
Efficient JavaVM Just-in-Time Compilation

Andreas Krall
http://www.complang.tuwien.ac.at/andi/

Abstract

Conventional compilers are designed for producing
highly optimized code without paying much attention to
compile time. The design goals of Java just-in-time compil-
ers are different: produce fast code at the smallest possible
compile time. In this article we present a very fast algorithm
for translating JavaVM byte code to high quality machine
code for RISC processors. This algorithm handles combines
instructions, does copy elimination and coalescing and does
register allocation. It comprises three passes: basic block
determination, stack analysis and register preallocation, fi-
nal register allocation and machine code generation. This
algorithm replaces an older one in the CACAO JavaVM im-
plementation reducing the compile time by a factor of seven
and producing slightly faster machine code. The speedup
comes mainly from following simplifications: fixed assign-
ment of registers at basic block boundaries, simple register
allocator, better exception handling, better memory man-
agement and fine tuning the implementation. The CACAO
system is currently faster than every JavaVM implementa-
tion for the Alpha processor and generates machine code
for all used methods of the javac compiler and its libraries
in 60 milliseconds on an Alpha workstation.

1 Introduction

Java’s [2] success as a programming language results
from its role as an Internet programming language. The
basis for this success is the machine-independent distribu-
tion format of programs with the Java virtual machine [12].
The standard interpretive implementation of the Java virtual
machine makes execution of programs slow. This does not

1Copyright 1998 IEEE. Published in the Proceedings of PACT’98, 12-
18 October 1998 in Paris, France. Personal use of this material is permit-
ted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center / 445Hoes Lane
/ P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone:+ Intl.
732-562-3966.

matter if small applications are executed in a browser, but
becomes intolerable if big applications are executed. There
are two solutions to solve this problem:� specialized JavaVM processors,� compilation of byte code to the native code of a stan-

dard processor.

SUN took both paths and is developing both Java pro-
cessors and native code compilers. In our CACAO system
we chose to go for native code compilation since it is more
portable and gives more opportunities for improving the ex-
ecution speed. Compiling to native code can be done in two
different ways: compilation of the complete program in ad-
vance or compilation on demand of only the methods which
are executed (just in time compiler, JIT). The CACAO sys-
tem [10] uses a JIT compiler and is freely available via the
world wide web.

1.1 Previous Work

The idea of machine independent program representa-
tions is quite old and goes back to the year 1960 [14]. An
intermediate language UNCOL (UNiversal Computer Ori-
ented Language) was proposed for use in compilers to re-
duce the development effort of compiling many different
languages to many different architectures. The design of
the JavaVM has been strongly influenced by P code, the ab-
stract machine used by many Pascal implementations [13].
P code is well known from its use in the UCSD Pascal sys-
tem. There have even been efforts to develop microproces-
sors which execute P code directly.

The Amsterdam compiler kit [16] [15] uses a stack ori-
ented intermediate language. This language has been de-
signed for fast compilers which emit efficient code. The
intermediate representation of the Gardens Point compiler
project is also based on a stack machine calledDcode[8].
Dcodewas influenced by Pascal P code. BothDcodeinter-
preters and code generators for different architectures exist.

The problems of compiling a stack oriented abstract ma-
chine code to native code are well known from the program-
ming language Forth. In his thesis [5] and in [7] Ertl de-
scribes RAFTS, a Forth system that generates native code

at run time. Translating the stack operations to native code
is done by translating the operations back to expressions
represented as directed acyclic graphs as an intermediate
step. In [6] he translates Forth to native code using C as
an intermediate language. In this system the stack slots are
translated to local variables of a function. Optimization and
code generation are performed by the C compiler.

The first implementations of JIT compilers became avail-
able last year for the browsers from Netscape and Microsoft
on PCs. They were followed by Symantec’s development
environment. Recently SUN released a JIT compiler for the
Sparc and PowerPC processors. Silicon Graphics developed
a JIT compiler for the MIPS processor and recently Digital
released a JIT for the Alpha processor.

A public domain JIT compiler for several architec-
tures is the kaffe system developed by Tim Wilkinson
(http://www.kaffe.org/). For all the above men-
tioned systems, no publicly available description of the
compilation techniques exists.

The translation scheme of theCaffeinesystem is de-
scribed in [9]. It supports both a simple translation scheme
which emulates the stack architecture and a more sophisti-
cated one which eliminates the stack completely and uses
registers instead.Caffeineis not intended as a JIT com-
piler. It compiles a complete program in advance. DAISY
(Dynamically Architected Instruction Set from Yorktown)
is a VLIW architecture developed at IBM for fast execu-
tion of PowerPC, S/390 and JavaVM code. Compatibility
with different old architectures is achieved by using a JIT
compilation technique. The JIT compilation scheme for the
JavaVM is described in [4].

Adl-Tabatabai and others [1] describe a fast and effective
code generation system for a JIT compiler. This compiler
does optimizations like bound check elimination, common
subexpression elimination and two kinds of register alloca-
tion, a simple one and a global priority based one. The re-
sults show that for most benchmark programs the complex
register allocator and the subexpression eliminator incur to
much overhead which does not pay back at run time.

2 Translation of stack code to register code

The JavaVM is a typed stack architecture [12]. There
are different instructions for integer, long integer, floating
point and address types. The main instruction set consists of
arithmetic/logical and load/store/constant instructions. All
these instructions either work directly on the stack or move
values between the stack and local variables. There are spe-
cial instructions for array access and for accessing the fields
of objects (memory access), for method invocation, and for
type checking.

The architecture of a RISC processor is completely dif-
ferent from the stack architecture of the JavaVM. RISC pro-

cessors have large sets of registers. They execute arithmetic
and logic operations only on values which are held in regis-
ters. Load and store instructions are provided to move data
between memory and registers. Local variables of methods
usually reside in registers and are saved in memory only
during a method call or if there are too few registers.

2.1 Machine code translation examples

The example expressiona = b - c * d would be
translated by an optimizing C compiler to the following two
Alpha instructions (the variablesa, b,c andd reside in reg-
isters):

MULL c,d,tmp0 ; tmp0 = c * d
SUBL b,tmp0,a ; a = b - tmp0

If JavaVM code is translated to machine code, the stack
is eliminated and the stack slots are represented by tempo-
rary variables usually residing in registers. A naive transla-
tion of the previous example would result in the following
Alpha instructions:

iload b --> MOVE b,t0
iload c --> MOVE c,t1
iload d --> MOVE d,t2
imul --> MULL t1,t2,t1
isub --> SUBL t0,t1,t0
istore a --> MOVE t0,a

The problems of translating JavaVM code to machine
code are primarily the elimination of the unnecessary copy
instructions and finding an efficient register allocation algo-
rithm. A common but expensive technique is to do the naive
translation and use an additional pass for copy elimination
and coalescing.

2.2 The old translation scheme

The old CACAO compiler did the translation to machine
code in four steps. First, basic blocks were determined.
Then, the JavaVM was translated into a register oriented in-
termediate representation, the registers were allocated, and
finally machine code was generated. The intermediate rep-
resentation was oriented towards a RISC architecture target
and assumed that all operands reside in registers (assum-
ing an unlimited number of pseudo registers). The interme-
diate instructions contained aMOVE instruction for regis-
ter moves,OP1, OP2 andOP3 instructions for the arith-
metic/logical operations, aMEM instruction for accessing
the fields of objects,BRA instructions and special instruc-
tions for method invocation (METHOD). Two special instruc-
tions (ACTIVATE andDROP) maintained live range infor-
mation for the register allocator.

2

The second pass of the compiler translates each JavaVM
load or store instruction into a corresponding interme-
diate codeMOVE instruction using a new register as the des-
tination register in the case of aload. Always using a new
register yields code in a similar form to static single assign-
ment form [3], which is commonly used for compiler op-
timizations. A JavaVMiadd instruction is translated into
anOP2 instruction, again using a new destination register.

This naive translation scheme would generate many
MOVE instructions. ThereforeMOVE instructions are gen-
erated lazily. The translator keeps lists which track which
registers should contain the same values (that are registers
which are just copies of another register). Instead of gen-
erating aMOVE instruction, the translator enters the regis-
ter into a copy list. If the translator should later generate a
DROP instruction, it deletes the register from the list.

When at control flow joins the register lists did not
match, the correspondingMOVE instruction had to be gener-
ated. But for most joins the stack, and therefore the register
lists, are empty or else the registers are compatible. Further-
more the register allocator tries to assign the same hardware
register to the same stack slots so thatMOVE instructions can
be eliminated.

2.3 Old register allocation

For a just-in-time compiler expensive register allocation
algorithms, like graph coloring, cannot be used. We there-
fore designed a simple and fast scheme. There are two dif-
ferent sets of registers: registers for stack slots and registers
for local variables. First, registers for stack slots are as-
signed. Afterwards, the remaining registers are assigned to
the local variables which are active in the whole method.

All registers are assigned to a CPU register at the be-
ginning of a basic block. An existing allocation is left un-
changed. The allocator scans the instructions and, for each
instruction which activates a register and to which no CPU
register has been assigned, a new CPU register is selected.
If the allocator has run out of CPU registers, the register is
spilled to memory. There exist some conventions for the
assignment of registers when calling methods. To prevent
unnecessary copy instructions at a method call prior to the
allocation pass, pseudo registers which are method param-
eters or return values are assigned the correct register (pre-
coloring).

2.4 Problems of the old scheme

The old compiler used a lot of doubly linked lists and al-
located every object explicitly. So a large amount of mem-
ory was used and a large percentage of the compile time was
spent in object allocation. It had to do four passes over the
code and there were examples in our applications where the

compiler took up to fifty percent of the total run time. So we
searched for improvements and designed a new translation
algorithm.

3 The new translation algorithm

The new translation algorithm can get by with three
passes. The first pass determines basic blocks and builds a
representation of the JavaVM instructions which is faster to
decode. The second pass analyses the stack and generates a
static stack structure. During stack analysis variable depen-
dencies are tracked and register requirements are computed.
In the final pass register allocation of temporary registers is
combined with machine code generation.

The new compiler computes the exact number of objects
needed or computes an upper bound and allocates the mem-
ory for the necessary temporary data structures in three big
blocks (the basic block array, the instruction array and the
stack array). Eliminating all the double linked lists also re-
duced the memory requirements by a factor of five.

3.1 Basic block determination

The first pass scans the JavaVM instructions, determines
the basic blocks and generates an array of instructions
which has fixed size and is easier to decode in the following
passes. Each instruction contains the opcode, two operands
and a pointer to the static stack structure after the instruc-
tion (see next sections). The different opcodes of JavaVM
instructions which fold operands into the opcode are repre-
sented by just one opcode in the instruction array.

3.2 Basic block interfacing convention

The handling of control flow joins was quite complicated
in the old compiler. We therefore introduced a fixed inter-
face at basic block boundaries. Every stack slot at a basic
block boundary is assigned a fixed interface register. The
stack analysis pass determines the type of the register and
if it has to be saved across method invocations. To enlarge
the size of basic blocks method invocations do not end ba-
sic blocks. To guide our compiler design we did some static
analysis on a large application written in Java: the javac
compiler and the libraries it uses. Table 1 shows that in
more than 93% of the cases the stack is empty at basic block
boundaries and that the maximal stack depth is 6. Using this
data it becomes clear that the old join handling did not im-
prove the quality of the machine code.

3.3 Copy elimination

To eliminate unnecessary copies loading of values is de-
layed until the instruction is reached which consumes the

3

stack depth 0 1 2 3 4 5 6 >6
occurrences 7930 258 136 112 36 8 3 0

Table 1. distribution of stack depth at block boundary

value. To compute the information the run time stack is
simulated at compile time. Instead of values the compile
time stack contains the type of the value, if a local vari-
able was loaded to a stack location and similar information.
Adl-Tabatabai [1] used a dynamic stack which is changed
at every instruction. A dynamic stack only gives the possi-
bility to move information from earlier instructions to later
instructions. We use a static stack structure which enables
information flow in both directions.

Fig. 1 shows our instruction and stack representation. An
instruction has a reference to the stack before the instruction
and the stack after the instruction. The stack is represented
as a linked list. The two stacks can be seen as the source and
destination operands of an instruction. In the implementa-
tion only the destination stack is stored, the source stack is
the destination of stack of the previous instruction.

b
�
 �	?c�
 �	?d�
 �	

c*d
�
 �	imul?�

Figure 1. instruction and stack representation

This representation can easily be used for copy elimi-
nation. Each stack element not only contains the type of
the stack slot but also the local variable number of which
it is a copy, the argument number if it is an argument, the
interface register number if it is an interface. Load (push
the content of a variable onto the stack) and store instruc-
tions do no generate a copy machine instruction if the stack
slot contains the same local variable. Generated machine
instructions for arithmetic operations directly use the local
variables as their operands.

There are some pitfalls with this scheme. Take the exam-
ple of fig. 2. The stack bottom contains the local variablea.
The instructionistore awill write a new value fora and
will make a later use of this variable invalid. To avoid this
we have to copy the local variable to a stack variable. An
important decision is at which position the copy instruction
should be inserted. Since there is a high number ofdup
instructions in Java programs (around 4%) and it is possible

that a local variable resides in memory, the copy should be
done with theload instruction. Since the stack is repre-
sented as a linked list only the destination stack has to be
checked for occurrences of the offending variable and these
occurrences are replaced by a stack variable.

iload a dup iconst 1 iadd istore a

??
a
�
 �	 ?

a
�
 �	 ?

1
�
 �	 ?

+
�
 �	

Figure 2. anti dependence

To answer the question of how often this could happen
and how expensive the stack search is, we analyzed again
the javac compiler. In more than 98% of the cases the stack
is empty (see table 2). In only 0.2% of the cases the stack
depth is higher than 1 and the biggest stack depth is 3.

stack depth 0 1 2 3 >3
occurrences 2167 31 1 3 0

Table 2. distribution of store stack depth

To avoid copy instructions when executing astore it is
necessary to connect the creation of a value with the store
which consumes it. In that case astore not only can con-
flict with copies of a local variable which result fromload
instructions before the creator of the value, but also with
load andstore instructions which exist between the cre-
ation of value and thestore. In fig. 3 theiload a in-
struction conflicts with theistore a instruction.

The anti dependences are detected by checking the stack
locations of the previous instructions for conflicts. Since the
stack locations are allocated as one big array just the stack
elements which have a higher index than the current stack
element have to be checked. Table 3 gives the distribution
of the distance between the creation of the value and the
corresponding store. In 86% of the cases the distance is
one.

The output dependences are checked by storing the in-
struction number of the last store in each local variable. If

4

chain length 1 2 3 4 5 6 7 8 9 >9
occurrences 1892 62 23 62 30 11 41 9 7 65

Table 3. distribution of creator-store distances

iadd iload a istore b istore a?? +
�
 �	 ?

a
�
 �	

Figure 3. anti dependence

a store conflicts due to dependences the creator places the
value in a stack register. Additional dependences arise be-
cause of exceptions. The exception mechanism in Java is
precise. Thereforestore instructions are not allowed to
be executed before an exception raising instruction. This is
checked easily by remembering the last instruction which
could raise an exception. In methods which contain no ex-
ception handler this conflict can be safely ignored because
no exception handler can have access to these variables.

3.4 Register allocation

Expensive register allocation algorithms are neither suit-
able nor necessary. The javac compiler does a coloring of
the local variables and assigns the same number to variables
which are not active at the same time. The stack variables
have implicitly encoded their live ranges. When a value is
pushed, the live range start. When a value is popped, the
live range ends.

Complications arise only with stack manipulation in-
structions likedup andswap. We flag therefore the first
creation of a stack variable and mark a duplicated one as a
copy. The register used for this variable can be reused only
after the last copy is popped.

During stack analysis stack variables are marked which
have to survive a method invocation. These stack variables
and local variables are assigned callee saved registers. If
there are not enough registers available, these variables are
allocated in memory.

Efficient implementation of method invocation is crucial
to the performance of Java. Therefore, we preallocate the
argument registers and the return value in a similar way as
we handle store instructions. Input arguments (in Java input
arguments are the first variables) for leaf procedures (and
input arguments for processors with register windows) are
preassigned, too.

3.5 Instruction combining

Together with stack analysis we combine constant load-
ing instructions with selected instructions which are follow-
ing immediately. In the class of combinable instructions are
add, subtract, multiply and divide instructions, logical and
shift instructions and compare/branch instructions. During
code generation the constant is checked if it lies in the range
for immediate operands of the target architecture and appro-
priate code is generated.

The old translator expanded some complex instructions
into multiple instructions to avoid complex instructions in
the later passes. One of such instructions was the expansion
of thelookup instruction in a series of load constant and
compare and branch instructions. Since the constants are
usually quite small this unnecessarily increased the size of
the intermediate representation and the final code. The new
compiler delays the expansion into multiple instructions to
the code generation pass which reduces all representations
and speeds up the compilation.

3.6 Example

Fig. 4 shows the intermediate representation and stack
information as produced by the compiler for debugging pur-
poses. TheLocal Table gives the types and register as-
signment for the local variables. The Java compiler reuses
the same local variable slot for different local variables if
there life ranges do not overlap. In this example the vari-
able slot 3 is even used for local variables of different types
(integer and address). The JIT-compiler assigned the saved
register 12 to this variable.

One interface register is used in this example entering
the basic block with labelL004. At the entry of the basic
block the interface register has to be copied to the argument
registerA00. This is one of the rare cases where a more
sophisticated coalescing algorithm could have allocated an
argument register for the interface.

The combining of a constant with an arithmetic instruc-
tion happens at instruction 2 and 3. Since the instructions
are allocated in an array the empty slot has to be filled with
aNOP instruction. TheADDCONSTANT instruction already
has the local variableL02 as destination, an information
which comes from the laterISTORE at number 4. Simi-
larly theINVOKESTATIC at number 31 has marked all its
operands as arguments. In this example all copies (beside
the one to the interface register) have been eliminated.

5

sieve JavaLex javac espresso Toba java cup
run time on 21164A 600MHz (in seconds)

CACAO old total 1.120 0.720 1.336 0.858 1.208 0.398
load 0.040 0.067 0.224 0.141 0.068 0.077

compile 0.022 0.116 0.343 0.235 0.139 0.196
run 1.058 0.537 0.769 0.481 1.000 0.125

CACAO new total 0.902 0.522 0.925 0.614 0.982 0.218
load 0.040 0.067 0.223 0.141 0.068 0.077

compile 0.004 0.018 0.060 0.050 0.019 0.026
run 0.858 0.437 0.642 0.423 0.895 0.115

speedup
speedup total old/new 1.24 1.38 1.44 1.40 1.23 1.82

speedup compile old/new 7.33 6.44 5.62 4.70 7.31 7.53
number of compiled JavaVM instructions

2514 13412 34759 27281 14430 17489
number of cycles per compiled JavaVM instruction

955 805 1035 1099 790 891

Table 4. comparison between old and new compiler

3.7 Complexity of the algorithm

The complexity of the algorithm is mostly linear with re-
spect to the number of instructions and the number of local
variables plus the number of stack slots. There are only a
small number of spots where it is not linear.� At the begin of a basic block the stack has to be copied

to separate the stacks of different basic blocks. Table
1 shows that the stack at the boundary of a basic block
is in most cases zero. Therefore, this copying does not
influence the linear performance of the algorithm.� A store has to check for a later use of the same variable.
Table 2 shows that this is not a problem, too.� A store additionally has to check for the previous use
of the same variable between creation of the value and
the store. The distances between the creation and the
use are small (in most case only 1) as shown by table
3.

Compiling javac 29% of the compile time are spent in
parsing and basic block determination, 18% in stack anal-
ysis, 16% in register allocation and 37% in machine code
generation.

4 Results

To evaluate the differences between the old and the new
compiler we used six different programs: sieve is a Java
implementation of the well known prime number generation

program, JavaLex is a scanner generator, javac is the Java
compiler from sun, espresso is a compiler for an enhanced
Java dialect, Toba is a system which translates Java class
files to C and javacup is a parser generator. As input data
for javac, espresso and Toba we used all source files of Toba
(18 files).

Table 4 shows the total run time, the load time, the com-
pile time and the run time for the old and the new system
on an Alpha workstation with a 600Mhz 21164a processor.
The new compiler is between 5 and 7 times faster than the
old compiler. The new system also has some improvements
in the code generation and uses a hardware null pointer
check ([11]). Both improvements together speed up the new
sytem between 23% and 82%. On average only 800 to 1100
cycles are needed to compile one JavaVM instruction. A
profiler which assumes that all memory accesses go to the
first level cache computed 423 cycles per compiled JavaVM
instruction.

To evaluate the performance of CACAO we compared
it with Sun’s JDK and with kaffe version 0.8 (see section
1.1). We also got access to a beta version of Digitals JIT
compiler. Due to problems with the monitor implementa-
tion ([11]) this compiler gives very bad results for javac and
similar programs (three times slower than the JDK), but pro-
duced effiecient code for the sieve benchmark.

Table 5 gives the run times for all these systems on
an ALPHA workstation with a 300MHz 21064a processor.
The CACAO system is between 3 and 5 times faster than the
kaffe system and twice as fast as the Digital JIT compiler.

6

sieve JavaLex javac espresso Toba java cup
run time on 21064A 300MHz (in seconds)

JDK 83.2 29.8 18.5 8.7 32.1 3.5
Digital JIT 6.27 84.4 47.6 14.1 - 9.8

kaffe 9.14 9.9 17.8 12.5 - 2.98
CACAO old 4.80 2.65 4.74 3.17 4.58 1.52
CACAO new 3.87 1.92 3.29 2.26 3.72 0.83

speedup with respect to interpreter
speedup JDK/DEC-JIT 13.3 0.35 0.38 0.48 - 0.36

speedup JDK/kaffe 9.10 3.01 1.04 0.7 - 1.17
speedup JDK/CACAO old 17.3 11.24 3.90 2.74 7.01 2.30
speedup JDK/CACAO new 21.5 15.52 5.62 3.85 8.62 4.22

Table 5. comparison between JDK, Digital JIT, kaffe and CACA O

5 Conclusion and further work

We presented an efficient algorithm for translating
the JavaVM to efficient native code for RISC proces-
sors. This new algorithm is about seven times faster
than the compiler used before. CACAO executes Java
programs up to 5 times faster than other JIT compil-
ers. CACAO can be obtained via the world wide web at
http://www.complang.tuwien.ac.at/java/cacao/.
Currently additional code generators for the Sparc, MIPS
and PowerPC processors are being developed. We are
working to integrate bound check removal, instruction
scheduling and method inlining.

Acknowledgement

We express our thanks to Manfred Brockhaus, David
Gregg and Anton Ertl for their comments on earlier drafts
of this paper.

References

[1] A.-R. Adl-Tabatabai, M. Ciernak, G.-Y. Lueh, V. M. Parikh,
and J. M. Stichnoth. Fast, effective code generation in a just-
in-time Java compiler. InConference on Programming Lan-
guage Design and Implementation, volume 33(6) ofSIG-
PLAN, page to appear, Montreal, 1998. ACM.

[2] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison-Wesley, 1996.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control flow graph.ACM Transactions on Pro-
gramming Languages and Systems, 13(4):451–490, October
1991.

[4] K. Ebcioğlu, E. Altman, and E. Hokenek. A Java ILP ma-
chine based on fast dynamic compilation. InMASCOTS’97

- International Workshop on Security and Efficiency Aspects
of Java, 1997.

[5] M. A. Ertl. Implementation of Stack-Based Languages
on Register Machines. PhD thesis, Technische Universität
Wien, April 1996.

[6] M. A. Ertl and M. Maierhofer. Translating Forth to nativeC.
In EuroForth ’95, 1995.

[7] M. A. Ertl and C. Pirker. The structure of a Forth native code
compiler. InEuroForth ’97 Conference Proceedings, pages
107–116, 1997.

[8] K. J. Gough. Multi-language, multi-target compiler devel-
opment: Evolution of the Gardens Point compiler project.
In H. Mössenböck, editor,JMLC’97 –Joint Modular Lan-
guages Conference, Linz, 1997. LNCS 1204.

[9] C.-H. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu. Java
bytecode to native code translation: The Caffeine prototype
and preliminary results. In29th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’29), 1996.

[10] A. Krall and R. Grafl. CACAO – a 64 bit JavaVM just-
in-time compiler. Concurrency: Practice and Experience,
9(11):1017–1030, 1997.

[11] A. Krall and M. Probst. Monitors and exceptions: How
to implement Java efficiently. In S. Hassanzadeh and
K. Schauser, editors,ACM 1998 Workshop on Java for High-
Performance Computing, pages 15–24, Palo Alto, March
1998. ACM.

[12] T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication. Addison-Wesley, 1996.

[13] S. Pemberton and M. C. Daniels.Pascal Implementation,
The P4 Compiler. Ellis Horwood, 1982.

[14] T. B. Steel. A first version of UNCOL. InProceedings of the
Western Joint IRE-AIEE-ACM Computer Conference, pages
371 – 377, 1961.

[15] A. S. Tanenbaum, M. F. Kaashoek, K. G. Langendoen, and
C. J. H. Jacobs. The design of very fast portable compilers.
ACM SIGPLAN Notices, 24(11):125–131, Nov. 1989.

[16] A. S. Tanenbaum, H. van Staveren, E. G. Keizer, and J. W.
Stevenson. A practical tool kit for making portable compil-
ers. Communications of the ACM, 16(9):654–660, Septem-
ber 1983.

7

java.io.ByteArrayOutputStream.write (int)void

Local Table:
0: (addr) S15
1: (int) S14
2: (int) S13
3: (int) S12 (addr) S12

Interface Table:
0: (int) T24

[L00] 0 ALOAD 0
[T23] 1 GETFIELD 16
[L02] 2 IADDCONST 1
[L02] 3 NOP
[] 4 ISTORE 2
[L02] 5 ILOAD 2
[L00 L02] 6 ALOAD 0
[T23 L02] 7 GETFIELD 8
[T23 L02] 8 ARRAYLENGTH
[] 9 IF_ICMPLE L005

...............

[] 18 IF_ICMPLT L003
[] L002:
[I00] 19 ILOAD 3
[I00] 20 GOTO L004
[] L003:
[I00] 21 ILOAD 2
[A00] L004:
[L03] 22 BUILTIN1 newarray_byte
[] 23 ASTORE 3
[L00] 24 ALOAD 0
[A00] 25 GETFIELD 8
[A01 A00] 26 ICONST 0
[A02 A01 A00] 27 ALOAD 3
[A03 A02 A01 A00] 28 ICONST 0
[L00 A03 A02 A01 A00] 29 ALOAD 0
[A04 A03 A02 A01 A00] 30 GETFIELD 16
[] 31 INVOKESTATIC java/lang/System.arraycopy
[L00] 32 ALOAD 0
[L03 L00] 33 ALOAD 3
[] 34 PUTFIELD 8
[] L005:

...............

[] 45 RETURN

Figure 4. Example: intermediate instructions and stack con tents

8

