
Optimal Instruction SchedulingusingConstraint Logic ProgrammingM. Anton ErtlDMS Decision Management Systems Ges.m.b.H.Wallnerstra�e 2, A-1014 Wienertl@vip.atAndreas KrallInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8, A-1040 Wienandi@mips.complang.tuwien.ac.atAbstractInstruction scheduling is essential for the e�cient operation of today's and to-morrow's processors. It can be stated easily and declaratively as a logic program.Consistency techniques embedded in logic programming enable the e�cient solutionof this problem.This paper describes an instruction scheduling program for the Motorola 88100RISC processor, which minimizes the number of pipeline stalls. The scheduler iswritten in the constraint logic programming language ARISTO and uses a declara-tive model of the processor to generate an optimal schedule. The model uses listsof domain variables to represent the pipeline stages and describes the dependenciesbetween instructions by constraints in order to ensure correct scheduling. Althoughoptimal instruction scheduling is NP-complete, the scheduler can be applied to realprograms because of the speed gained through consistency techniques.1 IntroductionCurrent RISC processors achieve their high performance by exploiting parallelism throughpipelining and multiple execution units. As a consequence, the results of previous in-structions are sometimes not available when the next instruction is executed. If the nextinstruction needs the result, it has to wait. The problem of arranging the instructionsin a way that reduces the number of wait cycles is known as instruction scheduling orinstruction reordering. Microcode compaction is a related problem.Instruction scheduling can have a drastic impact on performance: On the Motorola88100 one oating point multiplication can be started at every cycle, but the result is only1
Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
Programming Language Implementation and Logic Programming (PLILP) 1991, Springer LNCS 528, pages 75-86

available after six cycles. Even a simple formulation of optimal instruction schedulingis an NP-complete search problem [HG83]. Scheduling is further complicated by theinteractions between the execution units. E.g., on the Motorola 88100 only one result ata time can be written back to the register �le. Since up to three execution units may wantto write a result, the scheduler must also consider the priority scheme implemented in thehardware. Scheduling is even more important for the superscalar and VLIW processorsnow being developed which can execute multiple instructions per cycle.The existing algorithms make use of an explicit dependency graph. The schedulerdetermines the path length, heuristically selects one of the instructions having no prede-cessor, appends it to the instruction sequence, and removes it from the graph. The usualheuristic procedure chooses the instruction with the longest path length. Hu [Hu61] de-veloped an early algorithm for a similar problem. Hennessy and Gross [HG83] present analgorithm with O(n4) worst-case complexity for a simple instruction scheduling problem:The results of the instructions are available after a �xed amount of time. Gibbons andMuchnick [GM86] describe an algorithm with O(n2) worst-case and observed linear com-plexity, that produces slightly worse schedules. [GH88] and [BEH91] integrate instructionscheduling and register allocation. These algorithms work on basic blocks, whereas Fisher[Fis81] introduces trace scheduling for global microcode compaction. The same techniqueis used for VLIW machines [CNO+88]. Another technique to achieve better schedulingby transcending basic block boundaries is software pipelining [Lam88], which can also becombined with loop unrolling [LKB91]. A short overview of the �eld is given in [Kas90,chapter 8.5].The use of consistency techniques combined with tree searching for solving com-binatorial problems has been an Arti�cial Intelligence research topic for a long time[Wal72, Nud83]. Problems are represented as networks of constraints on variables. Thedomains of the variables are represented explicitly. Constraints are used actively to re-move values from the domains which cannot appear in a solution. In this way the searchtree is pruned a priori.Van Hentenryck [VH89, VHD87] integrated consistency techniques in logic program-ming. He added a new data type, the domain variable. It behaves like an ordinary logicvariable except that it can be instantiated only with values from its domain. Constraintsare used to reduce these domains and thus the search tree.For example, given the variables X with the domain f1; 2; : : : 6g and Y with the domainf4; 5; : : : 9g, the constraint X #> Y (Declaratively #> means the same as >) immediatelyreduces the domains to f5; 6g and f4; 5g respectively. The constraint keeps watching thevariables and becomes active again if the domains are further reduced.Domain variables and constraints combine nicely with the search capabilities inherentin logic programming languages and form an e�cient approach to solving combinatorialproblems. The resulting language has been used to e�ciently solve a wide range oftoy and real-world problems, among them scheduling problems [VH89, DSVH90, Ert90].Programs for these purposes look like generate&test-programs with the tests coming �rst.The experiences gained with this method suggest its application for instruction schedul-ing. Furthermore the use of constraint logic programming eases the integration of othercode generation and optimization techniques, e.g. [Gan89].2

Integer

Fetch

Decode

FPInit

FPLast

Writeback

Add2

Add3

Add4

Multiply2

Multiply3

Multiply4

Multiply5

Data2

Data1

Data0

1

3 2

1
3

2Figure 1: Pipeline stages in the Motorola 88100. Numbers indicate priorities.2 The ProblemA modern microprocessor consists of several resources, which can be used by only oneinstruction at a time. These resources include pipeline stages, buses and register �leports. The goal of an instruction scheduler is to achieve high throughput by maximizingresource utilization.As an example, take a look at the Motorola 88100 processor [Mot90] (see �gure 1): Ithas� a two-stage instruction fetch and decode unit,� a one-stage integer execution unit,� a three-stage data unit for accessing data memory,� a �ve-stage oating-point add pipeline and a six-stage oating-point multiply unit,which share the initial and �nal stages,� three 32-bit buses, and� one write port to the register �le.Scoreboarding (an `in use'-bit for every register) is used to ensure that instructions thataccess a register are not executed before the register is up to date.3

When several instructions compete for the same resource, an arbitration scheme selectsone instruction for processing and the others are stalled. This can cause stalls in earlierstages of the pipeline up to the instruction fetch stage.On the Motorola 88100 the following conicts can occur:� An instruction needing a register whose scoreboard bit is set is held in the decodestage until the bit is cleared by a writeback into the register.� The integer unit, FPLast and the data unit compete for writeback slots.� Multiply3 (integer multiply), Multiply5 (oating point multiply) and Add4 competefor FPLast.� Several instructions need some pipeline stage(s) for more than one cycle, most no-tably instructions with double word source operands, which need two cycles forfetching data through the buses and stall the decode stage for one cycle.This behaviour must be considered by the instruction scheduler. To preserve correct-ness, the reordering must obey several constraints: Only reads from a register can beswapped. Writes into a register can be swapped neither with reads nor with writes to thisregister. The same reasoning applies for accesses to memory locations. Since memoryaccesses can be aliases, the scheduler has to treat the whole memory like a single register,unless it can prove that the accesses are not for the same location.3 The SolutionWe have written an instruction scheduler for the Motorola 88100 in ARISTO. ARISTO isan industry-level constraint logic programming language, that employs consistency tech-niques for the solution of combinatorial problems [Ert90]. The scheduler is implementedas a logic program that models the execution structure of the processor.The scheduling program consists of three parts. The �rst part reads the assemblylanguage source and splits it into basic blocks1. Moreover, simple peephole optimizationis performed. The second part works on basic blocks. It collects the constraints (testphase) and searches for an optimal solution (generate phase). This part is displayedin �gure 2; The subgoals are explained in the subsequent sections. The �nal part usesthe resulting ordering information and outputs the reordered instructions as assemblylanguage source.The basic data structure used by the scheduler is the domain variable. For everyinstruction i in the basic block there is a domain variable Di representing its decode cycle.These variables are later instantiated by the generate part. In the same way, for everyinstruction and every pipeline stage it uses, there is a variable representing the cycleduring which it resides in the stage. For some stages, where an instruction can stall, thereare variable pairs Start .. End. The scheduler works by assigning cycles to the domainvariables and thus to the instructions.1It is assumed that jump destinations either are de�ned labels or follow subroutine calls.4

schedule_block(Instructions, Decode):-clear_scoreboard(Scoreboard),collect(Instructions, Scoreboard, Decode, FPU, Data, Writeback),global_constraints(Decode, FPU, Data, Writeback),minimize(Decode, FPU, Data, Writeback).Figure 2: The basic block scheduling predicate takes a list of instructions and returns alist of optimally ordered decode cycles for these instructions.collect(['fadd.sss'(Rd, Rs1, Rs2)|Instructions],Scoreboard,[D|Decode],fpu([S1..E1|FP1], [S2..E2|Add2], [S3..E3|Add3], [S4..E4|Add4],Mul2, Mul3, Mul4, Mul5, [S5..E5|FPLast]),Data, [W|WriteBack]):-read(Rs1, D, Scoreboard),read(Rs2, D, Scoreboard),write(Rd, W, D, Scoreboard, NewScoreboard),S1#=D+1, S2#=E1+1, S3#=E2+1, %pipeline structureS4#=E3+1, S5#=E4+1, W#=E5+1,collect(Instructions, NewScoreboard, Decode,fpu(FP1, Add2, Add3, Add4, Mul2, Mul3, Mul4, Mul5, FPLast),Data, WriteBack).Figure 3: The instruction description for a single-precision oating-point addition3.1 Collecting the constraintsThe constraints stated in the second part model the execution structure of the processorand the dependencies between the instructions.2The constraint collector sequentially processes the instructions of the basic block, gen-erates inequality constraints to enforce correct ordering and collects the domain variablesfor each pipeline stage into a list. These lists are then used in global constraints like\Only one instruction can be in this stage at a time".The predicate collect/6 (see �gure 3) takes a list of instructions and the current stateof the scoreboard and outputs the list of decode cycle variables for these instructions, astructure fpu(FP1,: : : , FPLast) containing lists of domain variables for every FPUpipeline stage, a similar structure for the data unit (Data), and the list of variables forthe writeback stage (WriteBack). In this program the scoreboard is not representedby a bit for every register, but a pair of variables for every register r. One variable(LastWriter) represents the time when the scoreboard bit for the register was clearedby the completion of the last write. The other variable (NextCheckWriter) stands forthe time when the scoreboard bit will be set by the next write. clear scoreboard/12We assume 0 wait cycles for memory accesses. 5

initializes the scoreboard structure.The collect/6 predicates consists of instruction descriptions like the one in �gure 3.The read/3 predicate generates the constraints that force the instruction to be executedafter the last write to the register and before the next write to the register, e.g.LastWriter #=< D+1, D+1 #=< NextCheckWriterwhere D is the decode cycle of the instruction. Similarly, write/5 generatesLastWriter #=< D+1, W #=< NewNextCheckWriterand uni�es D+1 and W with the corresponding variables in Scoreboardand NewScoreboard.These constraints are an implicit representation of the dependency graph used by existingalgorithms.collect/6 also produces pipeline structure constraints that describe the relations ofthe stages (and the variables) within one instruction. E.g. S2#=E1+1 means that theinstruction enters the Add2 stage one cycle after it leaves FP1.The other constraints are produced by the predicate global constraints/5.Only one instruction may be in a stage at a time. This fact is represented by analldifferent/1 constraint for each of the variable lists, that are collected for the pipelinestages. alldifferent(L) ensures that the variables in L get di�erent values. For lists ofstart/end pairs an alldisjoint/1 constraint is used. It ensures that two start/end pairsdo not cover the same range.Branches may only appear as last or second-to-last (delayed branch) instruction. Thisis enforced by a constraint of the form Dbranch #>= Di-1 for every instruction i in the basicblock. This (and the alldifferent/1 constraint on the decode cycles) ensures that onlyone instruction can be executed after the branch. Nondelayed branches are given a twocycle cost to make delayed branches preferable.3.2 Searching for an optimal solutionminimize/4 searches for a solution that respects the constraints and minimizes the basicblock execution time.A solution can be found by instantiating all domain variables with values from theirrespective domains. Instantiating a variable may cause the execution of constraints, andtherefore, failure. On backtracking, another value from the domain has to be chosen.This procedure is called labeling. For a more detailed discussion of the basic generatorsee [VH89]. The heuristic we used for choosing the next variable to be instantiated is:Choose the one with the smallest domain and the largest number of constraints. Nospeci�c heuristic is used to determine what value of the domain is chosen �rst.In order to compute the optimal solution, the time when the last instruction leavesthe decode stage is minimized. This is done by restricting all decode cycles to be less thanthe variable MaxCycle by the constraint Di#=<MaxCycle. First, MaxCycle is instantiatedwith the number of decode cycles of the basic block, a lower bound. Then, a labeling istried. If it fails, successively higher values are given to MaxCycle. The �rst solution foundis optimal. 6

for (i=1; i<=n; i++) {dy[iy] += da*dx[ix];ix += incx;iy += incy;}
ld r12,r14[r5]

ld r12,r14[r5]

ld r11,r3[r6]

ld r11,r3[r6]

addu r5,r5,r4

addu r5,r5,r4

fmul.sss r12,r2,r12

fmul.sss r12,r2,r12

addu r9,r9,1

addu r9,r9,1

cmp r10,r9,r8

cmp r10,r9,r8

fadd.sss r12,r12,r11

fadd.sss r12,r12,r11

st r12,r3[r6]

st r12,r3[r6]

bb1.n le,r10,@L5

bb1.n le,r10,@L5

addu r6,r6,r7

addu r6,r6,r7

@L5:

@L5:
1
2
3
4
5
6
7
8
9

1
3
2

10

6
7
8
4
5
9
10

3

6

3

5

3

3

6

5Figure 4: An ANSI C version of a Linpack loop, GNU C 1.37 output before and afterscheduling (bb1.n is a delayed branch, .sss means single precision, the numbers in theboxes indicate instruction latencies)
7

1 ld r12,r14[r5]

2 fmul.sss r12,r2,r12

4 fadd.sss r12,r12,r11

5 st r12,r3[r6]

10 addu r6,r6,r7

7 addu r9,r9,1

8 cmp r10,r9,r8

9 bb1.n le,r10,@5

6 addu r5,r5,r4

3 ld r11,r3[r6]

6

5

0

1

1

3

3 0

Figure 5: Dependency graph of the program in �gure 4; Edge lengths > 0 are instructionlatencies.4 ExampleWe translated the Linpack loop given in [Mot90]3 into ANSI C and compiled it4 (see�gure 4). The collect/6 predicate produces the following dependency constraints forthis code. Di represents the decode stage for instruction i, Wi represents the writebackcycle (redundant constraints are not shown).D2+1#>=W1, D4+1#>=W2, D4+1#>=W3, D5+1#>=W4, D6#>D1,D8+1#>=W7, D9+1#>=W8, D10#>D3, D10#>D5This corresponds to the dependency graph in �gure 5.The pipeline structure constraints produced by collect/6 for the �rst load instructionare:D1+1#=S21, E21+1#=S11, E11+1#=S01, E01+1#=W1where S21..E21, S11..E11 and S01..E01 represent the timespans when the instructionresides in the Data2, Data1 and Data0 stage respectively.The global constraints produced look like this:alldifferent([D1,D2,D3,D4,D5,D6,D7,D8,D9,D10]), %decode+1alldifferent([W1,W2,W3,W4,W5,W6,W7,W8,W10]), %writebackalldisjoint([S12..E12,S14..E14]), %FPInit: : : %other stagesFinally, the D9#>=Di-1 constraints for branch placement are produced.The scheduler restricts the decode cycle of the last instruction by Di#=<MaxCycleconstraints.At this point the constraints have reduced the domains of some variables: they haveremoved all values < 4 from the domain of D2 (fmul),: : : and all values < 16 from D10(addu r6,r6,r7) and therefore all values < 16 from MaxCycle, too.The scheduler then instantiates MaxCycle to 16. By reducing their domains to a singlevalue the constraints instantiate D5 (st) and D9 (bb1) to 15. Since this is incompatiblewith alldifferent/1, this attempt fails.The next attempt instantiates MaxCycle to 17. The labeling then selects D9 (bb1)3The assembly language code given there is scheduled incorrectly.4GNU C 1.37 (gcc -ansi -O) 8

lines lines measured schedulingProgram C Assembly speedup timeexample 19 84 1.17 1.6s�t 101 288 1.17 7.9sdhrystone 779 835 1.03 13.7sWAM 2073 3481 1.06 69.1sVAM 2647 4436 1.05 91.3sTable 1: The test programsfor instantiation and tries to instantiate it with 15. This fails, because the st and addur6,r6,r7would have to share cycle 16. Therefore D9 is instantiated to 16; This causes thevariables of the instructions on the critical path to be instantiated. Then the remaininginstructions are scheduled without backtracking by labeling their variables.Note that no integer instruction is scheduled for the third cycle. It would cause acollision with the writeback of the �rst ld and thereby would delay the execution of fadd.Conventional schedulers like the one in the Harris C compiler do not consider this.5 ResultsThe instruction scheduler is written declaratively and shares all advantages of logic pro-gramming, among them ease and exibility of programming and short development time,because constraint propagation and tree search programming are abstracted away fromthe programmer.The schedules produced are optimal in the sense that there is no basic block that:contains the given instructions, respects the dependencies, and executes in shorter time,when all registers are initially available and there are no memory waits. Hennessy andGross [HG83] report that their scheduling algorithm removes 85% of the removable stallson the simpler MIPS processor.Our main goal was to create a working example, so we did not try to make the programretargetable. However, developing the machine dependent parts for a machine like theMotorola 88100 takes about one person-day, so the retargetability of the scheduler isabout as good as that of specialized tools.We used the scheduler on a few programs: the Linpack loop of section 4, a fast fouriertransformation routine, Dhrystone 1.1, and two Prolog abstract machine emulators (WAMand VAM [KN90]) running na��ve reverse. All of these programs were compiled withgcc-1.37 -O, scheduled and run on a Data General AViiON 5000 (20 MHz 88100) with16 MB RAM under DG/UX 4.32. Table 1 gives some information on these programs.The scheduling time includes I/O and instrumentation (mainly computing the old basicblock length). We gathered some statistical data on these programs. Figure 6 shows theachieved speedup.Since most basic blocks produced by GNU C are very short, many of them cannot beimproved (81%). For the rest, speedups of up to 1.75 were achieved. The overall static9

instructions

speedup

5 10 15 20
1

1.2

1.4

1.6

instructions

speedup

5 10 15 20 25
1

1.2

1.4

1.6

Figure 6: Speedups through optimal scheduling of code produced by GNU and Harris Ccompilers vs. basic block length. The area of the dots is proportional to the number ofbasic blocks.
instructions

setup

5 10 15 20

50ms

100ms

150ms

200ms

250ms

300ms

instructions

labeling

5 10 15 20

10ms

100ms

1000ms

10000ms

Figure 7: Timing behaviour of the schedulerspeedup (the ratio of the cumulated old and new basic block durations) is 1.04. A higherproportion of oating-point code would result in a higher speedup.The Harris compiler includes an instruction scheduler and generally generates longerbasic blocks. 8.5% of the basic blocks it produced can be improved by scheduling, theoverall static speedup is 1.02. The main cause for suboptimal scheduling in the Harriscompiler is writeback collisions.The running time of the scheduler is acceptable, but should be improved. The current,untuned version takes about twice as long as compilation with gcc. Figure 7 shows thetiming behaviour of the scheduler on the GNU C output. Constraint setup time andthe number of variables and constraints are linear with the number of instructions, withoating-point code taking about twice as long as integer code. Labeling takes a shorttime for most basic blocks, but in some cases the NP-completeness of the problem resultsin exponential behaviour. This happens mainly in longer blocks with few dependencies.In seven cases, the scheduler ran into timeout before �nding a solution. In such cases thebasic block was divided and the pieces were scheduled. The �gures 6 and 7 show statistics10

on the resulting basic blocks.6 Further WorkAlthough long basic blocks were rare in the example programs, the scheduler shouldhandle them in a better way, since it is counterproductive to divide basic blocks producedby an unrolling compiler. This could be achieved by using more restrictive constraints,which can be produced by a better analysis and by using a more problem-speci�c labelingprocedure. Van Hentenryck has solved scheduling problems with 300 tasks [VH89].Currently the scheduler works on just one basic block at a time. This local view canlead to avoidable pipeline stalls at basic block boundaries. Therefore the scheduler shouldalso consider the adjacent blocks.Our experience with compiler generated assembly language code has shown that theconsideration of scheduling at earlier stages of the compilation process is essential forfast code. In general an optimizing compiler tries to minimize the usage of registers ina basic block. This increases the dependencies between instructions and prevents a goodschedule. The declarative nature of the scheduler should make the integration of otherparts of a compiler back end, e.g. register allocation, easy.AcknowledgementsWe wish to acknowledge the e�orts of several others who contributed to the work inthis paper. The anonymous referees, Manfred Brockhaus, Andreas Dieberger, AndreasFalkner, Thomas Graf, Max Hansch, Ulrich Neumerkel and Wolfgang Slany commentedon earlier drafts; Paul Beusterien of Harris Corp. compiled our benchmarks with theHarris compiler; Martin Laubach supplied the fast fourier transformation routine.References[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating registerallocation and instruction scheduling for RISCs. In Architectural Support forProgramming Languages and Operating Systems, pages 122{131, 1991.[CNO+88] Robert P. Colwell, Robert P. Nix, John J. O'Donnel, David B. Papworth, andPaul K. Rodman. A VLIW architecture for a trace scheduling compiler. IEEETransactions on Computers, 37(8):318{328, August 1988.[DSVH90] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving largecombinatorial problems in logic programming. The Journal of Logic Program-ming, (8):75{93, 1990.[Ert90] M. Anton Ertl. Coroutining und Constraints in der Logik-Programmierung.Master's thesis, Technische Universit�at Wien, 1990.[Fis81] Joseph A. Fischer. Trace scheduling: A technique for global microcode com-paction. IEEE Transactions on Computers, 30(7):478{490, July 1981.11

[Gan89] Mahadevan Ganapathi. Prolog based retargetable code generation. ComputerLanguages, 14(3):193{204, 1989.[GH88] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation inlarge basic blocks. In International Conference on Supercomputing, 1988.[GM86] Phillip B. Gibbons and Steve S. Muchnick. E�cient instruction scheduling fora pipelined architecture. In Proceedings of the SIGPLAN '86 Symposium onCompiler Construction, pages 11{16, 1986.[HG83] John Hennessy and Thomas Gross. Postpass code optimization of pipelineconstraints. ACM Transactions on Programming Languages and Systems,5(3):422{448, July 1983.[Hu61] T. C. Hu. Paralell sequencing and assembly line problems. Operations Re-search, 9(6):841{848, 1961.[Kas90] Uwe Kastens. �Ubersetzerbau. R. Oldenbourg Verlag, M�unchen, 1990.[KN90] Andreas Krall and Ulrich Neumerkel. The Vienna Abstract Machine. InP. Deransart and J. Ma luzy�nski, editors, Programming Language Implementa-tion and Logic Programming (PLILP'90), pages 121{136. Springer LNCS 456,1990.[Lam88] Monica Lam. Software pipelining: An e�ective scheduling technique for VLIWmachines. In Proceedings of the SIGPLAN '88 Conference on ProgrammingLanguage Design and Implementation, pages 318{328, 1988.[LKB91] Roland L. Lee, Alex Y. Kwok, and Fay�e A. Briggs. The oating-point perfor-mance of a superscalar SPARC processor. In Architectural Support for Pro-gramming Languages and Operating Systems, pages 28{37, 1991.[Mot90] Motorola, Inc. MC88100 RISC Microprocessor User's Manual, second edition,1990.[Nud83] Bernard Nudel. Consistent labeling problems and their algorithms: Expectedcomplexities and theory-based heuristics. Arti�cial Intelligence, 21:135{178,1983.[VH89] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. LogicProgramming Series. The MIT Press, Cambridge, Massachusetts, 1989.[VHD87] Pascal Van Hentenryck and Mehmet Dincbas. Forward checking in logic pro-gramming. In Logic Programming: Proceedings of the Fourth InternationalConference, pages 229{256, 1987.[Wal72] D. Waltz. Generating semantic descriptions from drawings of scenes withshadows. Technical Report AI271, MIT, 1972.12

