Efficient JavaVM Just-in-Time Compilation

Andreas Krall
htt p: // wwv. conpl ang. t um en. ac. at / andi /

Abstract matter if small applications are executed in a browser, but
becomes intolerable if big applications are executed. There
Conventional compilers are designed for producing are two solutions to solve this problem:

highly optimized code without paying much attention to
compile time. The design goals of Java just-in-time compil-
ers are different: produce fast code at the smallest possible ¢ compilation of byte code to the native code of a stan-
compile time. Inthis article we present a very fast algorithm dard processor.
for translating JavaVM byte code to high quality machine
code for RISC processors. This algorithm handles combines SUN took both paths and is developing both Java pro-
instructions, does copy elimination and coalescing and doescessors and native code compilers. In our CACAO system
register allocation. It comprises three passes: basic block We chose to go for native code compilation since it is more
determination, stack analysis and register preallocation, fi- Portable and gives more opportunities for improving the ex-
nal register allocation and machine code generation. This €cution speed. Compiling to native code can be done in two
algorithm replaces an older one in the CACAO JavaVM im- different ways: compilation of the complete program in ad-
plementation reducing the compile time by a factor of sevenvance or compilation on demand of only the methods which
and producing slightly faster machine code. The speedupare executed (just in time compiler, JIT). The CACAO sys-
comes mainly from following simplifications: fixed assign- t€m [10] uses a JIT compiler and is freely available via the
ment of registers at basic block boundaries, simple register world wide web.
allocator, better exception handling, better memory man-)
agement and fine tuning the implementation. The CACA01.1 Previous Work
system is currently faster than every JavaVM implementa-
tion for the Alpha processor and generates machine code The idea of machine independent program representa-

for all used methods of the javac compiler and its libraries tions is quite old and goes back to the year 1960 [14]. An
in 60 milliseconds on an Alpha workstation. intermediate language UNCOL (UNiversal Computer Ori-

ented Language) was proposed for use in compilers to re-
duce the development effort of compiling many different
. languages to many different architectures. The design of
1 Introduction the JavaVM has been strongly influenced by P code, the ab-
stract machine used by many Pascal implementations [13].
Java’s [2] success as a programming language result$? code is well known from its use in the UCSD Pascal sys-
from its role as an Internet programming language. The tem. There have even been efforts to develop microproces-
basis for this success is the machine-independent distribusors which execute P code directly.
tion format of programs with the Java virtual machine [12]. The Amsterdam compiler kit [16] [15] uses a stack ori-
The standard interpretive implementation of the Java virtual ented intermediate language. This language has been de-
machine makes execution of programs slow. This does notsigned for fast compilers which emit efficient code. The
intermediate representation of the Gardens Point compiler
"Copyright 1998 IEEE. Published in the Proceedings of PABTE2- 50t js also based on a stack machine calledde(8].
18 October 1998 in Paris, France. Personal use of this rabiepermit- Dcodewas influenced by Pascal P code. BBtbodeinter-

ted. However, permission to reprint/republish this matdor advertising] . .
or promotional purposes or for creating new collective vgdidr resale or preters and code generators for different architectures exist.

e specialized JavaVM processors,

redistribution to servers or lists, or to reuse any copyadrcomponent of The problems of compiling a stack oriented abstract ma-
this work in other works, must be obtained from the IEEE. @btMan- - -hina code to native code are well known from the program-
ager, Copyrights and Permissions / IEEE Service Center Ho&s Lane

/ P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephengt. ming language Forth. In his thesis [5] and in [7] Ertl de-

732-562-3966. scribes RAFTS, a Forth system that generates native code

at run time. Translating the stack operations to native codecessors have large sets of registers. They execute arithmetic
is done by translating the operations back to expressionsand logic operations only on values which are held in regis-
represented as directed acyclic graphs as an intermediatéers. Load and store instructions are provided to move data
step. In [6] he translates Forth to native code using C asbetween memory and registers. Local variables of methods
an intermediate language. In this system the stack slots areisually reside in registers and are saved in memory only
translated to local variables of a function. Optimization and during a method call or if there are too few registers.
code generation are performed by the C compiler.

The firstimplementations of JIT compilers became avail- 2.1 Machine code translation examples
able last year for the browsers from Netscape and Microsoft
on PCs. They were followed by Symantec's development The example expressiom = b - ¢ * d would be

environment. Recently SUN released a JIT Compiler for the translated by an optimizing C Comp”er to the f0||owing two

Sparc and PowerPC processors. Silicon Graphics developed|pha instructions (the variables b, ¢ andd reside in reg-
a JIT compiler for the MIPS processor and recently Digital jsters):

released a JIT for the Alpha processor.
A public domain JIT compiler for several architec- MJULL c,d,tnp0 ; tnmp0 = ¢ * d
tures is the kaffe system developed by Tim Wilkinson SUBL b,tnmp0,a ; a =Db - tnmoO

(http://ww. kaf fe. org/). For all the above men-]]
tioned systems, no publicly available description of the If JavaVM code is translated to machine code, the stack

compilation techniques exists. is eliminated and the stack slots are represented by tempo-
The translation scheme of th@affeinesystem is de- rary variables usually residing in registers. A naive transla-

scribed in [9]. It supports both a simple translation scheme tion of the previous example would result in the following

which emulates the stack architecture and a more sophistiAlPha instructions:

cated one which eliminates the stack completely and uses

registers instead Caffeineis not intended as a JIT com- ! load b --> MOE Db, 10

piler. 1t compiles a complete program in advance. DAISY ! load ¢ --> MOEc, tl

(Dynamically Architected Instruction Set from Yorktown) iload d --> MVEd, 12

is a VLIW architecture developed at IBM for fast execu- | nul --> MALL t1,t2,t1
i sub --> SUBL t0,t1,t0

tion of PowerPC, S/390 and JavaVM code. Compatibility
with different old architectures is achieved by using a JIT
compilation technique. The JIT compilation scheme for the
JavaVM is described in [4].

istorea --> MWE1t0,a

The problems of translating JavaVM code to machine
, i __code are primarily the elimination of the unnecessary copy
Adl-Tabatabai and others [1] describe a fast and effective;, 4\ ctions and finding an efficient register allocation algo-
code generation system for a JIT compiler. This compiler iy, 1, “a common but expensive technique is to do the naive

dogs opt|m|_zat|o|r_13 _I|ke_bounc:jchecll(<_ e(ljlmlr]:atlon, corr|1|m0n translation and use an additional pass for copy elimination
subexpression elimination and two kinds of register alloca- 514 coalescing.

tion, a simple one and a global priority based one. The re-
sults show that for most benchmark programs the complex
register allocator and the subexpression eliminator incur to
much overhead which does not pay back at run time.

2.2 The old translation scheme

The old CACAQO compiler did the translation to machine
.) code in four steps. First, basic blocks were determined.
2 Translation of stack code to register code Then, the JavaVM was translated into a register oriented in-

termediate representation, the registers were allocated, and

The JavaVM is a typed stack architecture [12]. There finally machine code was generated. The intermediate rep-
are different instructions for integer, long integer, floating resentation was oriented towards a RISC architecture target
pointand address types. The main instruction set consists oand assumed that all operands reside in registers (assum-
arithmetic/logical and load/store/constant instructions. All ing an unlimited number of pseudo registers). The interme-
these instructions either work directly on the stack or move diate instructions contained MOVE instruction for regis-
values between the stack and local variables. There are speter moves,0OP1, OP2 and OP3 instructions for the arith-
cial instructions for array access and for accessing the fieldametic/logical operations, &#EM instruction for accessing
of objects (memory access), for method invocation, and for the fields of objectsBRA instructions and special instruc-
type checking. tions for method invocatiorlMETHOD). Two special instruc-

The architecture of a RISC processor is completely dif- tions (ACTI VATE andDROP) maintained live range infor-
ferent from the stack architecture of the JavaVM. RISC pro- mation for the register allocator.

The second pass of the compiler translates each JavaVMompiler took up to fifty percent of the total run time. So we
| oad or st or e instruction into a corresponding interme- searched for improvements and designed a new translation
diate codeVOVE instruction using a new register as the des- algorithm.
tination register in the case of aad. Always using a new
register yields code in a similar form to static single assign- 3 The new translation algorithm
ment form [3], which is commonly used for compiler op-
timizations. A JavaVM add instruction is translated into The new translation algorithm can get by with three

anO;_Z |nst.ruct|on, zalgqln usmr? anew dels;dtlnann register. passes. The first pass determines basic blocks and builds a
T IS naive trans ar'ﬁlonfsc eme wou .generate rnar‘yrepresentation of the JavaVM instructions which is faster to
MOVE mstr_uctlons. TherefordVE 'n.StrUCt'an are gen- gecode. The second pass analyses the stack and generates a
era_ted lazily. The tran_slator keeps lists which track Wh_'Ch static stack structure. During stack analysis variable depen-
reg_lsters S.hOUId cqntam the same V§|UGS (that are registeryencies are tracked and register requirements are computed.

Wh'(.:h are just copies Qf another register). Instead of 98N the final pass register allocation of temporary registers is
erating aMOVE instruction, the translator enters the regis- .o 1inad with machine code generation

ter into a copy list. If the translator should later generate a The new compiler computes the exact number of objects
DROP instruction, it deletes the register from the list. needed or computes an upper bound and allocates the mem-

Wﬂenh at control flow joins the r_egishter lists did not 5y for the necessary temporary data structures in three big
match, the correspondim@VE instruction had to be gener- 0 o (the basic block array, the instruction array and the

ated. But for most joins the stack, and therefore the registerg;, .\ array). Eliminating all the double linked lists also re-

lists, are empty or else the registers are compatible. Further-duced the memory requirements by a factor of five.
more the register allocator tries to assign the same hardware

register to the same stack slots so MaVvE instructions can
be eliminated.

3.1 Basic block determination

. . The first pass scans the JavaVM instructions, determines
2.3 Old register allocation the basic blocks and generates an array of instructions
which has fixed size and is easier to decode in the following
For a just-in-time compiler expensive register allocation passes. Each instruction contains the opcode, two operands
algorithms, like graph coloring, cannot be used. We there-and a pointer to the static stack structure after the instruc-
fore designed a simple and fast scheme. There are two diftjon (see next sections). The different opcodes of JavaVM
ferent sets of registers: registers for stack slots and registersnstructions which fold operands into the opcode are repre-
for local variables. First, registers for stack slots are as-sented by just one opcode in the instruction array.
signed. Afterwards, the remaining registers are assigned to
the local variables which are active in the whole method. 3.2 Basic block interfacing convention
All registers are assigned to a CPU register at the be-
ginning of a basic block. An existing allocation is left un- The handling of control flow joins was quite complicated
changed. The allocator scans the instructions and, for eachn the old compiler. We therefore introduced a fixed inter-
instruction which activates a register and to which no CPU face at basic block boundaries. Every stack slot at a basic
register has been assigned, a new CPU register is selecteghjock boundary is assigned a fixed interface register. The
If the allocator has run out of CPU registers, the register is stack ana|ysis pass determines the type of the register and
spilled to memory. There exist some conventions for the if it has to be saved across method invocations. To enlarge
assignment of registers when calling methods. To preventihe size of basic blocks method invocations do not end ba-
unnecessary copy instructions at a method call prior to thesic plocks. To guide our compiler design we did some static
allocation pass, pseudo registers which are method paramanalysis on a large application written in Java: the javac
eters or return values are assigned the correct register (precompiler and the libraries it uses. Table 1 shows that in

coloring). more than 93% of the cases the stack is empty at basic block
boundaries and that the maximal stack depth is 6. Using this
2.4 Problems of the old scheme data it becomes clear that the old join handling did not im-

prove the quality of the machine code.
The old compiler used a lot of doubly linked lists and al-
located every object explicitly. So a large amount of mem- 3.3 Copy elimination
ory was used and a large percentage of the compile time was
spent in object allocation. It had to do four passes over the To eliminate unnecessary copies loading of values is de-
code and there were examples in our applications where thdayed until the instruction is reached which consumes the

stack depth| O 1 2 3 4
occurrencey 7930| 258 | 136|112 36 (8| 3| O

ol
o
V
o

Table 1. distribution of stack depth at block boundary

value. To compute the information the run time stack is that a local variable resides in memory, the copy should be
simulated at compile time. Instead of values the compile done with thel oad instruction. Since the stack is repre-
time stack contains the type of the value, if a local vari- sented as a linked list only the destination stack has to be
able was loaded to a stack location and similar information. checked for occurrences of the offending variable and these
Adl-Tabatabai [1] used a dynamic stack which is changed occurrences are replaced by a stack variable.
at every instruction. A dynamic stack only gives the possi-
bility to move information from earlier instructions to later ‘i | oad aH dup HI const 1H i add H| store a
instructions. We use a static stack structure which enables | ' F ' '
information flow in both directions.

Fig. 1 shows our instruction and stack representation. An
instruction has a reference to the stack before the instruction @ @
and the stack after the instruction. The stack is represented
as a linked list. The two stacks can be seen as the source and @
destination operands of an instruction. In the implementa-
tion only the destination stack is stored, the source stack is
the destination of stack of the previous instruction.

Figure 2. anti dependence

To answer the question of how often this could happen
and how expensive the stack search is, we analyzed again
the javac compiler. In more than 98% of the cases the stack
is empty (see table 2). In only 0.2% of the cases the stack
depth is higher than 1 and the biggest stack depth is 3.

stackdepth| 0 112|3]>3
occurrences 2167|131 (13| O

Figure 1. instruction and stack representation
Table 2. distribution of st or e stack depth

This representation can easily be used for copy elimi- To avoid copy instructions when executingtaor e itis
nation. Each stack element not only contains the type of necessary to connect the creation of a value with the store
the stack slot but also the local variable number of which which consumes it. In that casesaior e not only can con-
it is a copy, the argument number if it is an argument, the flict with copies of a local variable which result fronoad
interface register number if it is an interface. Load (push instructions before the creator of the value, but also with
the content of a variable onto the stack) and store instruc-l oad andst or e instructions which exist between the cre-
tions do no generate a copy machine instruction if the stackation of value and thet or e. In fig. 3 thei | oad a in-
slot contains the same local variable. Generated machinestruction conflicts with the st or e a instruction.
instructions for arithmetic operations directly use the local = The anti dependences are detected by checking the stack
variables as their operands. locations of the previous instructions for conflicts. Since the

There are some pitfalls with this scheme. Take the exam-stack locations are allocated as one big array just the stack
ple of fig. 2. The stack bottom contains the local variaghle elements which have a higher index than the current stack
The instruction st or e a will write a new value foa and element have to be checked. Table 3 gives the distribution
will make a later use of this variable invalid. To avoid this of the distance between the creation of the value and the
we have to copy the local variable to a stack variable. An corresponding store. In 86% of the cases the distance is
important decision is at which position the copy instruction one.
should be inserted. Since there is a high numbed g The output dependences are checked by storing the in-
instructions in Java programs (around 4%) and it is possiblestruction number of the last store in each local variable. If

chainlength| 1 213|456 |78 >9
occurrences| 189262 (23 |62|30|11|41|9 | 7| 65

©

Table 3. distribution of creator-store distances

‘ i add H| | oad aHi store bHi store a 3.5 Instruction combining
] []
(:'?D Together with stack analysis we combine constant load-
. ing instructions with selected instructions which are follow-
(+) ing immediately. In the class of combinable instructions are
add, subtract, multiply and divide instructions, logical and

' shift instructions and compare/branch instructions. During

code generation the constant is checked if it lies in the range
forimmediate operands of the target architecture and appro-
priate code is generated.

The old translator expanded some complex instructions
a store conflicts due to dependences the creator places thgito multiple instructions to avoid complex instructions in
value in a stack register. Additional dependences arise bethe later passes. One of such instructions was the expansion
cause of exceptions. The exception mechanism in Java isf thel ookup instruction in a series of load constant and
precise. Thereforst or e instructions are not allowed to compare and branch instructions. Since the constants are
be executed before an exception raising instruction. This isusually quite small this unnecessarily increased the size of
checked easily by remembering the last instruction which the intermediate representation and the final code. The new
could raise an exception. In methods which contain no ex-compiler delays the expansion into multiple instructions to

ception handler this conflict can be safely ignored becausethe code generation pass which reduces all representations
no exception handler can have access to these variables. and speeds up the compilation.

Figure 3. anti dependence

3.4 Register allocation 3.6 Example

Expensive register allocation algorithms are neither suit- Fig. 4 shows the intermediate representation and stack
able nor necessary. The javac compiler does a coloring ofinformation as produced by the compiler for debugging pur-
the local variables and assigns the same number to variableposes. Théocal Tabl e gives the types and register as-
which are not active at the same time. The stack variablessignment for the local variables. The Java compiler reuses
have implicitly encoded their live ranges. When a value is the same local variable slot for different local variables if
pushed, the live range start. When a value is popped, thethere life ranges do not overlap. In this example the vari-
live range ends. able slot 3 is even used for local variables of different types

Complications arise only with stack manipulation in- (integer and address). The JIT-compiler assigned the saved
structions likedup andswap. We flag therefore the first register 12 to this variable.
creation of a stack variable and mark a duplicated one as a One interface register is used in this example entering
copy. The register used for this variable can be reused onlythe basic block with labdl004. At the entry of the basic
after the last copy is popped. block the interface register has to be copied to the argument

During stack analysis stack variables are marked whichregisterA00. This is one of the rare cases where a more
have to survive a method invocation. These stack variablessophisticated coalescing algorithm could have allocated an
and local variables are assigned callee saved registers. largument register for the interface.
there are not enough registers available, these variables are The combining of a constant with an arithmetic instruc-
allocated in memory. tion happens at instruction 2 and 3. Since the instructions

Efficient implementation of method invocation is crucial are allocated in an array the empty slot has to be filled with
to the performance of Java. Therefore, we preallocate thea NOP instruction. TheADDCONSTANT instruction already
argument registers and the return value in a similar way ashas the local variabl€02 as destination, an information
we handle store instructions. Input arguments (in Java inputwhich comes from the latdrSTORE at number 4. Simi-
arguments are the first variables) for leaf procedures (andarly thel NVOKESTATI Cat number 31 has marked all its
input arguments for processors with register windows) are operands as arguments. In this example all copies (beside
preassigned, too. the one to the interface register) have been eliminated.

| sieve | JavalLex| javac | espressd Toba | javacup
run time on 21164A 600MHz (in seconds)

CACAO old total 1.120| 0.720 | 1.336| 0.858 | 1.208| 0.398
load 0.040| 0.067 | 0.224| 0.141 | 0.068| 0.077
compile 0.022| 0.116 | 0.343| 0.235 | 0.139| 0.196
run 1.058| 0.537 | 0.769 | 0.481 | 1.000| 0.125
CACAO new total 0.902| 0.522 | 0.925| 0.614 | 0.982| 0.218
load 0.040| 0.067 | 0.223| 0.141 | 0.068| 0.077
compile 0.004| 0.018 | 0.060| 0.050 | 0.019| 0.026
run 0.858| 0.437 | 0.642| 0.423 | 0.895| 0.115

speedup
speedup total old/new | 1.24 1.38 1.44 1.40 1.23 1.82
speedup compile old/neyw 7.33 6.44 5.62 4.70 7.31 7.53

number of compiled JavaVM instructions

| 2514 13412 [34759] 27281 | 14430] 17489
number of cycles per compiled JavaVM instruction

| 955 | 805 | 1035 1099 | 790 | 891

Table 4. comparison between old and new compiler

3.7 Complexity of the algorithm program, Javalex is a scanner generator, javac is the Java
compiler from sun, espresso is a compiler for an enhanced
The complexity of the algorithm is mostly linear with re- Java dialect, Toba is a system which translates Java class
spect to the number of instructions and the number of localfiles to C and javacup is a parser generator. As input data
variables plus the number of stack slots. There are only afor javac, espresso and Toba we used all source files of Toba
small number of spots where it is not linear. (18 files).

o At the begin of a basic block the stack has to be copied Table 4 shows the total run time, the load time, the com-
to separate the stacks of different basic blocks. Tablepile time and the run time for the old and the new system
1 shows that the stack at the boundary of a basic blockon an Alpha workstation with a 600Mhz 21164a processor.
is in most cases zero. Therefore, this copying does notThe new compiler is between 5 and 7 times faster than the
influence the linear performance of the algorithm. old compiler. The new system also has some improvements
, in the code generation and uses a hardware null pointer
e Astore hasto check fqr a later use of the same variable.qp ook ([L1]). Both improvements together speed up the new
Table 2 shows that this is not a problem, too. sytem between 23% and 82%. On average only 800 to 1100

e A store additionally has to check for the previous use CYcles are needed to compile one JavaVM instruction. A
of the same variable between creation of the value andProfiler which assumes that all memory accesses go to the
the store. The distances between the creation and thdirst level cache computed 423 cycles per compiled JavavM

use are small (in most case only 1) as shown by table/nstruction.

3. To evaluate the performance of CACAO we compared
Compiling javac 29% of the compile time are spent in it with Sun’s JDK and with kaffe version.0.8 (seg _section
parsing and basic block determination, 18% in stack anal-1-1)- We also got access to a beta version of Digitals JIT

ysis, 16% in register allocation and 37% in machine code COMPpiler. Due to problems with the monitor implementa-
generation. tion ([11]) this compiler gives very bad results for javac and

similar programs (three times slower than the JDK), but pro-

duced effiecient code for the sieve benchmark.
4 Results

Table 5 gives the run times for all these systems on
To evaluate the differences between the old and the newan ALPHA workstation with a 300MHz 21064a processor.
compiler we used six different programs: sieve is a JavaThe CACAO system is between 3 and 5 times faster than the
implementation of the well known prime number generation kaffe system and twice as fast as the Digital JIT compiler.

| sieve| JavalLex| javac| espressd Toba| javacup
run time on 21064A 300MHz (in seconds)
JDK 83.2 29.8 18.5 8.7 32.1 3.5
Digital JIT 6.27 84.4 47.6 141 - 9.8
kaffe 9.14 9.9 17.8 125 - 2.98
CACAO old 4.80 2.65 4.74 3.17 4.58 1.52
CACAO new 3.87 1.92 3.29 2.26 3.72 0.83
speedup with respect to interpreter
speedup JDK/DEC-JIT | 13.3 | 0.35 0.38 0.48 - 0.36
speedup JDK/kaffe 9.10 3.01 1.04 0.7 - 1.17
speedup JDK/CACAO old| 17.3 | 11.24 | 3.90 2.74 7.01 2.30
speedup JDK/CACAO new 21.5| 1552 | 5.62 3.85 8.62 4.22
Table 5. comparison between JDK, Digital JIT, kaffe and CACA O

5 Conclusion and further work

We presented an efficient algorithm for translating
the JavaVM to efficient native code for RISC proces-

SOrs.
than

This new algorithm is about seven times faster
the compiler used before. CACAO executes Java

programs up to 5 times faster than other JIT compil-

ers.

CACAQO can be obtained via the world wide web at

http://ww. conpl ang. t uwi en. ac. at/j aval/ cacao/ .
Currently additional code generators for the Sparc, MIPS (8]
and PowerPC processors are being developed. We are
working to integrate bound check removal, instruction

sche

duling and method inlining.

Acknowledgement

We express our thanks to Manfred Brockhaus, David
Gregg and Anton Ertl for their comments on earlier drafts

of thi

S paper.

References

[1] A.-R. AdI-Tabatabai, M. Ciernak, G.-Y. Lueh, V. M. Pahk

(2]
(3]

(4]

and J. M. Stichnoth. Fast, effective code generation inta jus
in-time Java compiler. I€onference on Programming Lan-
guage Design and Implementatjomolume 33(6) ofSIG-
PLAN page to appear, Montreal, 1998. ACM.

K. Arnold and J. Gosling. The Java Programming Lan-
guage Addison-Wesley, 1996.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assigninen
form and the control flow grapfACM Transactions on Pro-
gramming Languages and Systert3(4):451-490, October
1991.

K. Ebcioglu, E. Altman, and E. Hokenek. A Java ILP ma-
chine based on fast dynamic compilation.MASCOTS’97

(5]

(6]
(7]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

- International Workshop on Security and Efficiency Aspects
of Java 1997.

M. A. Ertl. Implementation of Stack-Based Languages
on Register MachinesPhD thesis, Technische Universitat
Wien, April 1996.

M. A. Ertl and M. Maierhofer. Translating Forth to nati@

In EuroForth 95 1995.

M. A. Ertland C. Pirker. The structure of a Forth nativeleo
compiler. InEuroForth '97 Conference Proceedingsages
107-116, 1997.

K. J. Gough. Multi-language, multi-target compiler eév
opment: Evolution of the Gardens Point compiler project.
In H. Mdssenbock, editoJMLC'97 —Joint Modular Lan-
guages Conferencéinz, 1997. LNCS 1204.

C.-H. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu. Java
bytecode to native code translation: The Caffeine prowtyp
and preliminary results. 189th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’22D96.

A. Krall and R. Grafl. CACAO - a 64 bit JavaVM just-
in-time compiler. Concurrency: Practice and Experience
9(11):1017-1030, 1997.

A. Krall and M. Probst. Monitors and exceptions: How
to implement Java efficiently. In S. Hassanzadeh and
K. Schauser, editoréCM 1998 Workshop on Java for High-
Performance Computingpages 15-24, Palo Alto, March
1998. ACM.

T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication Addison-Wesley, 1996.

S. Pemberton and M. C. Danielfascal Implementation,
The P4 CompilerEllis Horwood, 1982.

T. B. Steel. Afirst version of UNCOL. IRroceedings of the
Western Joint IRE-AIEE-ACM Computer Conferenuages
371-377,1961.

A. S. Tanenbaum, M. F. Kaashoek, K. G. Langendoen, and
C. J. H. Jacobs. The design of very fast portable compilers.
ACM SIGPLAN Notice4(11):125-131, Nov. 1989.

A. S. Tanenbaum, H. van Staveren, E. G. Keizer, and J. W.
Stevenson. A practical tool kit for making portable compil-
ers. Communications of the ACM6(9):654—660, Septem-
ber 1983.

java.io.ByteArrayQutputStreamwite (int)void

Local Tabl e:

LOO AO3 A02 AO1
A04 AO03 A02 AO1

LO3

0:
1: (int)
2: (int)
3: (int)

Interface Tabl e:
0: (int)

[

[

[

[

[

[

[LOO

[T23

[T23

[

[

[

[

[

[

[

[

[

[

[

[

[A0l

[A02 AO01

[A03 A02 AO01

[

[

[

[

[

[

[

S14
S13
S12

T24

LOO]
T23]
L02]
L02]

L02]
LO2]
LO2]
LO2]

]
1 00]

1 00]

]
1 00]
A0O]
LO3]

LOO]
A0O]
A0O]
AOO]
A0O]
A0O]
A0O]

LOO]
LOO]

]

(addr) S15

(addr) S12

LOO2:

LOO3:

LO04:

ALOAD
GETFI ELD

| ADDCONST
NOP

| STORE

| LOAD
ALOAD

GETFI ELD
ARRAYLENGTH
| F_I CMPLE

©CoOo~NOOUITA,WNEO

18 | F_I CWPLT

19 |1LOAD
20 @GOro
21 | LCAD

22 BU LTI N1
23 ASTORE
24 ALCAD

25 CETFI ELD
26 | CONST
27 ALCAD

28 | CONST
29 ALCAD

30 GCETFI ELD
31 | NVOKESTATI C
32 ALOAD

33 ALOAD

34 PUTFI ELD

45 RETURN

newarray_byte
3
0
8
0
3
0
0
1

6
j aval/ | ang/ Syst em arraycopy

0
3
8

Figure 4. Example: intermediate instructions and stack con tents

