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Abstract

Instruction scheduling is essential for the efficient operation of today’s and to-
morrow’s processors. It can be stated easily and declaratively as a logic program.
Consistency techniques embedded in logic programming enable the efficient solution
of this problem.

This paper describes an instruction scheduling program for the Motorola 838100
RISC processor, which minimizes the number of pipeline stalls. The scheduler is
written in the constraint logic programming language ARISTO and uses a declara-
tive model of the processor to generate an optimal schedule. The model uses lists
of domain variables to represent the pipeline stages and describes the dependencies
between instructions by constraints in order to ensure correct scheduling. Although
optimal instruction scheduling is NP-complete, the scheduler can be applied to real
programs because of the speed gained through consistency techniques.

1 Introduction

Current RISC processors achieve their high performance by exploiting parallelism through
pipelining and multiple execution units. As a consequence, the results of previous in-
structions are sometimes not available when the next instruction is executed. If the next
instruction needs the result, it has to wait. The problem of arranging the instructions
in a way that reduces the number of wait cycles is known as instruction scheduling or
instruction reordering. Microcode compaction is a related problem.

Instruction scheduling can have a drastic impact on performance: On the Motorola
88100 one floating point multiplication can be started at every cycle, but the result is only
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available after six cycles. Even a simple formulation of optimal instruction scheduling
is an NP-complete search problem [HG83]. Scheduling is further complicated by the
interactions between the execution units. E.g., on the Motorola 88100 only one result at
a time can be written back to the register file. Since up to three execution units may want
to write a result, the scheduler must also consider the priority scheme implemented in the
hardware. Scheduling is even more important for the superscalar and VLIW processors
now being developed which can execute multiple instructions per cycle.

The existing algorithms make use of an explicit dependency graph. The scheduler
determines the path length, heuristically selects one of the instructions having no prede-
cessor, appends it to the instruction sequence, and removes it from the graph. The usual
heuristic procedure chooses the instruction with the longest path length. Hu [Hu61] de-
veloped an early algorithm for a similar problem. Hennessy and Gross [HG83] present an
algorithm with O(n*) worst-case complexity for a simple instruction scheduling problem:
The results of the instructions are available after a fixed amount of time. Gibbons and
Muchnick [GM86] describe an algorithm with O(n?) worst-case and observed linear com-
plexity, that produces slightly worse schedules. [GH88] and [BEH91] integrate instruction
scheduling and register allocation. These algorithms work on basic blocks, whereas Fisher
[Fis81] introduces trace scheduling for global microcode compaction. The same technique
is used for VLIW machines [CNOT88]. Another technique to achieve better scheduling
by transcending basic block boundaries is software pipelining [Lam88], which can also be
combined with loop unrolling [LKB91]. A short overview of the field is given in [Kas90,
chapter 8.5].

The use of consistency techniques combined with tree searching for solving com-
binatorial problems has been an Artificial Intelligence research topic for a long time
[Wal72, Nud83]. Problems are represented as networks of constraints on variables. The
domains of the variables are represented explicitly. Constraints are used actively to re-
move values from the domains which cannot appear in a solution. In this way the search
tree is pruned a priori.

Van Hentenryck [VH89, VHDS8T] integrated consistency techniques in logic program-
ming. He added a new data type, the domain variable. It behaves like an ordinary logic
variable except that it can be instantiated only with values from its domain. Constraints
are used to reduce these domains and thus the search tree.

For example, given the variables X with the domain {1,2,...6} and Y with the domain
{4,5,...9}, the constraint X #> Y (Declaratively #> means the same as >) immediately
reduces the domains to {5,6} and {4,5} respectively. The constraint keeps watching the
variables and becomes active again if the domains are further reduced.

Domain variables and constraints combine nicely with the search capabilities inherent
in logic programming languages and form an efficient approach to solving combinatorial
problems. The resulting language has been used to efficiently solve a wide range of
toy and real-world problems, among them scheduling problems [VH89, DSVH90, Ert90].
Programs for these purposes look like generate& test-programs with the tests coming first.

The experiences gained with this method suggest its application for instruction schedul-
ing. Furthermore the use of constraint logic programming eases the integration of other
code generation and optimization techniques, e.g. [Gan89].
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Figure 1: Pipeline stages in the Motorola 88100. Numbers indicate priorities.

2 The Problem

A modern microprocessor consists of several resources, which can be used by only one
instruction at a time. These resources include pipeline stages, buses and register file
ports. The goal of an instruction scheduler is to achieve high throughput by maximizing

resource utilization.

As an example, take a look at the Motorola 88100 processor [Mot90] (see figure 1): It

has

e a two-stage instruction fetch and decode unit,

e a one-stage integer execution unit,

o a three-stage data unit for accessing data memory,

o a five-stage floating-point add pipeline and a six-stage floating-point multiply unit,
which share the initial and final stages,

e one write port to the register file.

three 32-bit buses, and

Scoreboarding (an ‘in use’-bit for every register) is used to ensure that instructions that
access a register are not executed before the register is up to date.
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When several instructions compete for the same resource, an arbitration scheme selects
one instruction for processing and the others are stalled. This can cause stalls in earlier
stages of the pipeline up to the instruction fetch stage.

On the Motorola 88100 the following conflicts can occur:

e An instruction needing a register whose scoreboard bit is set is held in the decode
stage until the bit is cleared by a writeback into the register.

e The integer unit, FPLast and the data unit compete for writeback slots.

e Multiply3 (integer multiply), Multiply5 (floating point multiply) and Add4 compete
for FPLast.

e Several instructions need some pipeline stage(s) for more than one cycle, most no-
tably instructions with double word source operands, which need two cycles for
fetching data through the buses and stall the decode stage for one cycle.

This behaviour must be considered by the instruction scheduler. To preserve correct-
ness, the reordering must obey several constraints: Only reads from a register can be
swapped. Writes into a register can be swapped neither with reads nor with writes to this
register. The same reasoning applies for accesses to memory locations. Since memory
accesses can be aliases, the scheduler has to treat the whole memory like a single register,
unless it can prove that the accesses are not for the same location.

3 The Solution

We have written an instruction scheduler for the Motorola 88100 in ARISTO. ARISTO is
an industry-level constraint logic programming language, that employs consistency tech-
niques for the solution of combinatorial problems [Ert90]. The scheduler is implemented
as a logic program that models the execution structure of the processor.

The scheduling program consists of three parts. The first part reads the assembly
language source and splits it into basic blocks!. Moreover, simple peephole optimization
is performed. The second part works on basic blocks. It collects the constraints (test
phase) and searches for an optimal solution (generate phase). This part is displayed
in figure 2; The subgoals are explained in the subsequent sections. The final part uses
the resulting ordering information and outputs the reordered instructions as assembly
language source.

The basic data structure used by the scheduler is the domain variable. For every
instruction z in the basic block there is a domain variable D; representing its decode cycle.
These variables are later instantiated by the generate part. In the same way, for every
instruction and every pipeline stage it uses, there is a variable representing the cycle
during which it resides in the stage. For some stages, where an instruction can stall, there
are variable pairs Start .. End. The scheduler works by assigning cycles to the domain
variables and thus to the instructions.

Tt is assumed that jump destinations either are defined labels or follow subroutine calls.



schedule_block(Instructions, Decode) :-
clear_scoreboard(Scoreboard),
collect(Instructions, Scoreboard, Decode, FPU, Data, Writeback),
global_constraints(Decode, FPU, Data, Writeback),
minimize(Decode, FPU, Data, Writeback).

Figure 2: The basic block scheduling predicate takes a list of instructions and returns a
list of optimally ordered decode cycles for these instructions.

collect([’fadd.sss’(Rd, Rs1l, Rs2)|Instructions],
Scoreboard,
[D|Decodel],
fpu([S1..E1|FP1], [S2..E2|Add2], [S3..E3|Add3], [S4..E4|Add4],
Mul2, Mul3, Mul4, Mul5, [S5..E5|FPLast]),
Data, [W|WriteBack]):-
read(Rs1, D, Scoreboard),
read(Rs2, D, Scoreboard),
write(Rd, W, D, Scoreboard, NewScoreboard),
S1#=D+1, S2#=E1+1, S3#=E2+1, hpipeline structure
S4#=E3+1, SH#=E4+1, WH#=EL+1,
collect(Instructions, NewScoreboard, Decode,
fpu(FPl, Add2, Add3, Add4, Mul2, Mul3, Mul4, Mul5, FPLast),
Data, WriteBack).

Figure 3: The instruction description for a single-precision floating-point addition

3.1 Collecting the constraints

The constraints stated in the second part model the execution structure of the processor
and the dependencies between the instructions.?

The constraint collector sequentially processes the instructions of the basic block, gen-
erates inequality constraints to enforce correct ordering and collects the domain variables
for each pipeline stage into a list. These lists are then used in global constraints like
“Only one instruction can be in this stage at a time”.

The predicate collect/6 (see figure 3) takes a list of instructions and the current state
of the scoreboard and outputs the list of decode cycle variables for these instructions, a
structure fpu(FP1,... , FPLast) containing lists of domain variables for every FPU
pipeline stage, a similar structure for the data unit (Data), and the list of variables for
the writeback stage (WriteBack). In this program the scoreboard is not represented
by a bit for every register, but a pair of variables for every register r. One variable
(LastWrite,) represents the time when the scoreboard bit for the register was cleared
by the completion of the last write. The other variable (NextCheckWrite,) stands for
the time when the scoreboard bit will be set by the next write. clear_scoreboard/1

?We assume 0 wait cycles for memory accesses.



initializes the scoreboard structure.

The collect/6 predicates consists of instruction descriptions like the one in figure 3.
The read/3 predicate generates the constraints that force the instruction to be executed
after the last write to the register and before the next write to the register, e.g.

LastWrite, #=< D+1, D+1 #=< NextCheckWrite,
where D is the decode cycle of the instruction. Similarly, write/5 generates

LastWrite, #=< D+1, W #=< NewNextCheckWrite,
and unifies D+1 and W with the corresponding variables in Scoreboard and NewScoreboard.
These constraints are an implicit representation of the dependency graph used by existing
algorithms.

collect/6 also produces pipeline structure constraints that describe the relations of
the stages (and the variables) within one instruction. E.g. S2#=E1+1 means that the
instruction enters the Add2 stage one cycle after it leaves FP1.

The other constraints are produced by the predicate global _constraints/5.

Only one instruction may be in a stage at a time. This fact is represented by an
alldifferent/1 constraint for each of the variable lists, that are collected for the pipeline
stages. alldifferent (L) ensures that the variables in L get different values. For lists of
start /end pairs an alldisjoint/1 constraint is used. It ensures that two start/end pairs
do not cover the same range.

Branches may only appear as last or second-to-last (delayed branch) instruction. This
is enforced by a constraint of the form Dy 4n.p #>= D;-1 for every instruction ¢ in the basic
block. This (and the alldifferent/1 constraint on the decode cycles) ensures that only
one instruction can be executed after the branch. Nondelayed branches are given a two
cycle cost to make delayed branches preferable.

3.2 Searching for an optimal solution

minimize/4 searches for a solution that respects the constraints and minimizes the basic
block execution time.

A solution can be found by instantiating all domain variables with values from their
respective domains. Instantiating a variable may cause the execution of constraints, and
therefore, failure. On backtracking, another value from the domain has to be chosen.
This procedure is called labeling. For a more detailed discussion of the basic generator
see [VH89]. The heuristic we used for choosing the next variable to be instantiated is:
Choose the one with the smallest domain and the largest number of constraints. No
specific heuristic is used to determine what value of the domain is chosen first.

In order to compute the optimal solution, the time when the last instruction leaves
the decode stage is minimized. This is done by restricting all decode cycles to be less than
the variable MaxCycle by the constraint D;#=<MaxCycle. First, MaxCycle is instantiated
with the number of decode cycles of the basic block, a lower bound. Then, a labeling is
tried. If it fails, successively higher values are given to MaxCycle. The first solution found
is optimal.



for (i=1; i<=n; i++) {
dy[iy] += da*dx[ix];
ix += 1incx;
1y += 1ncy;

b
@J5:
1 | d ri2,r14[ r5] 3
2 frul .sssri12,r2,r12 | 6 |
3 | d ri1, r3[r6] HEN
4 fadd.sssr12,r12,r11 | | 5
5 st ri2,r3[re] |
6 addu r5,r5,r4
7 addu ro,r9, 1
8 cnp rio,r9,r8
9 bbl. n le, r10, Q5
10 addu re,ré,r7 H
@QJ5:
1 I d ri12,r14[r5]
3 | d ril, r3[r6] 3
2 frrul .sssr12,r2,r12 [ 6
6 addu r5r5,r4 |
7 addu ro, r9, 1
8 cnp rio,r9,r8
4 fadd.sssr12,r12,r11 | 5
5 st ri2,r3[re] |
9 bbl.n le, ri0, @5
10 addu re,r6,r7

Figure 4: An ANSI C version of a Linpack loop, GNU C 1.37 output before and after
scheduling (bb1l.n is a delayed branch, .sss means single precision, the numbers in the
boxes indicate instruction latencies)
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Figure 5: Dependency graph of the program in figure 4; Edge lengths > 0 are instruction
latencies.

4 Example

We translated the Linpack loop given in [Mot90]? into ANSI C and compiled it* (see
figure 4). The collect/6 predicate produces the following dependency constraints for
this code. D; represents the decode stage for instruction z, W; represents the writeback
cycle (redundant constraints are not shown).

Do+1#>=W;, Dy+1#>=Wy, Dy+1#>=W3, Ds+1#>=W,, Dg#>D,,

D8+1#>=W7, D9+1#>=W8, D10#>D3, D10#>D5

This corresponds to the dependency graph in figure 5.

The pipeline structure constraints produced by collect/6 for the first load instruction
are:

D{+1#=52;, E2;+1#=S14, E1{+1#=50,, EO +1#=W,

where $21..E21, S17. .E1; and S0y..E0; represent the timespans when the instruction
resides in the Data2, Datal and Datal stage respectively.

The global constraints produced look like this:

alldifferent ( [Dl ,D2 ,D3 ,D4 ,D5 ,D6 ,D7 ,Dg ,D9 :D10:| ) 5 %decode+1
alldifferent ([W;,Wy,Ws, Wy, Ws, W, Ws,Ws,Wigl), Ywriteback
alldisjoint ([S1s..E15,S14..E14]), JFPInit

e hother stages

Finally, the Dg#>=D;-1 constraints for branch placement are produced.

The scheduler restricts the decode cycle of the last instruction by D;#=<MaxCycle
constraints.

At this point the constraints have reduced the domains of some variables: they have
removed all values < 4 from the domain of Dy (fmul),... and all values < 16 from Dq
(addu r6,r6,r7) and therefore all values < 16 from MaxCycle, too.

The scheduler then instantiates MaxCycle to 16. By reducing their domains to a single
value the constraints instantiate D5 (st) and Dg (bb1) to 15. Since this is incompatible
with alldifferent/1, this attempt fails.

The next attempt instantiates MaxCycle to 17. The labeling then selects Dy (bb1)

3The assembly language code given there is scheduled incorrectly.

4GNU C 1.37 (gcc -ansi -0)



lines lines measured scheduling
Program C Assembly  speedup time
example 19 84 1.17 1.6s
fft 101 288 1.17 7.9s
dhrystone | 779 835 1.03 13.7s
WAM 2073 3481 1.06 69.1s
VAM 2647 4436 1.05 91.3s

Table 1: The test programs

for instantiation and tries to instantiate it with 15. This fails, because the st and addu
r6,r6,r7 would have to share cycle 16. Therefore Dg is instantiated to 16; This causes the
variables of the instructions on the critical path to be instantiated. Then the remaining
instructions are scheduled without backtracking by labeling their variables.

Note that no integer instruction is scheduled for the third cycle. It would cause a
collision with the writeback of the first 1d and thereby would delay the execution of fadd.
Conventional schedulers like the one in the Harris C compiler do not consider this.

5 Results

The instruction scheduler is written declaratively and shares all advantages of logic pro-
gramming, among them ease and flexibility of programming and short development time,
because constraint propagation and tree search programming are abstracted away from
the programmer.

The schedules produced are optimal in the sense that there is no basic block that:
contains the given instructions, respects the dependencies, and executes in shorter time,
when all registers are initially available and there are no memory waits. Hennessy and
Gross [HG83] report that their scheduling algorithm removes 85% of the removable stalls
on the simpler MIPS processor.

Our main goal was to create a working example, so we did not try to make the program
retargetable. However, developing the machine dependent parts for a machine like the
Motorola 88100 takes about one person-day, so the retargetability of the scheduler is
about as good as that of specialized tools.

We used the scheduler on a few programs: the Linpack loop of section 4, a fast fourier
transformation routine, Dhrystone 1.1, and two Prolog abstract machine emulators (WAM
and VAM [KN90]) running naive reverse. All of these programs were compiled with
gce-1.37 -0, scheduled and run on a Data General AViiON 5000 (20 MHz 88100) with
16 MB RAM under DG/UX 4.32. Table 1 gives some information on these programs.
The scheduling time includes I/O and instrumentation (mainly computing the old basic
block length). We gathered some statistical data on these programs. Figure 6 shows the
achieved speedup.

Since most basic blocks produced by GNU C are very short, many of them cannot be
improved (81%). For the rest, speedups of up to 1.75 were achieved. The overall static
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Figure 7: Timing behaviour of the scheduler

speedup (the ratio of the cumulated old and new basic block durations) is 1.04. A higher
proportion of floating-point code would result in a higher speedup.

The Harris compiler includes an instruction scheduler and generally generates longer
basic blocks. 8.5% of the basic blocks it produced can be improved by scheduling, the
overall static speedup is 1.02. The main cause for suboptimal scheduling in the Harris
compiler is writeback collisions.

The running time of the scheduler is acceptable, but should be improved. The current,
untuned version takes about twice as long as compilation with gcc. Figure 7 shows the
timing behaviour of the scheduler on the GNU C output. Constraint setup time and
the number of variables and constraints are linear with the number of instructions, with
floating-point code taking about twice as long as integer code. Labeling takes a short
time for most basic blocks, but in some cases the NP-completeness of the problem results
in exponential behaviour. This happens mainly in longer blocks with few dependencies.
In seven cases, the scheduler ran into timeout before finding a solution. In such cases the
basic block was divided and the pieces were scheduled. The figures 6 and 7 show statistics

10



on the resulting basic blocks.

6 Further Work

Although long basic blocks were rare in the example programs, the scheduler should
handle them in a better way, since it is counterproductive to divide basic blocks produced
by an unrolling compiler. This could be achieved by using more restrictive constraints,
which can be produced by a better analysis and by using a more problem-specific labeling
procedure. Van Hentenryck has solved scheduling problems with 300 tasks [VHS&9].

Currently the scheduler works on just one basic block at a time. This local view can
lead to avoidable pipeline stalls at basic block boundaries. Therefore the scheduler should
also consider the adjacent blocks.

Our experience with compiler generated assembly language code has shown that the
consideration of scheduling at earlier stages of the compilation process is essential for
fast code. In general an optimizing compiler tries to minimize the usage of registers in
a basic block. This increases the dependencies between instructions and prevents a good
schedule. The declarative nature of the scheduler should make the integration of other
parts of a compiler back end, e.g. register allocation, easy.
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