruction. The length of an antidependence is zero or one cycle. However, if itconnects two long paths, an antidependence can increase the critical path lengthand the execution time. Therefore, antidependences should be avoided or placedwell.3 Graph Colouring Register AllocationThe compiler front end and the optimizer can use an in�nite number of live ran-ges (also known as pseudoregisters) for the variables and temporary values of theprogram. The task of register allocation is to map these live ranges onto a �-nite register set. The standard approach to register allocation is graph colouring[CAC+81, Cha82, BCKT89, CH90, Bri92b]. As the basis for dependence-consciouscolouring, we used the algorithm presented in [BCKT89]. Figure 2 presents the pha-ses of a graph colouring register allocator.
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schedulingFig. 2. Conventional graph colouring and dependence-conscious colouring3.1 The Interference GraphThe basic data structure used by graph colouring register allocators is the interfe-rence graph. Every live range is represented by a node. There is an edge betweentwo nodes if the live ranges interfere, i.e. if they must not stay in the same register,because they overlap. So, the problem of assigning registers to live ranges is mappedinto the problem of \colouring" the nodes of the interference graph with registerssuch that directly connected (i.e., interfering) nodes do not get the same \colour"(register).3.2 ColouringOnce the interference graph is complete, registers can be allocated in the followingway: select an uncoloured node and give it a register that di�ers from the registersof the neighbours. There are several open points in this algorithm:{ In what order are the nodes coloured? Since dependence-conscious colouring doesnot di�er from other colouring register allocators in this respect, the orderingwill not be discussed here.{ What register is given to the live range? For register allocation purposes, itdoes not make much of a di�erence, which of the legal registers is selected forcolouring a node [Bri92a]. However, for scheduling it makes a big di�erence (seeSection 5).{ What happens if there is no register available for a live range? The live rangehas to be spilled into memory. Dependence-conscious colouring does not di�erfrom other colouring register allocators in this respect.



4 The Minimal Interference GraphThe right side of Figure 2 shows the overall structure of dependence-conscious co-louring.In conventional graph colouring, the interference graph is computed from totallyordered code. In a postpass approach, this ordering usually is the coincidental resultof some earlier phase. It could also be produced by a register-friendly scheduler. Inany case, the ordering will cause some interference edges that need not be valid forthe �nal schedule. These edges needlessly restrict register allocation.To avoid this problem, dependence-conscious colouring computes the interferenceedges of a basic block from its dependence graph. I.e., the notions of \before" and\after" in a totally ordered basic block are replaced by the data dependence relation,which is a partial ordering.4.1 Building the Minimal Interference GraphThe conventional method of computing live information and computing the inter-ferences from that cannot be generalized straightforwardly to dependence graphs.Therefore we go back to the roots: Two live ranges interfere, if one is de�ned beforethe other is used and the other is de�ned before the �rst one is used. Formally:interfere-with(l) = used-later-out(de�nition(l)) \ [i2uses(l) de�ned-earlier-in(i)interfere-with(l) is the set of live ranges that interferes with the live range l in thebasic block; de�nition(l) is the node of the dependence graph where l is de�ned;uses(l) is the set of nodes where l is used. The used-later and de�ned-earlier in-formation can be computed by applying data 
ow analysis techniques to the datadependence graph (Figure 3 shows an example):used-later-out(i) = [j2successors(i) used-later-in(j)used-later-in(i) = used-later-out(i) [ use(i)de�ned-earlier-in(i) = [j2predecessors(i)de�ned-earlier-out(j)de�ned-earlier-out(i) = de�ned-earlier-in(j) [ def(i)This method is only used for computing the interferences within basic blocks.Conventional data 
ow techniques are used for computing the global interferences,i.e., interferences between variables that are live at the same control 
ow graph edges.In order to get correct interference edges for non-local live ranges that become liveor dead in the basic block, we insert into every dependence graph a top node > thatis the de�nition point of all live ranges accessed in the basic block that are de�nedbefore the start of the basic block, and a bottom node ? that is a use point of liveranges accessed in the basic block that are used after end of the basic block.The interference computation given above is only correct if the live range iscontiguous within the basic block (otherwise it computes too many interferences).



p1

p2 p3

p7 p6

p4 p8

p5p0

p3 = p0 + c
de={p0,p1,p2} ul={p2,p3,p4,p5,p6,p8}

p5 = p2 + p3
de={p0,p1,p2,p3} ul={p4,p5,p6,p8}

p4 = p1 + c
de={p0,p1,p2} ul={p3,p4,p5,p6,p7,p8}

p6 = p3 * p4
de={p0,p1,p2,p3,p4} ul={p4,p5,p6,p8}

p7 = p4 * c
de={p0,p1,p2,p4} ul={p4,p5,p6,p7,p8}

p8 = p7 + c
de={p0,p1,p2,p4,p7} ul={p4,p5,p6,p8}

de={p0,...,p8} ul={p4,p5,p6,p8}

de={p0,p1,p2} ul={p0,...,p8}

Fig. 3. Dependence graph of Figure 1 with de�ned-earlier-in and used-later-out setsand the resulting interference graphTherefore, two de�nitions should be treated as belonging to two separate live ranges,even if they belong to the same global live range. There is one exception: If thesecond de�nition is in the same instruction as a use of the live range, the live rangeis contiguous in the basic block and should be treated as one live range.Using this method, we get all interference edges that will be valid for everyschedule and only those. The complexity for computing all interferences of a basicblock is O(e + u), where e is the number of dependence edges and u the number ofregister uses in the basic block.



4.2 Maintaining the Minimal Interference GraphDuring colouring, the same register may be assigned to several live ranges in thebasic block. Similarly, during coalescing1 separate live ranges can be united. Theseactions may cause additional interferences:Assigning the same register to di�erent live ranges introduces antidependenceedges in the dependence graph. If the antidependences are not redundant2, newde�ned-earlier and used-later information may be propagated through them, possi-bly resulting in new interference edges. In other words, due to the antidependencesthe scheduler has less freedom to adapt to the register allocation, therefore the regi-ster allocator also has less freedom. In the example of Figure 3, allocating p8 to thesame register as p2 causes an antidependence from p5=p2+p3 to p8=p7+c, which cau-ses an interference between p5 and p7. Our prototype implementation handles thesecases by recomputing the interference edges for the whole basic block, but we are in-vestigating incremental recomputation. Fortunately, our register selection algorithm(see Section 5) avoids introducing non-redundant antidependences if possible.Coalescing two live ranges introduces interferences between the united live rangeand live ranges that before coalescing could be assigned the same register as eitherof the coalesced live ranges. This can also occur if the same register is assigned totwo live ranges and the de�nition of the second live range is in the same instructionas a use of the �rst. The interferences for the combined live range can be computedbyinterfere-with(l12) = used-later-out(de�nition(l1)) \ [i2uses(l2) de�ned-earlier-in(i)where l12 is the combined live range, l1 is the �rst one and l2 is the second.Note that Chaitins original algorithm cannot handle adding interference ed-ges during colouring, because it performs spill decisions before colouring. However,Briggs' modi�cation [BCKT89] can handle it.5 Dependence-Conscious Register SelectionFor register allocation, it makes little di�erence, which of the available registersis selected [Bri92a]. But for the instruction scheduler the di�erence is important:Antidependences introduced by colouring can produce long dependence paths, whichresult in bad scheduling.Therefore, dependence-conscious colouring carefully selects the registers. Colou-ring a live range with a register should introduce no antidependences or only red-undant ones. If everything else fails, the introduced antidependences should connectonly short paths. The problem is complicated by the fact that several basic blockshave to be considered at the same time: all basic blocks where the live range is bornor dies. For all allowed registers the cost of the dependences introduced by selecting1 Coalescing is an optimization that is performed immediately after interference graphconstruction. It eliminates copies.2 A dependence between two instructions is redundant, if the ordering between the in-structions is already enforced by other dependences.



the register is computed over all basic blocks; the register with the lowest weightedsum of costs is selected. The weights are the expected execution frequencies of thebasic blocks.The cost of a dependence d is the expected increase in the execution time of thebasic block due to adding the dependence. It is 0 for redundant dependences. Fornon-redundant dependences we use the following cost function:cost(d) = max(path-length(d)expected-time ; path-length(d)� expected-time)path-length(d) is the length of the longest path containing the dependence d. Itcan be computed in constant time, if the earliest issue and �nish times [GH88] areprecomputed. expected-time is the expected execution time of the basic block beforeadding the dependence:expected-time = max(cycles; critical-path-length)where cycles is the number of cycles the basic block would need if its instructionswere independent (i.e., the naive expected execution time), and critical-path-lengthis the critical path length of the dependence graph of the basic block before addingthe antidependence.The cost of of an edge d is quite low as long as path-length(d) is smaller thanexpected-time, but is high otherwise.E.g., consider the basic block in Figure 3 after assigning registers to p4, p5,p6 and p8. Figure 4 shows the costs of antidependences introduced by selecting aregister for p3. Since p3s lifetime is restricted to that basic block, these are the totalcosts and r1 or r2 is selected for p3.register antidependences path lengths costsr0 (p4) { { interferesr1 (p5) p6=p3*p4! p5=p2+p3 2 0.33r2 (p6) p5=p2+p3! p6=p3*p4 2 0.33r3 (p8) p5=p2+p3! p8=p7+c, p6=p3*p4! p8=p7+c 2, 2 0.67Fig. 4. The costs of selecting a register for p3This selection process may seem to be expensive. But graph colouring registerallocation is dominated by the time for building the interference graph (e.g., 90% ofthe register allocation time in [BCKT89]), so making the colouring slower does notmake much of a di�erence for the whole algorithm.Register selection is independent of the interference graph building method des-cribed in Section 4. Either method can be used separately.6 Preliminary ResultsWe implemented a prototype dependence-conscious colouring allocator by modifyingthe register allocator of a C compiler for the Mips R3000. Since the C compiler was



under development, the results are preliminary. They are shown in Table 1. We arecurrently reimplementing dependence-conscious colouring in the �nished compiler.We compiled two programs, a fast Fourier transform (FFT) and the Dhrystoneinteger benchmark (Dhry). We compared a conventional colouring register allocator([BCKT89]) to dependence-conscious colouring (DCC). In both cases the compilerschedules after the register allocation (postpass scheduling). The programs consist ofseveral procedures that are compiled one at a time. The presented data is cumulated.program FFT Dhryregister allocator [BCKT89] DCC [BCKT89] DCCinitial interference edges 1024 948 1383 968additional interference edges 0 81all antidependences 407 0 713 382redundant antidependences 0 23Table 1. ResultsAs expected, dependence-conscious colouring produces fewer interference edgeswhile building the interference graph (initial interference edges). During colouring,dependence-conscious colouring inserts additional edges in the interference graph(additional interference edges), but there are still fewer interferences than from preor-dered code. Both allocators do not produce spill code. The conventional register al-locator introduces a considerable number of antidependences. Dependence-consciousregister allocation produces no antidependences for FFT and halves Dhry's antide-pendences. This means that for FFT dependence-conscious colouring achieves thebest behaviour possible: no spilling and full scheduling freedom. Unfortunately we donot have speedup numbers, since the compiler back end was still under developmentand did not produce fully functional code.7 Related WorkThe standard approach to the problem is to more or less ignore it. Scheduling isperformed either before register allocation (prepass, [AH82]) or afterwards (postpass,[HG83]). With the prepass approach, scheduling has to be repeated after registerallocation to schedule spill code. Prepass schedulers usually employ a register-savingheuristic, but only as low-priority secondary heuristic. Our approach is postpassscheduling, but our register allocator takes scheduling into consideration.The Harris C compiler uses postpass scheduling, but reallocates registers duringscheduling to remove harmful dependences [Beu92]. In contrast, our register allocatortries to do it right the �rst time.In [GH88] two techniques for integrating local register allocation and instructionscheduling are introduced: Integrated prepass scheduling switches between schedu-ling for pipelining and scheduling for register allocation based on the number ofavailable registers. DAG-driven register allocation tries to avoid introducing long



paths into the dependence graph. The performance of both methods is about equal,with DAG-driven register allocation being simpler. Dependence-conscious colouringcan be seen as the global version of DAG-driven register allocation.[BEH91] presents integrated prepass scheduling in a global register allocationsetting and introduces register allocation with schedule estimates (RASE). In RASE,the global register allocator leaves a number of registers to the local allocator, whichalso performs instruction scheduling. The number of registers left for local allocationis determined by the estimated costs of scheduling with x registers. The estimatesare computed from practice runs of the scheduler. RASE and integrated prepassscheduling are about equal in code quality; integrated prepass scheduling is simpler.Like RASE, dependence-conscious colouring makes the register allocator aware ofscheduling. But dependence-conscious colouring does all of the register allocation,including local allocation. It directly sees the data dependence graphs and the e�ectsof allocation decisions on it instead of just heeding a register limit.[Pin93] proposes using postpass scheduling with a modi�ed register allocator.The register allocator uses an interference graph that contains all interference ed-ges that could be introduced by scheduling. I.e., even more interference edges andmore spilling than in a prepass scheduling approach. Pinter proposes heuristics forremoving edges from that interference graph to avoid excessive spilling, but does notgive results. In contrast, dependence-conscious colouring uses a minimal interferencegraph to minimize spilling and preserves scheduling freedom through its registerselection heuristics.[PF91] gives an optimal algorithm. Unfortunately it solves a very limited andunrealistic problem: scheduling and stupid register allocation for binary expressiontrees with single-delay-slot loads at the leaves. I.e., no unary operators, no constantsor register variables, no common subexpression elimination and the algorithm isrestricted to one expression. In contrast, dependence-conscious colouring does nothave these restrictions and performs global register allocation.In [FR91] instruction scheduling and register allocation are performed tracewise3,starting with the most frequently executed trace. This approach is similar to coagu-lation [Mor91]. In contrast to dependence-conscious colouring, the �rst phase doesnot consider the needs of the second; instead, the phases are interleaved, so possibleproblems are pushed into low-frequency code.[RLTS92] discusses register allocation for globally scheduled loops. In contrast,dependence-conscious register allocation can handle general control structures, butis restricted to basic block instruction scheduling.8 ConclusionDependence-conscious colouring is a global register allocation method based ongraph colouring, that takes the needs of instruction scheduling into account. It con-sists of two independent techniques:3 Traces are parts of possible execution paths. You can think of them as multiple-entry,multiple-exit basic blocks.
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