The Vienna Abstract Machine

Andreas Krall Ulrich Neumerkel

Institut fiir Praktische Informatik
Abteilung fiir Programmiersprachen und Ubersetzerbau
Technische Universitat Wien
andi@vip.UUCP ulrich@vip.UUCP

Abstract

The Vienna Abstract Machine (VAM) is a Prolog machine developed at the TU Wien.
In contrast to the standard implementation technique (Warren Abstract Machine —
WAM), an inference in VAM is performed by unifying the goal and head immediately,
instead of bypassing arguments through a register interface. We present two implemen-
tations for VAM: VAM;,p and VAM;p. VAM,p is well suited for an intermediate code
emulator (e.g. direct threaded code) which uses two instruction pointers for both goal
code and head code. During an inference VAMyp fetches one instruction from the goal
code, and one instruction from the head code and executes the combined instruction.
More optimization is therefore possible, since information about the calling goal and the
head of the clause is available at the same time. VAM performs cheap shallow back-
tracking, needs less dereferencing and trailing and implements a faster cut. In a Prolog
with the occur-check, VAM omits many unnecessary operations. VAM;p is designed for
native code compilation. It combines instructions at compile time and supports several
optimizations, such as fast last-call optimization. In this paper we present the VAM in
detail and compare it with existing machines.

1 Introduction

Five years ago, we began on research in the area of implementation of logic programming lan-
guages. A small, slow and portable interpreter [Ge84] and a fast compiler based on the WAM
(Warren Abstract Machine [Wa83]) for a commercial Prolog System [Pi84] were developed.
With this experience the VIP research project [Op85] was started. Our project developed new
interpreter and compiler implementation techniques [Kr87], extensions for meta programming
and constraints [Ne88, Ne90], multi user implementations of Prolog with a shared database,
database systems [Kii88] etc. One of the results of the project was the design and implemen-
tation of the VAM (Vienna Abstract Machine).

In order to outline the major differences between VAM and WAM, we will first present
an abstract machine for restricted clauses in Chapter 2. This simplistic model is general-
ized in Ch. 3 to the basic VAM, focusing on the emulator implementation VAMyp and its
basic optimization schemes. Further aspects of VAM are dealt with in Ch. 4. In particular:
meta-call, garbage collection, occur-check, delay mechanisms and constraints. Finally, more
sophisticated optimizations are presented: the native code model VAM;p and improved call-
ing sequences for a hybrid between VAMyp and VAM;p. Ch. 5 gives a brief comparison with
WAM and describes future work on VAM currently under investigation.

clause(Head,Goals) --> head(Head), body(Goals).

body(true) --> [c-nogoall.
body (Goals) --> goallist(Goals), [c-lastcall], {Goals \= true}.

goallist(Goal) --> goal(Goal), {Goal \= (_,_)}.
goallist((GoalA,GoalB)) --> goallist(Goald), [c-calll, goallist(GoalB).

head(Head) --> [F/A], {functuniv(Head,F,A,L)}, argumentlist(h,L).
goal(Goal) --> [c-goal,F/A], {functuniv(Goal,F,A,L)}, argumentlist(g,L).

argument (X,Const) --> [X-const,Const], {const(Const)}.
argument (X,Str) --> [X-struct,F/A], {functuniv(Str,F,A,L)}, argumentlist(X,L).

argumentlist(X,[]1) --> [].
argumentlist(X,[E|Es]) --> argument(X,E), argumentlist(X,Es).

functuniv(Funct,F,A,L) :- functor(Funct,F,A), Funct =.. [F|L].

Figure 1: Clause representation in VAM for ground clauses

2 A simplified model for ground clauses

Initially, we restrict clauses to those containing no variables at all. While this is not a realistic
subset of Prolog for practical applications, it serves to clarify the fundamental differences
between WAM and VAM. Later on, we will relax this restriction to programs, where variables
are allowed in clauses, provided they will unify with other variables or constants only.

2.1 Representation of clauses

The representation of clauses in VAM intermediate code is very close to their syntactic repre-
sentation. By and large, terms are translated to a flat prefix code. In a clause three different
kinds of codes are used:

control codes, (c-Any) are used to embrace goals. A goal starts with c-goal (p) and either
ends with c-call if another goal is thereafter or ends with c-lastcall if it is the last
goal in a clause. If the clause is a fact we have no goal at all denoted by c-nogoal.

head codes, (h-Any) are used to encode terms in the arguments of a clause’s head. The
arguments are translated into flat prefix code.

goal codes, (g-Any) encode terms in goals. The structure is the same as for head codes.

In Fig. 1 the complete (bijective) mapping between ground clauses and VAM code is defined
by a Definite Clause Grammar (DCG).

2.2 Specification of VAM

VAM instructions differ fundamentally from WAM instructions. They can be understood
only by their combination at runtime. The real instruction set of VAM is the set of all valid
combinations of instructions. Taking the translation of Prolog clauses to VAM code and a
simple meta-interpreter as input, the VAM could probably be derived automatically by partial

evaluation (deduction)—being in the style of [Ku87]. However, the abstract interpreter as well
as the complete VAM was designed by hand.

In Fig. 2 an abstract interpreter for VAM code is given. The specification describes the
process of unification and (determinate) control in detail, but—similar to [BB83]—it does
not explicitly cover backtracking aspects. A program to be interpreted is represented by
the vam_clause/1 facts. A fact vam_clause([PredName|Cs]) consists of the predicate name
and the VAM code translated in Fig. 1. If a predicate consists of several clauses the goal
...,vam clause([NextPred|NHs]), ... will yield several solutions. Backtracking is therefore
implicit in the specification. Later on in Ch. 2.3, in the discussion of actual implementations,
backtracking will also be dealt with explicitly.

The procedural behavior of VAM is described by the proof tree of the logic program. First
a query is translated like the body of a clause, then the corresponding predicate is fetched and
the interpreter is finally called.

The interpreter consists of a (tail recursive) predicate vam_prove/3 which holds the inter-
preter state consisting of: the list of remaining head codes, the list of remaining goal codes
and a continuation stack for nested calls. The process of proving a goal consists of two major
steps corresponding to the different kinds of codes (Ch. 2.1): unification and resolution. By
consequence an iteration in the interpreter vam_prove/3 (a recursive call) can be performed
in two ways, either via unification/3 or resolution/5 respectively!. The state transitions
are specified by facts in order to emphasize which states are changed. Before trying to prove
these facts, the interpreter takes the first elements of both lists (head and goal code) and com-
bines them (symbolized by the functor +/2) in order to pass them to the facts. The effective
instructions HeadCode+GoalCode are derived by generating all valid combinations of head and
goal codes.

unification(Instruction,DifflistHead,DifflistGoal) An attemptis made to unify cor-
responding arguments of head and goal; the remaining codes are passed back to vam_prove/3.
Combinations such as h-struct+g-const are not stated, they simply fail. Note that
unification/3 changes only the two code lists. Later on we will see that unification can
be performed by incrementing and adding two pointers. Another observation evident
from the specification is that arbitrarily nested structures which occur both in the head
and in the goal neither need a push down stack nor a counter to unify their arguments
since the functors F/A do not insert their arity into vam_prove/3’s state.

resolution(Instruction,HeadCode,DifflistGoal ,DifflistStack,NextPred) A clauseof
NextPred is selected by the interpreter (see goal vam_clause/1). If a fact in the head
was proved and if the body contains another subgoal (c-nogoal+c-call), the new goal
is selected. The stack is not affected at all. If the head unifies and the goal was the
last in the caller’s clause (c-goal+c-lastcall), the head code will become the new goal
code. Again, the stack is not altered (last-call optimization). If the head unifies and
there is another goal in the caller’s clause (c-goal+c-call), then the continuation is
pushed onto the stack, the head code becomes the new goal code and the interpreter
switches to the new clause’s head. The stack needs to be popped if a fact unifies, and if
the goal is the last in the caller’s clause (c-nogoal+c-lastcall). Execution proceeds
with the popped continuation. If the stack is empty, the interpreter halts successfully.

There are two straightforward approaches in implementing our specification model:
o Take the +’s literally, by combining head and goal at runtime. This abstract machine
needs two instruction pointers, henceforth called VAMyp. It will lead to the VAM

!Note that there is exactly one or no match for a correct goal vam_prove/3

emulator using direct threaded code, to be discussed in the next chapter.

e Combine the instructions earlier—at compile time. Only one instruction pointer is there-
fore required. Such a machine is called VAM;p. The instruction pointer can easily be
mapped to the program counter of a processor. VAM;p will lead to a subroutine threaded
code implementation and further on to an inline code compiler.

When comparing the VAM specification to the ZIP-specification [BB83] we see that ZIP
needs an intermediate list for passing arguments. First, their arguments are pushed onto a list
and then this list is unified with the head. Although ZIP’s instructions are similar to VAM’s,
they have an implicit operand—the argument stack (refer to Fig. 7). In Fig. 3 some of the
cases from unification of arbitrary clauses is given.

Note that PLM [WaT77] behaves in the same way as VAM for ground clauses. But if
structured terms with variables are encountered (e.g. ...,p(X/Y),...) PLM creates always
the variables for the molecule on the global stack.

The VIP project focused on a compact representation of clauses and we therefore were
concerned mainly with VAMyp. Yet we are aware of having inline code as an option. In the
subsequent sections VAM,p will be presented. VAM;p will be covered later in Ch. 4.5.

2.3 Implementation of VAM,r for ground clauses
2.3.1 Memory model

The basic instructions for ground Prolog clauses are implemented in Fig. 10. The subset of
the VAM requires 6 registers and a stack. Two registers are instruction pointers to the code.
During unification goalptr points to the goal code and headptr to the head code. (The stack
grows downwards.) A stack frame contains the continuation code pointer (the return address
in a procedural language), and the continuation frame pointer (dynamic link). The stackptr
marks the top of the stack. The goalframeptr points to the stack frame of the clause which
contains the calling subgoal. The headframeptr points to the stack frame of the called clause.
The lastchoiceptr points to the most recent choice point. A choice point contains pointers
to: the previous choice point, the parent stack frame, the calling goal and to the called clause
(used to retrieve alternatives).

2.3.2 Unification

During unification one instruction is fetched for the goal arguments and one instruction is
fetched for the head arguments. To enable fast decoding of the instructions, the sum of a goal
instruction and a head instruction must be unique. Unification for ground clauses is reduced
to fetching the next instruction or comparing the instruction arguments.

After unification of the head, at the call of the first subgoal in a clause, the continua-
tion pointers goalframeptr and goalptr are saved in the clause’s stack frame (marked by
headframeptr). The head pointers are copied to the goal pointers; goalptr now points to
the first subgoal and the head stack frame has become the stack frame of the calling goal.
headptr must be set to the called clause thereafter. The simple implementation assumes
that the absolute address of the procedure’s first clause is stored as an argument of c-goal.
In a realistic implementation, the macro clause_address implements clause indexing. The
stack frame for the called clause is allocated by decrementing stackptr by frame size. For
ground clauses a constant size is sufficient. When there are variables and when we differentiate
between facts and rules, frame_size depends on the clause and is coded at the start of the
clause. The absolute address of an alternative clause is coded at the beginning of a clause too.

% unification/3: The unification instructions
pA
0

% unification(Head+Goal, HeadsIn-HeadsOut, GoalsIn-GoalsOut)

unification((h-const)+(g-const), [Const|Hs]-Hs, [Const|Gs]-Gs).
unification((h-struct)+(g-struct), [F/AlHs]-Hs, [F/A|Gs]-Gs).

% resolution/5: Goal selection
A
% resolution(Head+Goal, Heads, GoalsIn-GoalsOut, StackIn-StackOut, NextPred)

resolution((c-nogoal)+(c-call), [1, [c-goal,F/AlGs]-Gs, St-St, F/A).
resolution((c-goal)+(c-lastcall), [F/A|Hs], []-Hs, St-St, F/A).
resolution((c-goal)+(c-call), [F/A|Hs], Gs-Hs, St-[Gs|St], F/A).
resolution((c-nogoal)+(c-lastcall), [1, [1-Gs, [[c-goal,F/A|Gs]|St]-St, F/A).

% vam_prove/3: Abstract interpreter
h
% vam_prove(HeadList,GoallList,Stack)

vam_prove([c-nogoall, [c-lastcalll,[]).
vam_prove ([H|Hs],[G|Gs],St) :-
unification(H+G,Hs-NHs,Gs-NGs),
vam_prove (NHs,NGs,St) .
vam_prove ([H|Hs],[G|Gs],St) :-
resolution(H+G,Hs,Gs-NGs,St-NSt,NextPred),
vam_clause([NextPred|NHs]),
vam_prove (NHs,NGs,NSt) .

query(Query) :-
parse(body(Query), [c-goal ,F/A|GoalCode]), % translation
vam_clause([F/A|HeadCode]),
vam_prove (HeadCode,GoalCode, []).

Figure 2: An abstract interpreter for VAM

Again in a realistic implementation, the macro alternative is responsible for clause in-

dexing. If alternative clauses exist, a choice point is created. The execution continues with

the unification of arguments of the calling goal and the head of the called clause.

2.3.3 Backtracking and cut

On failure, the choice point is popped, the top of stack is adjusted, the alternative clause
is selected, a stack frame is allocated and—if another alternative exists—the choice point is
pushed back. If the stack frames have the same size (which is usually the case) only the

pointer to the alternative clauses must be pushed again. However, because cut occurs more
frequently than pushing the choice point a second time, we push the stack frame before the

choice point, allowing a faster cut.

% extension to DCG for <<interpretation>>

argument (X,Var) --> [X-fstvar,Var]. % assign/initialize
argument (X,Var) --> [X-nxtvar,Var]. % skip/assign/unify
argument(X,_) --> [X-void]. % skip

% remaining unification instructions
% excerpt from 25 combinations

unification((h-void)+(g-void) ,Hs-Hs,Gs-Gs). % skip
unification((h-fstvar)+(g-void), [HVarNr|Hs]-Hs,Gs-Gs). % init h-fstvar
unification((h-fstvar)+(g-fstvar), [Var|Hs]-Hs, [Var|Gs]-Gs). % init both
unification((h-fstvar)+(g-nxtvar), [Var|Hs]-Hs, [Var|Gs]-Gs). % pass argument

unification((h-const)+(g-fstvar), [Const|Hs]-Hs, [Const|Gs]-Gs). % no trail check
unification((h-const)+(g-nxtvar), [Const|Hs]-Hs, [Const|Gs]-Gs). % trail check

unification((h-nxtvar)+(g-nxtvar), [Var|Hs]-Hs, [Var|Gs]-Gs). % full unification

unification((h-void)+(g-struct) ,Hs-Hs, [F/A|Gs]-NGs) :- % skip goal,
parse_dl(argument(g,_), [g-struct,F/A|Gs]-NGs). % init some g-fstvar

unification((h-struct)+(g-fstvar), [F/A|Hs]-NHs, [GVarNr|Gs]-Gs) :- % no trail check

parse_dl(argument (h,GVarNr), [h-struct,F/A|Hs]-NHs).

Figure 3: Full VAM,pspecification

2.3.4 Last-call optimization

In ground clauses, last-call optimization is very simple. The goal stack frame is used for the
called clause. If the called clause is nondeterminate, the continuation of the callers clause is
copied to the stack frame of the called clause. This avoids useless dereferencing when returning
from a fact. If the end of a fact is reached (c-nogoal), stackptr is adjusted and the next
instruction code following the goal is fetched. Depending on the fetched code one of three
instructions is executed: a c-cut instruction (dereferencing lastchoiceptr until it becomes
greater then the active stack frame), a c-nogoal instruction (going up one stack frame) or a
c-goal instruction.

3 Basic VAM

3.1 Representation of clauses

The control instructions are basically the same as for ground clauses (see Fig. 6). Variables
are classified in VAM by their occurrences in heads or goals. For non-void variables (occur-
ring more than once in the clause) the first occurrence is distinguished from the subsequent
occurrences. For details refer to Fig. 6. Variables occurring in the head and in subsequent
determinate BIPs (Built-In Predicates) are temporary. They are not saved beyond an infer-
ence. All other variables are stored in an environment. For example, the predicate member/2
is translated as follows:

member (T, L T | _ 1).
[member/2,h-fsttmp, O, h-list, h-nxttmp, 0, h-void, c-nogoall
member (X, L _ Y 1) :-
[member/2,h-fstvar, 1, h-list, h-void, h-fstvar, 2,

member (X, Y)

c-goal, member/2, g-nxtvar, 1, g-nxtvar, 2, c-lastcalll

goalptr code of caller’s goal variables local variables d&n
goalframeptr | stack frame of caller dé&n
headptr code of callee’s head goalptr’ continuation code ptr. | d&n
headframeptr | stack frame of callee goalframeptr’ continuation frame ptr. | d&n
stackptr top of environment stack trailptr’ n
copyptr top of copystack copyptr’ see lastcopyptr n
choiceptr top of trail headptr’ alternative n
trailptr top of trail goalptr’ restart code ptr. n
lastchoiceptr | last choice point goalframeptr’ | restart frame ptr. n
lastcopyptr (for trail check only) lastchoiceptr’ n

Figure 4: Registers and stack frames of VAMyp

3.2 Memory model

Our implementation of VAM is based on structure copying [Me82]. The representation of
dynamic terms is similar to other structure copying implementations. A WAM could use
VAMs term representation [Kr88] and vice versa. The VAM uses three stacks like [Br84] (refer
to Fig. 5). The environment stack contains the stack frames which hold local variables and
control information. It is either a determinate or a nondeterminate stack frame (choice point),
see Iig. 4.

To enable last-call optimization, lists and structures are stored in the copy stack. Variable
bindings are stored on the trail. Space is also needed for temporary variables and the Prolog
code (heap). To enable fast comparison of pointer directions the stacks are ordered the way
shown in Fig. 5. The basic register set is given in Fig. 4.

3.3 Implementation of resolution and unification

The intermediate code interpreter written in C uses a switch statement. The assembler
version uses direct threaded code [Bel73]. In the assembler version, the codes for the goal
and head instructions are chosen, so that the sum of two instructions is the address of the
unification code. The advantage of the parallel unification is that only one decoding step is
necessary for two instructions. On a CISC, one jump instruction is saved compared to an
implementation of the WAM. The following example shows instruction fetch on a CISC.

Rn = *goalptr++; fetch goal instruction
Rn += *headptr++; add head instruction
jump (Rn);

On most RISC-processors there is no auto-increment addressing, but there is normally
a subroutine call that stores the return address in a register. The following scheme enables
compilation of VAMyp to a mixture of native code and direct threaded code. The goal compiles
into 2 to 4 instructions. The head is still in intermediate code.

headaddr = *headptr;
<goal operand fetch>
jalr goalptr, (headaddr[g_codel);

h_code+g_code:
<head operand fetch + action>
headptr += opsize;
jump (goalptr);

3.4 Optimizations

The basic VAMyp implements the following optimizations: variable classification, clause in-
dexing and last-call optimization. For the sake of simplicity, the basic VAMyp uses the first
argument for clause indexing. Only g-nxtvar is used for clause indexing. (Constants can be
optimized by program transformation.)

Naive last-call optimization is performed as described in [Br84]: VAM unifies head and
goal and executes subsequent determinate BIPs (e.g. 1/0). When another goal is encountered
(see c-goal, vz, p in Fig. 6) the stack frame of the called clause is copied over the caller’s
frame, if there are no alternatives.

The process of copying moves cells containing pointers. In general, two passes (updating
and copying) are required for last-call optimization due to references into the deallocated frame
and due to references into the frame to be moved. Restrictions on the following references
reduce overheads down to a single copying pass:

References within the head frame Picking away temporaries in the goal prevents their
creation throughout an inference.

References to the goal frame References within a frame cause no harm until the last goal.
Remaining variables referring to free cells in the goal frame are stored onto the copy stack
when encountered during the last goal’s inference, similar to WAM’s put_unsafe.

There are no references within the head frame, so we can hold all head variables (and head
temporaries) in registers. Instead of copying an argument into the head frame and recopying
it after the inference, all head variables—now held in registers—are placed in the environment.
The last-call optimization no longer imposes overheads. The register set is simply stored in
place of the old frame. Note that having registers for head variables does not require unsafe
variables.

The instruction fetch overhead in an emulator can be reduced by augmenting the instruc-
tion set with new folded instructions. This technique is common practice, when only one
instruction pointer is required (e.g. WAM emulator). The VAM,p cannot use this technique
as exhaustively as the WAM, because a new instruction introduced in the head needs to be en-
coded N,q times and vice versa! On the other hand it is easy to argue that—because VAMyp
instructions are folded at runtime—the instruction set is saturated already. Some extensions
to list instructions are considered worth the effort. Folded are: (h-1ist, h-fstvar), (h-1list,
h-nxtvar), (h-1list, h-fsttmp) and (h-1list, h-nxttmp).

4 Extensions and Optimizations

4.1 Meta-call

The meta-call enables dynamic calls to goals by a term. Terms need to be converted into
the goal representation. While the WAM passes the structure’s arguments into the argument
registers, the VAM needs a different approach because VAM executes both goal and head
instructions together. A naive solution implements a meta-call along with the data base that
has to support immediate or logical update view:

metacall(Goal) :-
functor(Goal,F,A), functor(NGoal,F,A),
assert(dummy(NGoal), (retract(dummy(_)), !, NGoal)),
dummy (Goal) .

copy [al
stack z’]

/1\
trail stack 2’ < a
. 7
environ- x: [alz’]
ment /1
stack 7: 70

/1\

dat p(lalz]l) :- q(s(Z)).
ba a a(s(b)).
ase q(s(a)).

temporary variables

Figure 5: Memory model

A clause “dummy(goal(X)) :- retract(dummy(.)), !, goal(X).” is asserted by the
goal metacall(goal(Any)). Optimizing metacall/1l in order to avoid the data base op-
erations is straightforward. The term representation is reused as a substitute for an environ-
ment. The goalframeptr is set to the representation of the term goal(Any) on the copy
stack, then goalptr is set to a dummy goal code consisting of a sequence of g-nxtvars and
a closing c-metacall. The dummy goal code is reusable for goals with different functors.
c-metacall is similar to c-lastcall. While c-lastcall occasionally overwrites the caller’s
environment, c-metacall must not overwrite it because the caller’s environment (pointed to
by goalframeptr) is located on the copy stack representing the term goal (Any) at that.

Summarizing, VAM initializes the stack pointers (an operation independent from the num-
ber of arguments) and proceeds with decoding the goal and head instructions as usual. Prob-
lems concerning treatment of ! /0 within a meta-call are as in WAM.

4.2 Occur-check

Due to efficiency nearly all Prolog implementations perform unification without the occur-
check. In general, the occur-check slows down unification by an overhead linear in the terms’
sizes, whereas, constant time is required if there is no occur-check. Many unifications deal with
terms and variables which were just created by the calling goal. Whilst WAM treats all terms
the same way, disregarding the actual pattern of the calling goal, VAM sees the caller as well.
Many inferences with structured terms are saved from superfluous occur-checks. In [BeeS8§]
a detailed analysis and examples with no or reduced efforts for occur-checks can be found.
VAM behaves with respect to occur-check similar to the extended WAM of [Bee88], designed
for hardware implementation. There are cases where VAM performs avoidable occur-checks
and trail checks and vice versa. Beer’s overheads are due to the argument register bottleneck.
Our’s are due to the inability of VAMyp to let head variables uninitialized beyond the head
(similar to WAM). Some of Beer’s techniques could be adopted to VAM. A detailed comparison

is beyond the scope of this paper.

4.3 Garbage collection

VAM allocates fewer data structures on the copy stack. In VAM, garbage is caused by inter-
mediate structured terms only. (If there are no put_unsafe instructions). Marking starts from
the environment stack. No registers have to be restored from choice points. However, vari-
ables within environments may not be completely initialized at marking time because ~fst*
instructions appear anywhere in a clause. A simple analysis of the whole clause is required,
already performed at compile time. For the remaining operations refer to [Br84, PiB85, Ap88g].

4.4 Extensions to unification and inference, freeze/2

Owing to the many Prolog variations in supporting constraints, a new approach to integrating
such extensions was developed. In [Ne90] one of the authors presented metastructures, a small
extension of Prolog which serves the efficient implementation of meta-logical (e.g. freeze/2)
and constraint-based extensions. All extensions are defined in Prolog, but efficiency is still
comparable to a specialized constraint language. Concerning the abstract machine, we need
to execute after the head additional goals triggered by unification. The temporary variables,
comparatively few in number, have to be saved, similar to put_unsafe’s in WAM. No ad-
ditional stacks were introduced as in [vC86]. For ordinary programs, a system supporting
metastructures is at the very most 5% slower than a system without.

4.5 Compilation to VAM,p

Having only one instruction pointer, VAM;p is a model suitable for subroutine threaded or
inline code compilation. The instructions to be executed by VAM; p are derived by combining
the VAM instructions at compile time. In general a combined instruction has two operands, one
belonging to the goal and one belonging to the head. Because combinations with constants can
be reduced to true or false during compile time, only instructions where at least one operand
is a variable are necessary. Furthermore, the VAM;p does not need temporary variables. The
first unification with a temporary variable is delayed until the next unification involving the
same variable. The unification partners of the temporary variable are then unified directly
with each other. The call of a subgoal is compiled to a cascade of if-instructions for each
head of the different clauses. The if-instruction is followed by the unify-instructions for the
arguments and a call-instruction (goto-instruction) to the body of the clause. If the clause is
a fact, a goto-instruction to the continuation goal follows the unify instructions.

During the compilation of the subgoal-call, the following optimizations should be per-
formed: If the leading parts of alternative heads are the same, they need not be re-evaluated
on backtracking. On shallow backtracking, the choice point registers do not need to be re-
stored, because it can be determined at compile time whether the trail or copy stacks will be
modified. The pointer to the alternative clauses is contained in the instructions.

If assert/2 or retract/2 is executed in the VAM;p, all clauses containing a call to the
changed procedure must be recompiled. For a meta-call in VAM;p, code has to be generated
for an appropriate entry point. It is also necessary to have a source copy or VAMyp copy of
a procedure to compile new clauses and for BIP clause/2. Therefore it can be useful to mix
compiled and interpreted VAM;p and VAM;p code.

Another problem with the VAM;p as inline code is the size of the generated code (see
[De89] for a discussion): If there are n calls to a procedure with m different clauses, n * m

10

unification instructions must be generated, although many instructions will be removed in
compensation. There are several solutions if m * n becomes too big:

e Using subroutine threaded code. On some processors subroutine threaded code is faster
than direct threaded code.

o Mixing VAM;p and VAM;yp code.

e Sharing code. In most cases, the call patterns in the calling subgoals are the same.
Therefore the same code can be shared by different clauses if the continuation is saved
before start of the unification and variables are renumbered in the same way.

o Inserting a dummy clause which establishes a uniform interface. Here, VAM;p comes

close to WAM.

4.6 Last-call optimization

Naive last-call optimization is performed in VAM,p by updating the references and copying
the new stack frame over the old stack frame. This is a time consuming task.

If predicates are static, an interprocedural analysis may derive that the awkward handling
of lastcall can be simplified down to allocating variables of the new environment directly in
the old. If the variables are ordered correctly (which may not be the case in general) the
headframeptr is set equal to goalframeptr. All instructions are decoded as usual, however,
no copying has to be done.

For VAM;p, it is always possible to have the variables for unification in the same stack
frame (headframeptr and goalframeptr are equal). The number of collisions is reduced by
reordering argument unification and renumbering variables. Remaining collisions are resolved
by temporary variables.

The benefit of last-call optimization is that all instructions can be eliminated, when the
operands of the unification are the same. The VIP interpreter uses mixed interpreted VAMyp
and VAM;p code. All clauses are compiled to VAMyp code. Additionally the last goal in a
determinate recursive clause is compiled into VAM; p code using last-call optimization without
copying. This gives fast performance while not wasting memory.

The current VIP assembler interpreter executes at 75 KLIPS on Apollo 3500 (25MHZ
68030), see Fig. 8. 70% of execution time is spent during unification and 30% of the time is
spent during resolution (calling the subgoal and making lastcall optimization). 22% of the
time is used for instruction fetch and decode (fetching the two codes, adding and jump), 15%
of the time is used for operand fetch (loading offsets for variables). Folding instructions and
operands speeds up the interpreter to 90 KLIPS. Changing the current tag representation and
decoding and improved last call optimization should probably speed up the interpreter to 120
KLIPS.

5 Conclusions

Our experience using VAM for the VIP-system has shown that the VAM-model is a realis-
tic alternative to traditional implementation techniques. The new abstract machine utilizes
memory efficiently as well as giving fast execution. The native code variants are comparable
to hand coded programs.

5.1 Comparison with WAM

VAM is different from other implementation models w.r.t.: the stack and instruction pointers,
the content of stack frames and choice points and the implementation of unification.

11

Control Instructions

Mnemonic Arguments ‘ Position ‘ Description
c-nogoal — after fact
c-goal vz, p first subgoal fetch pred. p
P subsequent goal
c-xgoal vz, p, varnr | first subgoal fetch p, 1st arg. indexed
P, VATNT subsequent goal
c-call — end of a goal
c-lastcall — end of clause lastcall optimization

c-metacall

end of meta clause

12

c-nbip vz, n, Args | first subgoal call nondet. BIP n
n, Args subsequent subgoal
c-dbip any subgoal call det. BIP n
c-cut — cut choice points
vz ... size of caller’s variable frame
Argument Instructions
Mnemonic Arguments | Occurrence | Description Position
Head Goal
h-nil g-nil — (]
h-const | g-const aind atom
nr all integer any
h-list g-list h, t list [hlt]
h-struct | g-struct | f/a, Args structure
h-void g-void — once void any
h-fstvar | g-fstvar varnr first variable not last goal
h-nxtvar | g-nxtvar varnr subsequent | variable safe
h-fsttmp | — tmpnr first temporary head only
h-nxttmp | — tmpnr subsequent | temporary head only
— g-fstuns varnr first unsafe last goal only
— g-nxtuns varnr subsequent | unsafe 1st in lastgoal
Figure 6: VAM,p Instructions
Machine Operands | Decoding | Implicit | control trans- | instruct.
yr. Head | Goal operands fer position removal
PLM 77 2 1 h [g] none prefix n
71P 83 1 1 g, h arg-stack postfix y
WAM 83 2 2 g, h none postfix y
VAMp 86 1 1 h+g none prefix n
VAMip 86 || 0 | 2 g _.none | prefix N
Figure 77 Comparison of mstruction tormats

‘ VIP-Version H old ‘ folded ‘ new tag ‘

KLIPS 75 90 120
Unification 70 66 60
Resolution 30 34 40
Instruction fetch || 22 25 35
. Operand fetch | 15| 0 0]
Figure 87 VAN;p timings (folded and new tag estimated)

In contrast to VAM, the WAM splits the process of inference into a parameter passing and
a unification part. To perform an inference, the parameters are passed via argument registers
(put & unify-instructions); the control is transferred to the called clause, and the parameters in
the argument registers are unified with the arguments of the head (get & unify-instructions).
So WAM goes:

put, put, ..., call (p), get, get, ...

VAM makes puts and gets at once. It goes:

c-*goal+c-call (p), g-Any+h-Any, g-Any+h-Any, ...

Whereas WAM creates data superfluously on the copy stack (heap) for unifying ground
structures which are both in goal and head, VAM creates no terms at all for ground programs.
VAM, although a structure-copying interpreter, has properties similar to those of structure
sharing. The different implementations of inferences influence the memory model, memory
utilization and runtime performance.

Because WAM’s argument registers must be saved in the choice point, choice point creation
and backtracking (especially shallow backtracking [Ti88]) is more expensive than in VAM. On
backtracking, VAM has to execute put+get-instructions of the goal and the next clause. WAM
has to execute get-instructions only. WAM’s overhead of restoring the arguments is approxi-
mately equivalent to the “put-overhead” (fetching g-Any’s) of VAM. In general, the VAM has
fewer trailing and dereferencing operations. A WAM with a separate tag for identifying free
and uninitialized variables[Bee88] can yield similar behavior as VAM. However, tag decoding
is costly on a conventional processor ([Bee88] is concerned with hardware implementation).

In the VAM, temporary variables cannot be shared between the head and the first subgoal.
Variables only occurring in the head and the first goal must be stored as permanent (local) in
VAM. Therefore in clauses with more than one subgoal the stack frame is larger for the call
of the first subgoal provided that WAM can share temporaries (typically 2 to 3 Elements).
In determinate clauses with one subgoal VAM’s increased stack frame is removed by last-call
optimization. If such a clause is nondeterminate, VAM’s stack frame is similar in size to
WAM’s bigger choice point.

Stack trimming poses the same problems in both VAM and WAM.

The VAM needs a smaller copy stack size because VAM has no (or fewer) unsafe variables,
and because goal structures need not be stored on the copy stack if they are unified with a
void variable of the head or with a matching structure.

The VAM needs no read/write mode (which is also true for an optimized WAM emula-
tor), since the state of the interpreter represents this mode implicitly. Due to the combined
decoding, the VAM reduces two decoding steps (jump-instructions) to one while the WAM
additionally decodes the argument register.

13

5.2 Further research

The combination of VAMyp and VAM; p seems to be the most promising approach to further
improve VAM. Another improvement in the VAMyp spirit under investigation is to delay
parts of the head unification unless they are needed. In this way, VAM will be even more
similar to a structure sharing interpreter in cases where structure sharing is more efficient
than structure copying. If h-fstvar unifications are delayed in this way, instruction removal
as in a WAM emulator will also be possible for VAM;p without the overhead for shallow
backtracking (saving argument registers).

Acknowledgement

We express our thanks to eva Kithn for her work on VIP. Professor Brockhaus always en-
couraged and supported our project. The anonymous referees helped to improve the paper.
Special thanks for revision to Nigel Horspool.

References

[Ap88] Appleby, K. et al., ‘Garbage Collection for Prolog Based on WAM’, CACM, 31(6), 719-741, (JUNE
1988).

[Bee88] Beer, J., “The Occur-Check Problem Revisited’, JLP 5(3), (1988).

[Bee89] Beer, J., ‘Concepts, Design, and Performance Analysis of a Parallel Prolog Machine’, LNCS, 404,
Springer-Verlag, (OCT. 1989).

[Bel73] Bell, J.R., ‘Threaded Code’, CACM, 16(6), (1973).

[BB83] Bowen, D.L. & Byrd, L.M. & Clocksin, W.F., ‘A portable Prolog compiler’, Proc. Logic Programm.
Workshop, Albufeira, Portugal, (1983).

[Br84] Bruynooghe, M., ‘Garbage Collection in Prolog Interpreters’, Implementations of Prolog, Campbell
(ed.), Ellis Horwood, 259-267, (1984).

[Ca87] Carlsson, M., ‘Freeze, Indexing and Other Implementation Issues in the WAM’, Proc. 4th Int. Conf.
Logic Programm., Melbourne, Lassez, J.-L. (ed.), MIT Press, (1987).

[De89] Demoen, B. & Marién, A., ‘Inline expansion versus threaded code’, 1654@kulcs.kulcs.uucp,
comp.lang.prolog, USENET news, (28 APRIL 1989).

[Ge84] Gelbmann, M., Prolog Interpreter, Diplomarbeit (M.Thesis), Institut fiir Praktische Informatik,
TU Wien,(1984).

[He89] Hermengildo, M., “High-Performance Prolog Implementation:” — The WAM and Beyond, Tutorial at
ICLP89 Lissabon, (1989)

[Kr86] Krall, A., ‘Comparing Implementation Techniques for Prolog’, VIP TR 1802/86/7, TU Wien, (1986).

[Kr87] Krall, A., Tmplementation of a High-Speed Prolog Interpreter’, ACM SIGPLAN, Conf. Interpr. and
Interpretive Techn., 7(7), (1987).

[Kr88] Krall, A., Analyse und Implementierung von Prologsystemen, Dissertation TU Wien, (1988).

[Ki88] Kiihn, e. & Ludwig, Th., ‘VIP-MDBS: A Logic Multidatabase System’, IEEFE Int. Symp. on Databases
in Parallel and Distributed Systems, (1988).

[Ku87] Kursawe, P., ‘How to Invent a Prolog Machine’, New Gen. Comp., 5 (1987) 97-114.

[Me82] Mellish, C.S., ‘An Alternative to Structure Sharing in the Implementation of a Prolog Interpreter’,
Logic Programming, Academic Press, (1982).

[Ne88] Neumerkel, U., ‘Metastrukturen in Prolog’, Abschluffbericht des Jubildumsfondsprojektes Nr.2791 der
Oesterr. Nationalbank, (1988); also VIP TR 1802/88/4, TU Wien, (1988).

[Ne90] Neumerkel, U., ‘Extensible Unification by Metastructures’, Proc. Meta90, Leuven, Belgium, (1990).
[Op85] Oppitz, M., et al., ‘VIP — A Prolog Programming Environment’, TR 1802/85/1, TU-Wien, (1985).
[Pi84] Pichler, Ch., Prolog Ubersetzer, Diplomarbeit (M.Thesis), Inst. f. Prakt. Informatik, TU-Wien, (1984).
[

PiB85] Pittomvills, E., Bruynooghe, M. & Willems, Y.D. ‘Towards a Real Time Garbage Collector for Prolog’,
IEEE 1985 Symp. on Logic Programm., 185-198, (1985).

14

[Ti88] Tick, E., Memory Performance of Prolog Architectures, Kluwer Acad. Publ., (1988).
[vC86] Caneghem, M. van, L’Anatomie de Prolog, InterEditions, Paris, (1986).

[Wa77] Warren, D.H.D., ‘Implementing Prolog — compiling predicate logic programs, Vol. 1 & 2°, D.A.I. Res.
Rep. No. 39 & No. 40, (MAY 1977).

[Wa83] Warren, D.H.D., ‘An Abstract Prolog Instruction Set’, TR 309, SRI Int-1, (1983).

MACROS

min(a,b) a<b?7a:b

deref (ptr) ptr = *ptr

write_frame(ptr, a, b) *ptr = a; *(ptr+il) = b

read_frame(ptr, a, b) a = *ptr; b = *(ptr+1)

copy_frame(scr, dest) *dest = *scr; *(dest+l) = *(scr+1)
clause_address(addr) addr

frame_size(ptr) *(ptr-2)

alternative(ptr) *(ptr-1)

push_choicepoint(s, 1, £, g, h) *(--s) = h; *(--s) = g; #(--s) = £f; *(--s) = 1; 1 =35
pop_choicepoint(l, £, g, h) h = %(1+3); g = #(1+2); £ = *(1+1); 1 = * nl

Figure 9: Makros for VAM,p interpreter

15

for(;;)
switch(*#headptr++ + *goalptr++) {
case c_goal+c_call:
write_frame(headframeptr, goalptr, goalframeptr);
goalframeptr = headframeptr;
goalptr = headptr;
headptr = clause_address(*goalptr++);
headframeptr = stackptr —= frame_size(headptr);
if (alternative(headptr))
push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);
continue;
case c_cut+c_lastcall: case c_cut+c_call:
if (lastchoiceptr < headframeptr)
{deref (lastchoiceptr); stackptr = headframeptr;}
goalptr——;
continue;
case c_goal+c_lastcall:
if (lastchoiceptr < goalframeptr) /# no tail recursion */
{copy_frame(goalframeptr, headframeptr); goalframeptr = headframeptr;}
goalptr = headptr;
headptr = clause_address(*goalptr++);
headframeptr = stackptr —= frame_size(headptr);
if (alternative(headptr))
push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);
continue;
case c_nogoal+c_lastcall:
read_frame(goalframeptr, goalptr, goalframeptr);
case c_nogoal+c_call:
stackptr = min(lastchoiceptr, goalframeptr);
for(;;) {
switch(*goalptr++) {
case c_cut:
while (lastchoiceptr < goalframeptr) deref (lastchoiceptr);
stackptr = goalframeptr;
continue;
case c_nogoal:
read_frame(goalframeptr, goalptr, goalframeptr);
stackptr = min(lastchoiceptr, goalframeptr);
continue;
case c_goal:
headptr = clause_address(*goalptr++);
headframeptr = stackptr —-= frame_size(headptr);
if (alternative(headptr))
push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);

b
break;
b
case h_empty+g_empty: case h_list+g_list: continue;
case h_const+g_const: case h_structuretg_structure:
if (*goalptr++ == *headptr++) continue; /* functor */

default: /* fail */
pop_choicepoint(lastchoiceptr, goalframeptr, goalptr, headptr);
stackptr = min(lastchoiceptr, goalframeptr);
headptr = alternative(headptr);
headframeptr = stackptr —= frame_size(headptr);
if (alternative(headptr))
push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);

Figure 10: A simple VAMyp for ground clauses with /0
16

