
The Vienna Abstract MachineAndreas Krall Ulrich NeumerkelInstitut f�ur Praktische InformatikAbteilung f�ur Programmiersprachen und �UbersetzerbauTechnische Universit�at Wienandi@vip.UUCP ulrich@vip.UUCPAbstractThe Vienna Abstract Machine (VAM) is a Prolog machine developed at the TUWien.In contrast to the standard implementation technique (Warren Abstract Machine {WAM), an inference in VAM is performed by unifying the goal and head immediately,instead of bypassing arguments through a register interface. We present two implemen-tations for VAM: VAM2P and VAM1P . VAM2P is well suited for an intermediate codeemulator (e.g. direct threaded code) which uses two instruction pointers for both goalcode and head code. During an inference VAM2P fetches one instruction from the goalcode, and one instruction from the head code and executes the combined instruction.More optimization is therefore possible, since information about the calling goal and thehead of the clause is available at the same time. VAM performs cheap shallow back-tracking, needs less dereferencing and trailing and implements a faster cut. In a Prologwith the occur-check, VAM omits many unnecessary operations. VAM1P is designed fornative code compilation. It combines instructions at compile time and supports severaloptimizations, such as fast last-call optimization. In this paper we present the VAM indetail and compare it with existing machines.1 IntroductionFive years ago, we began on research in the area of implementation of logic programming lan-guages. A small, slow and portable interpreter [Ge84] and a fast compiler based on the WAM(Warren Abstract Machine [Wa83]) for a commercial Prolog System [Pi84] were developed.With this experience the VIP research project [Op85] was started. Our project developed newinterpreter and compiler implementation techniques [Kr87], extensions for meta programmingand constraints [Ne88, Ne90], multi user implementations of Prolog with a shared database,database systems [K�u88] etc. One of the results of the project was the design and implemen-tation of the VAM (Vienna Abstract Machine).In order to outline the major di�erences between VAM and WAM, we will �rst presentan abstract machine for restricted clauses in Chapter 2. This simplistic model is general-ized in Ch. 3 to the basic VAM, focusing on the emulator implementation VAM2P and itsbasic optimization schemes. Further aspects of VAM are dealt with in Ch. 4. In particular:meta-call, garbage collection, occur-check, delay mechanisms and constraints. Finally, moresophisticated optimizations are presented: the native code model VAM1P and improved call-ing sequences for a hybrid between VAM2P and VAM1P . Ch. 5 gives a brief comparison withWAM and describes future work on VAM currently under investigation.1

clause(Head,Goals) --> head(Head), body(Goals).body(true) --> [c-nogoal].body(Goals) --> goallist(Goals), [c-lastcall], {Goals \= true}.goallist(Goal) --> goal(Goal), {Goal \= (_,_)}.goallist((GoalA,GoalB)) --> goallist(GoalA), [c-call], goallist(GoalB).head(Head) --> [F/A], {functuniv(Head,F,A,L)}, argumentlist(h,L).goal(Goal) --> [c-goal,F/A], {functuniv(Goal,F,A,L)}, argumentlist(g,L).argument(X,Const) --> [X-const,Const], {const(Const)}.argument(X,Str) --> [X-struct,F/A], {functuniv(Str,F,A,L)}, argumentlist(X,L).argumentlist(X,[]) --> [].argumentlist(X,[E|Es]) --> argument(X,E), argumentlist(X,Es).functuniv(Funct,F,A,L) :- functor(Funct,F,A), Funct =.. [F|L].Figure 1: Clause representation in VAM for ground clauses2 A simpli�ed model for ground clausesInitially, we restrict clauses to those containing no variables at all. While this is not a realisticsubset of Prolog for practical applications, it serves to clarify the fundamental di�erencesbetween WAM and VAM. Later on, we will relax this restriction to programs, where variablesare allowed in clauses, provided they will unify with other variables or constants only.2.1 Representation of clausesThe representation of clauses in VAM intermediate code is very close to their syntactic repre-sentation. By and large, terms are translated to a
at pre�x code. In a clause three di�erentkinds of codes are used:control codes, (c-Any) are used to embrace goals. A goal starts with c-goal hpi and eitherends with c-call if another goal is thereafter or ends with c-lastcall if it is the lastgoal in a clause. If the clause is a fact we have no goal at all denoted by c-nogoal.head codes, (h-Any) are used to encode terms in the arguments of a clause's head. Thearguments are translated into
at pre�x code.goal codes, (g-Any) encode terms in goals. The structure is the same as for head codes.In Fig. 1 the complete (bijective)mapping between ground clauses and VAMcode is de�nedby a De�nite Clause Grammar (DCG).2.2 Speci�cation of VAMVAM instructions di�er fundamentally from WAM instructions. They can be understoodonly by their combination at runtime. The real instruction set of VAM is the set of all validcombinations of instructions. Taking the translation of Prolog clauses to VAM code and asimple meta-interpreter as input, the VAM could probably be derived automatically by partial2

evaluation (deduction)|being in the style of [Ku87]. However, the abstract interpreter as wellas the complete VAM was designed by hand.In Fig. 2 an abstract interpreter for VAM code is given. The speci�cation describes theprocess of uni�cation and (determinate) control in detail, but|similar to [BB83]|it doesnot explicitly cover backtracking aspects. A program to be interpreted is represented bythe vam clause/1 facts. A fact vam clause([PredName|Cs]) consists of the predicate nameand the VAM code translated in Fig. 1. If a predicate consists of several clauses the goal...,vam clause([NextPred|NHs]),...will yield several solutions. Backtracking is thereforeimplicit in the speci�cation. Later on in Ch. 2.3, in the discussion of actual implementations,backtracking will also be dealt with explicitly.The procedural behavior of VAM is described by the proof tree of the logic program. Firsta query is translated like the body of a clause, then the corresponding predicate is fetched andthe interpreter is �nally called.The interpreter consists of a (tail recursive) predicate vam prove/3 which holds the inter-preter state consisting of: the list of remaining head codes, the list of remaining goal codesand a continuation stack for nested calls. The process of proving a goal consists of two majorsteps corresponding to the di�erent kinds of codes (Ch. 2.1): uni�cation and resolution. Byconsequence an iteration in the interpreter vam prove/3 (a recursive call) can be performedin two ways, either via unification/3 or resolution/5 respectively1. The state transitionsare speci�ed by facts in order to emphasize which states are changed. Before trying to provethese facts, the interpreter takes the �rst elements of both lists (head and goal code) and com-bines them (symbolized by the functor +/2) in order to pass them to the facts. The e�ectiveinstructions HeadCode+GoalCode are derived by generating all valid combinations of head andgoal codes.unification(Instruction,DifflistHead,DifflistGoal) An attempt is made to unify cor-responding arguments of head and goal; the remaining codes are passed back to vam prove/3.Combinations such as h-struct+g-const are not stated, they simply fail. Note thatunification/3 changes only the two code lists. Later on we will see that uni�cation canbe performed by incrementing and adding two pointers. Another observation evidentfrom the speci�cation is that arbitrarily nested structures which occur both in the headand in the goal neither need a push down stack nor a counter to unify their argumentssince the functors F/A do not insert their arity into vam prove/3's state.resolution(Instruction,HeadCode,DifflistGoal,DifflistStack,NextPred) A clause ofNextPred is selected by the interpreter (see goal vam clause/1). If a fact in the headwas proved and if the body contains another subgoal (c-nogoal+c-call), the new goalis selected. The stack is not a�ected at all. If the head uni�es and the goal was thelast in the caller's clause (c-goal+c-lastcall), the head code will become the new goalcode. Again, the stack is not altered (last-call optimization). If the head uni�es andthere is another goal in the caller's clause (c-goal+c-call), then the continuation ispushed onto the stack, the head code becomes the new goal code and the interpreterswitches to the new clause's head. The stack needs to be popped if a fact uni�es, and ifthe goal is the last in the caller's clause (c-nogoal+c-lastcall). Execution proceedswith the popped continuation. If the stack is empty, the interpreter halts successfully.There are two straightforward approaches in implementing our speci�cation model:� Take the +'s literally, by combining head and goal at runtime. This abstract machineneeds two instruction pointers, henceforth called VAM2P . It will lead to the VAM1Note that there is exactly one or no match for a correct goal vam prove/33

emulator using direct threaded code, to be discussed in the next chapter.� Combine the instructions earlier|at compile time. Only one instruction pointer is there-fore required. Such a machine is called VAM1P . The instruction pointer can easily bemapped to the program counter of a processor. VAM1P will lead to a subroutine threadedcode implementation and further on to an inline code compiler.When comparing the VAM speci�cation to the ZIP-speci�cation [BB83] we see that ZIPneeds an intermediate list for passing arguments. First, their arguments are pushed onto a listand then this list is uni�ed with the head. Although ZIP's instructions are similar to VAM's,they have an implicit operand|the argument stack (refer to Fig. 7). In Fig. 3 some of thecases from uni�cation of arbitrary clauses is given.Note that PLM [Wa77] behaves in the same way as VAM for ground clauses. But ifstructured terms with variables are encountered (e.g. ...,p(X/Y),...) PLM creates alwaysthe variables for the molecule on the global stack.The VIP project focused on a compact representation of clauses and we therefore wereconcerned mainly with VAM2P . Yet we are aware of having inline code as an option. In thesubsequent sections VAM2P will be presented. VAM1P will be covered later in Ch. 4.5.2.3 Implementation of VAM2P for ground clauses2.3.1 Memory modelThe basic instructions for ground Prolog clauses are implemented in Fig. 10. The subset ofthe VAM requires 6 registers and a stack. Two registers are instruction pointers to the code.During uni�cation goalptr points to the goal code and headptr to the head code. (The stackgrows downwards.) A stack frame contains the continuation code pointer (the return addressin a procedural language), and the continuation frame pointer (dynamic link). The stackptrmarks the top of the stack. The goalframeptr points to the stack frame of the clause whichcontains the calling subgoal. The headframeptr points to the stack frame of the called clause.The lastchoiceptr points to the most recent choice point. A choice point contains pointersto: the previous choice point, the parent stack frame, the calling goal and to the called clause(used to retrieve alternatives).2.3.2 Uni�cationDuring uni�cation one instruction is fetched for the goal arguments and one instruction isfetched for the head arguments. To enable fast decoding of the instructions, the sum of a goalinstruction and a head instruction must be unique. Uni�cation for ground clauses is reducedto fetching the next instruction or comparing the instruction arguments.After uni�cation of the head, at the call of the �rst subgoal in a clause, the continua-tion pointers goalframeptr and goalptr are saved in the clause's stack frame (marked byheadframeptr). The head pointers are copied to the goal pointers; goalptr now points tothe �rst subgoal and the head stack frame has become the stack frame of the calling goal.headptr must be set to the called clause thereafter. The simple implementation assumesthat the absolute address of the procedure's �rst clause is stored as an argument of c-goal.In a realistic implementation, the macro clause address implements clause indexing. Thestack frame for the called clause is allocated by decrementing stackptr by frame size. Forground clauses a constant size is su�cient. When there are variables and when we di�erentiatebetween facts and rules, frame size depends on the clause and is coded at the start of theclause. The absolute address of an alternative clause is coded at the beginning of a clause too.4

% unification/3: The unification instructions%% unification(Head+Goal, HeadsIn-HeadsOut, GoalsIn-GoalsOut)unification((h-const)+(g-const), [Const|Hs]-Hs, [Const|Gs]-Gs).unification((h-struct)+(g-struct), [F/A|Hs]-Hs, [F/A|Gs]-Gs).% resolution/5: Goal selection%% resolution(Head+Goal, Heads, GoalsIn-GoalsOut, StackIn-StackOut, NextPred)resolution((c-nogoal)+(c-call), [], [c-goal,F/A|Gs]-Gs, St-St, F/A).resolution((c-goal)+(c-lastcall), [F/A|Hs], []-Hs, St-St, F/A).resolution((c-goal)+(c-call), [F/A|Hs], Gs-Hs, St-[Gs|St], F/A).resolution((c-nogoal)+(c-lastcall), [], []-Gs, [[c-goal,F/A|Gs]|St]-St, F/A).% vam_prove/3: Abstract interpreter%% vam_prove(HeadList,GoalList,Stack)vam_prove([c-nogoal],[c-lastcall],[]).vam_prove([H|Hs],[G|Gs],St) :-unification(H+G,Hs-NHs,Gs-NGs),vam_prove(NHs,NGs,St).vam_prove([H|Hs],[G|Gs],St) :-resolution(H+G,Hs,Gs-NGs,St-NSt,NextPred),vam_clause([NextPred|NHs]),vam_prove(NHs,NGs,NSt).query(Query) :-parse(body(Query),[c-goal,F/A|GoalCode]), % translationvam_clause([F/A|HeadCode]),vam_prove(HeadCode,GoalCode,[]).Figure 2: An abstract interpreter for VAMAgain in a realistic implementation, the macro alternative is responsible for clause in-dexing. If alternative clauses exist, a choice point is created. The execution continues withthe uni�cation of arguments of the calling goal and the head of the called clause.2.3.3 Backtracking and cutOn failure, the choice point is popped, the top of stack is adjusted, the alternative clauseis selected, a stack frame is allocated and|if another alternative exists|the choice point ispushed back. If the stack frames have the same size (which is usually the case) only thepointer to the alternative clauses must be pushed again. However, because cut occurs morefrequently than pushing the choice point a second time, we push the stack frame before thechoice point, allowing a faster cut. 5

% extension to DCG for <<interpretation>>argument(X,Var) --> [X-fstvar,Var]. % assign/initializeargument(X,Var) --> [X-nxtvar,Var]. % skip/assign/unifyargument(X,_) --> [X-void]. % skip% remaining unification instructions% excerpt from 25 combinationsunification((h-void)+(g-void),Hs-Hs,Gs-Gs). % skipunification((h-fstvar)+(g-void),[HVarNr|Hs]-Hs,Gs-Gs). % init h-fstvarunification((h-fstvar)+(g-fstvar),[Var|Hs]-Hs,[Var|Gs]-Gs). % init bothunification((h-fstvar)+(g-nxtvar),[Var|Hs]-Hs,[Var|Gs]-Gs). % pass argumentunification((h-const)+(g-fstvar),[Const|Hs]-Hs,[Const|Gs]-Gs). % no trail checkunification((h-const)+(g-nxtvar),[Const|Hs]-Hs,[Const|Gs]-Gs). % trail checkunification((h-nxtvar)+(g-nxtvar),[Var|Hs]-Hs,[Var|Gs]-Gs). % full unificationunification((h-void)+(g-struct),Hs-Hs,[F/A|Gs]-NGs) :- % skip goal,parse_dl(argument(g,_),[g-struct,F/A|Gs]-NGs). % init some g-fstvarunification((h-struct)+(g-fstvar),[F/A|Hs]-NHs,[GVarNr|Gs]-Gs) :- % no trail checkparse_dl(argument(h,GVarNr),[h-struct,F/A|Hs]-NHs).Figure 3: Full VAM2Pspeci�cation2.3.4 Last-call optimizationIn ground clauses, last-call optimization is very simple. The goal stack frame is used for thecalled clause. If the called clause is nondeterminate, the continuation of the callers clause iscopied to the stack frame of the called clause. This avoids useless dereferencing when returningfrom a fact. If the end of a fact is reached (c-nogoal), stackptr is adjusted and the nextinstruction code following the goal is fetched. Depending on the fetched code one of threeinstructions is executed: a c-cut instruction (dereferencing lastchoiceptr until it becomesgreater then the active stack frame), a c-nogoal instruction (going up one stack frame) or ac-goal instruction.3 Basic VAM3.1 Representation of clausesThe control instructions are basically the same as for ground clauses (see Fig. 6). Variablesare classi�ed in VAM by their occurrences in heads or goals. For non-void variables (occur-ring more than once in the clause) the �rst occurrence is distinguished from the subsequentoccurrences. For details refer to Fig. 6. Variables occurring in the head and in subsequentdeterminate BIPs (Built-In Predicates) are temporary. They are not saved beyond an infer-ence. All other variables are stored in an environment. For example, the predicate member/2is translated as follows:member(T, [T | _]).[member/2,h-fsttmp, 0, h-list, h-nxttmp, 0, h-void, c-nogoal]member(X, [_ | Y]) :-[member/2,h-fstvar, 1, h-list, h-void, h-fstvar, 2,member(X, Y).c-goal, member/2, g-nxtvar, 1, g-nxtvar, 2, c-lastcall]6

goalptr code of caller's goalgoalframeptr stack frame of callerheadptr code of callee's headheadframeptr stack frame of calleestackptr top of environment stackcopyptr top of copystackchoiceptr top of trailtrailptr top of traillastchoiceptr last choice pointlastcopyptr (for trail check only)
variables local variables d&n... d&ngoalptr' continuation code ptr. d&ngoalframeptr' continuation frame ptr. d&ntrailptr' ncopyptr' see lastcopyptr nheadptr' alternative ngoalptr' restart code ptr. ngoalframeptr' restart frame ptr. nlastchoiceptr' nFigure 4: Registers and stack frames of VAM2P3.2 Memory modelOur implementation of VAM is based on structure copying [Me82]. The representation ofdynamic terms is similar to other structure copying implementations. A WAM could useVAMs term representation [Kr88] and vice versa. The VAM uses three stacks like [Br84] (referto Fig. 5). The environment stack contains the stack frames which hold local variables andcontrol information. It is either a determinate or a nondeterminate stack frame (choice point),see Fig. 4.To enable last-call optimization, lists and structures are stored in the copy stack. Variablebindings are stored on the trail. Space is also needed for temporary variables and the Prologcode (heap). To enable fast comparison of pointer directions the stacks are ordered the wayshown in Fig. 5. The basic register set is given in Fig. 4.3.3 Implementation of resolution and uni�cationThe intermediate code interpreter written in C uses a switch statement. The assemblerversion uses direct threaded code [Bel73]. In the assembler version, the codes for the goaland head instructions are chosen, so that the sum of two instructions is the address of theuni�cation code. The advantage of the parallel uni�cation is that only one decoding step isnecessary for two instructions. On a CISC, one jump instruction is saved compared to animplementation of the WAM. The following example shows instruction fetch on a CISC.Rn = *goalptr++; fetch goal instructionRn += *headptr++; add head instructionjump (Rn);On most RISC-processors there is no auto-increment addressing, but there is normallya subroutine call that stores the return address in a register. The following scheme enablescompilation of VAM2P to a mixture of native code and direct threaded code. The goal compilesinto 2 to 4 instructions. The head is still in intermediate code.headaddr = *headptr;<goal operand fetch>jalr goalptr, (headaddr[g_code]);h_code+g_code:<head operand fetch + action>headptr += opsize;jump (goalptr); 7

3.4 OptimizationsThe basic VAM2P implements the following optimizations: variable classi�cation, clause in-dexing and last-call optimization. For the sake of simplicity, the basic VAM2P uses the �rstargument for clause indexing. Only g-nxtvar is used for clause indexing. (Constants can beoptimized by program transformation.)Na��ve last-call optimization is performed as described in [Br84]: VAM uni�es head andgoal and executes subsequent determinate BIPs (e.g. !/0). When another goal is encountered(see c-goal, vz, p in Fig. 6) the stack frame of the called clause is copied over the caller'sframe, if there are no alternatives.The process of copying moves cells containing pointers. In general, two passes (updatingand copying) are required for last-call optimization due to references into the deallocated frameand due to references into the frame to be moved. Restrictions on the following referencesreduce overheads down to a single copying pass:References within the head frame Picking away temporaries in the goal prevents theircreation throughout an inference.References to the goal frame References within a frame cause no harm until the last goal.Remaining variables referring to free cells in the goal frame are stored onto the copy stackwhen encountered during the last goal's inference, similar to WAM's put unsafe.There are no references within the head frame, so we can hold all head variables (and headtemporaries) in registers. Instead of copying an argument into the head frame and recopyingit after the inference, all head variables|now held in registers|are placed in the environment.The last-call optimization no longer imposes overheads. The register set is simply stored inplace of the old frame. Note that having registers for head variables does not require unsafevariables.The instruction fetch overhead in an emulator can be reduced by augmenting the instruc-tion set with new folded instructions. This technique is common practice, when only oneinstruction pointer is required (e.g. WAM emulator). The VAM2P cannot use this techniqueas exhaustively as the WAM, because a new instruction introduced in the head needs to be en-coded Ngoal times and vice versa! On the other hand it is easy to argue that|because VAM2Pinstructions are folded at runtime|the instruction set is saturated already. Some extensionsto list instructions are considered worth the e�ort. Folded are: (h-list, h-fstvar), (h-list,h-nxtvar), (h-list, h-fsttmp) and (h-list, h-nxttmp).4 Extensions and Optimizations4.1 Meta-callThe meta-call enables dynamic calls to goals by a term. Terms need to be converted intothe goal representation. While the WAM passes the structure's arguments into the argumentregisters, the VAM needs a di�erent approach because VAM executes both goal and headinstructions together. A na��ve solution implements a meta-call along with the data base thathas to support immediate or logical update view:metacall(Goal) :-functor(Goal,F,A), functor(NGoal,F,A),assert(dummy(NGoal), (retract(dummy(_)), !, NGoal)),dummy(Goal). 8

#"#"
copystack [a|Z']trail stack Z' (aenviron-mentstack ?-X: [a|Z']p/1Z: Z'database p([a|Z]) :- q(s(Z)).q(s(b)).q(s(a)).temporary variablesFigure 5: Memory modelA clause \dummy(goal(X)) :- retract(dummy()), !, goal(X)." is asserted by thegoal metacall(goal(Any)). Optimizing metacall/1 in order to avoid the data base op-erations is straightforward. The term representation is reused as a substitute for an environ-ment. The goalframeptr is set to the representation of the term goal(Any) on the copystack, then goalptr is set to a dummy goal code consisting of a sequence of g-nxtvars anda closing c-metacall. The dummy goal code is reusable for goals with di�erent functors.c-metacall is similar to c-lastcall. While c-lastcall occasionally overwrites the caller'senvironment, c-metacall must not overwrite it because the caller's environment (pointed toby goalframeptr) is located on the copy stack representing the term goal(Any) at that.Summarizing, VAM initializes the stack pointers (an operation independent from the num-ber of arguments) and proceeds with decoding the goal and head instructions as usual. Prob-lems concerning treatment of !/0 within a meta-call are as in WAM.4.2 Occur-checkDue to e�ciency nearly all Prolog implementations perform uni�cation without the occur-check. In general, the occur-check slows down uni�cation by an overhead linear in the terms'sizes, whereas, constant time is required if there is no occur-check. Many uni�cations deal withterms and variables which were just created by the calling goal. Whilst WAM treats all termsthe same way, disregarding the actual pattern of the calling goal, VAM sees the caller as well.Many inferences with structured terms are saved from super
uous occur-checks. In [Bee88]a detailed analysis and examples with no or reduced e�orts for occur-checks can be found.VAM behaves with respect to occur-check similar to the extended WAM of [Bee88], designedfor hardware implementation. There are cases where VAM performs avoidable occur-checksand trail checks and vice versa. Beer's overheads are due to the argument register bottleneck.Our's are due to the inability of VAM2P to let head variables uninitialized beyond the head(similar to WAM). Some of Beer's techniques could be adopted to VAM. A detailed comparison9

is beyond the scope of this paper.4.3 Garbage collectionVAM allocates fewer data structures on the copy stack. In VAM, garbage is caused by inter-mediate structured terms only. (If there are no put unsafe instructions). Marking starts fromthe environment stack. No registers have to be restored from choice points. However, vari-ables within environments may not be completely initialized at marking time because -fst*instructions appear anywhere in a clause. A simple analysis of the whole clause is required,already performed at compile time. For the remaining operations refer to [Br84, PiB85, Ap88].4.4 Extensions to uni�cation and inference, freeze/2Owing to the many Prolog variations in supporting constraints, a new approach to integratingsuch extensions was developed. In [Ne90] one of the authors presented metastructures, a smallextension of Prolog which serves the e�cient implementation of meta-logical (e.g. freeze/2)and constraint-based extensions. All extensions are de�ned in Prolog, but e�ciency is stillcomparable to a specialized constraint language. Concerning the abstract machine, we needto execute after the head additional goals triggered by uni�cation. The temporary variables,comparatively few in number, have to be saved, similar to put unsafe's in WAM. No ad-ditional stacks were introduced as in [vC86]. For ordinary programs, a system supportingmetastructures is at the very most 5% slower than a system without.4.5 Compilation to VAM1PHaving only one instruction pointer, VAM1P is a model suitable for subroutine threaded orinline code compilation. The instructions to be executed by VAM1P are derived by combiningthe VAM instructions at compile time. In general a combined instruction has two operands, onebelonging to the goal and one belonging to the head. Because combinations with constants canbe reduced to true or false during compile time, only instructions where at least one operandis a variable are necessary. Furthermore, the VAM1P does not need temporary variables. The�rst uni�cation with a temporary variable is delayed until the next uni�cation involving thesame variable. The uni�cation partners of the temporary variable are then uni�ed directlywith each other. The call of a subgoal is compiled to a cascade of if-instructions for eachhead of the di�erent clauses. The if-instruction is followed by the unify-instructions for thearguments and a call-instruction (goto-instruction) to the body of the clause. If the clause isa fact, a goto-instruction to the continuation goal follows the unify instructions.During the compilation of the subgoal-call, the following optimizations should be per-formed: If the leading parts of alternative heads are the same, they need not be re-evaluatedon backtracking. On shallow backtracking, the choice point registers do not need to be re-stored, because it can be determined at compile time whether the trail or copy stacks will bemodi�ed. The pointer to the alternative clauses is contained in the instructions.If assert/2 or retract/2 is executed in the VAM1P , all clauses containing a call to thechanged procedure must be recompiled. For a meta-call in VAM1P , code has to be generatedfor an appropriate entry point. It is also necessary to have a source copy or VAM2P copy ofa procedure to compile new clauses and for BIP clause/2. Therefore it can be useful to mixcompiled and interpreted VAM2P and VAM1P code.Another problem with the VAM1P as inline code is the size of the generated code (see[De89] for a discussion): If there are n calls to a procedure with m di�erent clauses, n � m10

uni�cation instructions must be generated, although many instructions will be removed incompensation. There are several solutions if m � n becomes too big:� Using subroutine threaded code. On some processors subroutine threaded code is fasterthan direct threaded code.� Mixing VAM1P and VAM2P code.� Sharing code. In most cases, the call patterns in the calling subgoals are the same.Therefore the same code can be shared by di�erent clauses if the continuation is savedbefore start of the uni�cation and variables are renumbered in the same way.� Inserting a dummy clause which establishes a uniform interface. Here, VAM1P comesclose to WAM.4.6 Last-call optimizationNa��ve last-call optimization is performed in VAM2P by updating the references and copyingthe new stack frame over the old stack frame. This is a time consuming task.If predicates are static, an interprocedural analysis may derive that the awkward handlingof lastcall can be simpli�ed down to allocating variables of the new environment directly inthe old. If the variables are ordered correctly (which may not be the case in general) theheadframeptr is set equal to goalframeptr. All instructions are decoded as usual, however,no copying has to be done.For VAM1P , it is always possible to have the variables for uni�cation in the same stackframe (headframeptr and goalframeptr are equal). The number of collisions is reduced byreordering argument uni�cation and renumbering variables. Remaining collisions are resolvedby temporary variables.The bene�t of last-call optimization is that all instructions can be eliminated, when theoperands of the uni�cation are the same. The VIP interpreter uses mixed interpreted VAM2Pand VAM1P code. All clauses are compiled to VAM2P code. Additionally the last goal in adeterminate recursive clause is compiled into VAM1P code using last-call optimization withoutcopying. This gives fast performance while not wasting memory.The current VIP assembler interpreter executes at 75 KLIPS on Apollo 3500 (25MHZ68030), see Fig. 8. 70% of execution time is spent during uni�cation and 30% of the time isspent during resolution (calling the subgoal and making lastcall optimization). 22% of thetime is used for instruction fetch and decode (fetching the two codes, adding and jump), 15%of the time is used for operand fetch (loading o�sets for variables). Folding instructions andoperands speeds up the interpreter to 90 KLIPS. Changing the current tag representation anddecoding and improved last call optimization should probably speed up the interpreter to 120KLIPS.5 ConclusionsOur experience using VAM for the VIP-system has shown that the VAM-model is a realis-tic alternative to traditional implementation techniques. The new abstract machine utilizesmemory e�ciently as well as giving fast execution. The native code variants are comparableto hand coded programs.5.1 Comparison with WAMVAM is di�erent from other implementation models w.r.t.: the stack and instruction pointers,the content of stack frames and choice points and the implementation of uni�cation.11

Control InstructionsMnemonic Arguments Position Descriptionc-nogoal | after factc-goal vz, p �rst subgoal fetch pred. pp subsequent goalc-xgoal vz, p, varnr �rst subgoal fetch p, 1st arg. indexedp, varnr subsequent goalc-call | end of a goalc-lastcall | end of clause lastcall optimizationc-metacall | end of meta clausec-nbip vz, n, Args �rst subgoal call nondet. BIP nn, Args subsequent subgoalc-dbip any subgoal call det. BIP nc-cut | cut choice pointsvz ... size of caller's variable frameArgument InstructionsMnemonic Arguments Occurrence Description PositionHead Goalh-nil g-nil | []h-const g-const aind atomnr all integer anyh-list g-list h, t list [h|t]h-struct g-struct f=a, Args structureh-void g-void | once void anyh-fstvar g-fstvar varnr �rst variable not last goalh-nxtvar g-nxtvar varnr subsequent variable safeh-fsttmp | tmpnr �rst temporary head onlyh-nxttmp | tmpnr subsequent temporary head only| g-fstuns varnr �rst unsafe last goal only| g-nxtuns varnr subsequent unsafe 1st in lastgoalFigure 6: VAM2P InstructionsMachine Operands Decoding Implicit control trans- instruct.yr. Head Goal operands fer position removalPLM 77 2 1 h [g] none pre�x nZIP 83 1 1 g, h arg-stack post�x yWAM 83 2 2 g, h none post�x yVAM2P 86 1 1 h+g none pre�x nVAM1P 86 0 2 g none pre�x yFigure 7: Comparison of instruction formats12

VIP-Version old folded new tagKLIPS 75 90 120Uni�cation 70 66 60Resolution 30 34 40Instruction fetch 22 25 35Operand fetch 15 0 0Figure 8: VAM2P timings (folded and new tag estimated)In contrast to VAM, the WAM splits the process of inference into a parameter passing anda uni�cation part. To perform an inference, the parameters are passed via argument registers(put & unify-instructions); the control is transferred to the called clause, and the parameters inthe argument registers are uni�ed with the arguments of the head (get & unify-instructions).So WAM goes:put, put, ..., call hpi, get, get, ...VAM makes puts and gets at once. It goes:c-*goal+c-call hpi, g-Any+h-Any, g-Any+h-Any, ...Whereas WAM creates data super
uously on the copy stack (heap) for unifying groundstructures which are both in goal and head, VAM creates no terms at all for ground programs.VAM, although a structure-copying interpreter, has properties similar to those of structuresharing. The di�erent implementations of inferences in
uence the memory model, memoryutilization and runtime performance.Because WAM's argument registers must be saved in the choice point, choice point creationand backtracking (especially shallow backtracking [Ti88]) is more expensive than in VAM. Onbacktracking, VAM has to execute put+get-instructions of the goal and the next clause. WAMhas to execute get-instructions only. WAM's overhead of restoring the arguments is approxi-mately equivalent to the \put-overhead" (fetching g-Any's) of VAM. In general, the VAM hasfewer trailing and dereferencing operations. A WAM with a separate tag for identifying freeand uninitialized variables[Bee88] can yield similar behavior as VAM. However, tag decodingis costly on a conventional processor ([Bee88] is concerned with hardware implementation).In the VAM, temporary variables cannot be shared between the head and the �rst subgoal.Variables only occurring in the head and the �rst goal must be stored as permanent (local) inVAM. Therefore in clauses with more than one subgoal the stack frame is larger for the callof the �rst subgoal provided that WAM can share temporaries (typically 2 to 3 Elements).In determinate clauses with one subgoal VAM's increased stack frame is removed by last-calloptimization. If such a clause is nondeterminate, VAM's stack frame is similar in size toWAM's bigger choice point.Stack trimming poses the same problems in both VAM and WAM.The VAM needs a smaller copy stack size because VAM has no (or fewer) unsafe variables,and because goal structures need not be stored on the copy stack if they are uni�ed with avoid variable of the head or with a matching structure.The VAM needs no read/write mode (which is also true for an optimized WAM emula-tor), since the state of the interpreter represents this mode implicitly. Due to the combineddecoding, the VAM reduces two decoding steps (jump-instructions) to one while the WAMadditionally decodes the argument register. 13

5.2 Further researchThe combination of VAM2P and VAM1P seems to be the most promising approach to furtherimprove VAM. Another improvement in the VAM2P spirit under investigation is to delayparts of the head uni�cation unless they are needed. In this way, VAM will be even moresimilar to a structure sharing interpreter in cases where structure sharing is more e�cientthan structure copying. If h-fstvar uni�cations are delayed in this way, instruction removalas in a WAM emulator will also be possible for VAM2P without the overhead for shallowbacktracking (saving argument registers).AcknowledgementWe express our thanks to eva K�uhn for her work on VIP. Professor Brockhaus always en-couraged and supported our project. The anonymous referees helped to improve the paper.Special thanks for revision to Nigel Horspool.References[Ap88] Appleby, K. et al., `Garbage Collection for Prolog Based on WAM', CACM, 31(6), 719-741, (JUNE1988).[Bee88] Beer, J., `The Occur-Check Problem Revisited', JLP 5(3), (1988).[Bee89] Beer, J., `Concepts, Design, and Performance Analysis of a Parallel Prolog Machine', LNCS, 404,Springer-Verlag, (OCT. 1989).[Bel73] Bell, J.R., `Threaded Code', CACM, 16(6), (1973).[BB83] Bowen, D.L. & Byrd, L.M. & Clocksin, W.F., `A portable Prolog compiler', Proc. Logic Programm.Workshop, Albufeira, Portugal, (1983).[Br84] Bruynooghe, M., `Garbage Collection in Prolog Interpreters', Implementations of Prolog, Campbell(ed.), Ellis Horwood, 259-267, (1984).[Ca87] Carlsson, M., `Freeze, Indexing and Other Implementation Issues in the WAM', Proc. 4th Int. Conf.Logic Programm., Melbourne, Lassez, J.-L. (ed.), MIT Press, (1987).[De89] Demoen, B. & Mari�en, A., `Inline expansion versus threaded code', 1654@kulcs.kulcs.uucp,comp.lang.prolog, USENET news, (28 APRIL 1989).[Ge84] Gelbmann, M., Prolog Interpreter, Diplomarbeit (M.Thesis), Institut f�ur Praktische Informatik,TU Wien,(1984).[He89] Hermengildo, M., \High-Performance Prolog Implementation:" { The WAM and Beyond, Tutorial atICLP89 Lissabon, (1989)[Kr86] Krall, A., `Comparing Implementation Techniques for Prolog', VIP TR 1802/86/7, TU Wien, (1986).[Kr87] Krall, A., `Implementation of a High-Speed Prolog Interpreter', ACM SIGPLAN, Conf. Interpr. andInterpretive Techn., 7(7), (1987).[Kr88] Krall, A., Analyse und Implementierung von Prologsystemen, Dissertation TU Wien, (1988).[K�u88] K�uhn, e. & Ludwig, Th., `VIP-MDBS: A Logic Multidatabase System', IEEE Int. Symp. on Databasesin Parallel and Distributed Systems, (1988).[Ku87] Kursawe, P., `How to Invent a Prolog Machine', New Gen. Comp., 5 (1987) 97-114.[Me82] Mellish, C.S., `An Alternative to Structure Sharing in the Implementation of a Prolog Interpreter',Logic Programming, Academic Press, (1982).[Ne88] Neumerkel, U., `Metastrukturen in Prolog', Abschlu�bericht des Jubil�aumsfondsprojektes Nr.2791 derOesterr. Nationalbank, (1988); also VIP TR 1802/88/4, TU Wien, (1988).[Ne90] Neumerkel, U., `Extensible Uni�cation by Metastructures', Proc. Meta90, Leuven, Belgium, (1990).[Op85] Oppitz, M., et al., `VIP { A Prolog Programming Environment', TR 1802/85/1, TU-Wien, (1985).[Pi84] Pichler, Ch., Prolog �Ubersetzer, Diplomarbeit (M.Thesis), Inst. f. Prakt. Informatik, TU-Wien, (1984).[PiB85] Pittomvills, E., Bruynooghe, M. &Willems, Y.D. `Towards a Real TimeGarbage Collector for Prolog',IEEE 1985 Symp. on Logic Programm., 185-198, (1985).14

[Ti88] Tick, E., Memory Performance of Prolog Architectures, Kluwer Acad. Publ., (1988).[vC86] Caneghem, M. van, L'Anatomie de Prolog, Inter�Editions, Paris, (1986).[Wa77] Warren, D.H.D., `Implementing Prolog { compiling predicate logic programs, Vol. 1 & 2', D.A.I. Res.Rep. No. 39 & No. 40, (MAY 1977).[Wa83] Warren, D.H.D., `An Abstract Prolog Instruction Set', TR 309, SRI Int-l, (1983).

MACROSmin(a,b) a < b ? a : bderef(ptr) ptr = *ptrwrite_frame(ptr, a, b) *ptr = a; *(ptr+1) = bread_frame(ptr, a, b) a = *ptr; b = *(ptr+1)copy_frame(scr, dest) *dest = *scr; *(dest+1) = *(scr+1)clause_address(addr) addrframe_size(ptr) *(ptr-2)alternative(ptr) *(ptr-1)push_choicepoint(s, l, f, g, h) *(--s) = h; *(--s) = g; *(--s) = f; *(--s) = l; l = spop_choicepoint(l, f, g, h) h = *(l+3); g = *(l+2); f = *(l+1); l = * nlFigure 9: Makros for VAM2P interpreter15

for(;;)switch(*headptr++ + *goalptr++) {case c_goal+c_call:write_frame(headframeptr, goalptr, goalframeptr);goalframeptr = headframeptr;goalptr = headptr;headptr = clause_address(*goalptr++);headframeptr = stackptr -= frame_size(headptr);if (alternative(headptr))push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);continue;case c_cut+c_lastcall: case c_cut+c_call:if (lastchoiceptr < headframeptr){deref(lastchoiceptr); stackptr = headframeptr;}goalptr--;continue;case c_goal+c_lastcall:if (lastchoiceptr < goalframeptr) /* no tail recursion */{copy_frame(goalframeptr, headframeptr); goalframeptr = headframeptr;}goalptr = headptr;headptr = clause_address(*goalptr++);headframeptr = stackptr -= frame_size(headptr);if (alternative(headptr))push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);continue;case c_nogoal+c_lastcall:read_frame(goalframeptr, goalptr, goalframeptr);case c_nogoal+c_call:stackptr = min(lastchoiceptr, goalframeptr);for(;;) {switch(*goalptr++) {case c_cut:while (lastchoiceptr < goalframeptr) deref(lastchoiceptr);stackptr = goalframeptr;continue;case c_nogoal:read_frame(goalframeptr, goalptr, goalframeptr);stackptr = min(lastchoiceptr, goalframeptr);continue;case c_goal:headptr = clause_address(*goalptr++);headframeptr = stackptr -= frame_size(headptr);if (alternative(headptr))push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);}break;}case h_empty+g_empty: case h_list+g_list: continue;case h_const+g_const: case h_structure+g_structure:if (*goalptr++ == *headptr++) continue; /* functor */default: /* fail */pop_choicepoint(lastchoiceptr, goalframeptr, goalptr, headptr);stackptr = min(lastchoiceptr, goalframeptr);headptr = alternative(headptr);headframeptr = stackptr -= frame_size(headptr);if (alternative(headptr))push_choicepoint(stackptr, lastchoiceptr, goalframeptr, goalptr, headptr);} Figure 10: A simple VAM2P for ground clauses with !/016

