
E�cient Type Inclusion TestsJan Vitek R. Nigel Horspool Andreas KrallObject Systems Group, CUI,Universit�e de Gen�eve,Geneva, SwitzerlandJan.Vitek@cui.unige.ch Dept. of Computer Science,University of Victoria,Victoria, BC, Canadanigelh@csr.uvic.ca Institut f�ur Computersprachen,Technische Universit�at Wien,Wien, Austriaandi@complang.tuwien.ac.atAbstractA type inclusion test determines whether one type isa subtype of another. E�cient type testing techniquesexist for single subtyping, but not for languages withmultiple subtyping. To date, the only fast constant-time technique relies on a binary matrix encoding ofthe subtype relation with quadratic space requirements.In this paper, we present three new encodings of thesubtype relation, the packed encoding, the bit-packedencoding and the compact encoding. These encodingshave di�erent characteristics. The bit-packed encodingdelivers the best compression rates: on average 85%for real life programs. The packed encoding performstype inclusion tests in only 4 machine instructions. Wepresent a fast algorithm for computing these encodingwhich runs in less than 13 milliseconds for PE and BPE,and 23 milliseconds for CE on an Alpha processor. Fi-nally, we compare our results with other constant-timetype inclusion tests on a suite of 11 large benchmarkhierarchies.1 IntroductionManymodern programming languages, particularly obj-ect-oriented ones, have been built around the notion oftype conformance to allow for a form of polymorphismand code reuse. The idea is that, if a type A conformsto a type B, then A can be used in any context whereB is expected. This notion is essential for the code in-heritance advocated by most object-oriented languages.Conformance is usually summarized by a transitive, re-
exive, anti-symmetric subtype relation (<:) betweenthe types of a hierarchy.A type inclusion test determines if a pair of types isin the subtyping relation. Such tests are performed fre-quently during compilation. Most object-oriented lan-guage implementations are also able to perform tests atProc. of the Object-OrientedProgrammingLanguages,Systems and Applications, OOPSLA'97, Atlanta, Oc-tober 1997.

runtime. In Smalltalk the isKindOf: method testswhether an object's class is a subclass of the class givenas argument, Oberon provides type tests and typeguards, Java instanceof, etc. Type tests need not al-ways be explicitly requested by the programmer, theymay also be inserted by the compiler, either as an opti-mization ([14]) or for safety. For example, in the Javacode fragment shown below, the assignment to the localvariable b is checked to ensure that the actual, runtime,type of the argument to the method is e�ectively a sub-type of B:class B extends A {void foo(A a) {B b = (B) a ;}}Since the subtype relation is a partial order on the typesof the program, type inclusion testing is more than themere comparison of type tags. Depending on the im-plementation of the type test algorithm and on the dy-namic frequency of tests, the cost of dynamic typecheck-ing can strain the overall system performance.This paper discusses the implementation of type in-clusion tests in languages that allowmultiple subtyping1.We present and compare di�erent encodings of the sub-type relation, as well as algorithms to compute theseencodings and perform the type inclusion test. Ourexploration of the design space of algorithms and en-codings was driven by three requirements:1. Runtime e�ciency: Type tests should be fast. Ouroriginal motivation for this research was to opti-mize method dispatch ([15], [14]). To this end,the cost of testing for type inclusion had to becomparable to the cost of dispatch in staticallytyped languages (5 machine instructions, but see[8]). We also insist on constant-time tests2 as webelieve that the cost of language primitives shouldbe predictable.1Note that we make a di�erence between subtyping and inheri-tance. Java is a single inheritance language with multiple subtyping.2In this context, constant means constant number of instructions,we did not explore cache behavior.

2. Space e�ciency: The runtime data structures thatencode the subtype relation must be small. Fur-thermore, the code sequence emitted by the com-piler for each static occurrence of a subtype testmust be short.3. Incremental hierarchy modi�cations: Support forruntime updates of the subtype relation. The con-cern here is that the cost in space and time of re-computing the encoding must not be prohibitive.To the best of our knowledge no existing techniquemeets our requirements. Algorithms based on dynamicdata structures such as linked lists and hash tables areslow and exhibit unpredictable behavior. Constant-time techniques either require large amounts of space,as for the bit matrix encoding, or are quite complex tocompute, as for the hierarchical encoding [2], [12].In this paper, we present three new encodings of thesubtype relation, the packed encoding, the bit-packedencoding and the compact encoding. We describe howthey are computed and how they are used to imple-ment constant-time tests. The packed encoding extendsto multiple subtyping an algorithm �rst described byCohen [3] and rediscovered independently by Queinnec[13]. When multiple subtyping is not used our solutionis the same as Cohen's. We improve on the runtime per-formance of tests by removing a bound check advocatedby Cohen. The code sequence that implements the typetest is short enough to be inlined and thus avoid the costof an extra call. The computation of the packed encod-ing is very fast and requires little memory. Thus, it iswell suited for on-the-
y updates of the hierarchy. Fur-thermore, there are categories of updates that do notrequire recomputing the encoding. The second new en-coding, called bit-packed encoding, reduces further thespace requirement of the packed encoding at the cost ofslower type inclusion tests. The last encoding, compactencoding, adapts the compact dispatch table techniqueof Vitek and Horspool [16]. It is designed for very largehierarchies. For small and medium-sized ones, it is lesse�cient than the packed encoding. We compare thenew encodings and algorithms to the bit matrix encod-ing and the near optimal hierarchical encoding of [12]and conclude with guidelines for choosing an encodingof the subtype relation.The remainder of this paper is organized as follows.Section 2 introduces terminology, important de�nitions,and a running example. Section 3 brie
y reviews pre-vious work in the �eld, including the binary matrixencoding, Cohen's encoding and the near optimal hi-erarchical encoding. Section 4 presents the packed en-coding, the type inclusion test and the encoding con-struction algorithm. Section 5 presents the bit-packedencoding. Section 6 presents the compact encoding.

Section 7 compares time and space requirements of thetechniques on a set of 11 benchmark programs. Finally,section 8 presents our conclusions.2 De�nitions and Example HierarchyA type hierarchy H = hT ; <:i is a set of types T anda re
exive, transitive, anti-symmetric subtype relation<:. If A <: B holds, then we say that A is a subtype ofB and B is a supertype of A. In class-based languagesthis hierarchy is de�ned explicitly by the programmerthrough the subclassing relationship between classes. Inlanguages with structural subtyping, the subtype rela-tion is derived automatically.We also de�ne an anti-re
exive, anti-symmetric di-rect subtype relation <:d<:d � fhx 2 T ; y 2 T ijx <: y ^(6 9z 2 T jx 6= z ^ y 6= z ^ x <: z <: y)gThe subtype relation is represented by a directed acyclicgraph, shown in �g. 1, with vertices for types and edgesfor the subtype relation. By convention, we draw su-pertypes above their subtypes and draw only edges in<:d. We also need the following de�nitions:roots(T) � fx 2 T j 6 9y 2 T : x <: ygparents(x) � fy 2 T jx <:d ygchildren(x) � fy 2 T jy <:d xgancestors(x) � fy 2 T jx <: ygdescendants(x) � fy 2 T jy <: xgmultis(T) � fx 2 T jcard(parents(x)) > 1gwhere card(S) is the cardinality of a set S.Roots is theset of top level types. Parents and children are sets ofdirect supertypes and subtypes, respectively. Ancestorsand descendants are sets of all subtypes and supertypesof a type. Multis is the set of all types with more thana single direct supertype.
A

B C E G

D FFigure 1: A small type hierarchy.2

class Object rep fType rep type rep...gFigure 2: Object runtime representation.A single subtyping type hierarchy restricts the num-ber of direct parents to one, card(parents(x)) � 1. Weassume single rooted hierarchies, i.e. card(roots(T)) =1. In practice, we �x hierarchies that do not ful�llthis assumption by adding an extra root type R sothat children(R) = roots(T). The hierarchy of �gure1 is a multiple subtyping hierarchy, with roots(T) =fAg, multis(T) = fD;Fg, parents(F) = fE;Gg andancestors(F) = fA;E;Gg.We de�ne the level of a type in a hierarchy as thelength of its longest path to the root:level(x) � � 0 if parents(x) = fgmax(L) + 1 otherwisewhereL � flevel(y)jy 2 parents(x)gFor the runtime representation of objects, we as-sume they are implemented by data structures with, asa common pre�x, a reference to a type information datastructure, the Type rep �eld of �g. 2. In many imple-mentations this �eld can be merged with the dispatchdata structure (e.g. the vtbl of C++).Unless explicitly stated, the type test instruction se-quences check subtyping against a type known at com-pile-time. This corresponds to a test of the formobj instanceof Awhere A is a type constant. This is the most frequentuse of a subtype test. We assume that the compiler orlinker uses this information to �ll in the values of theappropriate constants once the program is complete.As a convention, we pre�x compile- and link-timeconstants with a #.3 Previous Work3.1 Hierarchy Traversal AlgorithmsType inclusion tests for single subtyping are triviallyimplemented by traversing a linked list of types, as pro-posed by Wirth [17]. The linked list encoding requireslittle space and may be updated incrementally. Unfor-tunately, tests are slow, running in time proportionalto the distance between the two types in <:d. This led

Wirth to switch to a constant-time scheme for Oberon[18]. Linked data structures for multiple subtyping onlyincrease the cost of type tests. We have experimentedwith linked representations as well as with other non-constant-time schemes based on hashing while workingon this paper. Non-constant-time techniques are muchslower than the algorithms discussed in the remainder ofthe paper. We decided to concentrate on constant-timesolutions.3.2 Constant-time Algorithms3.2.1 Binary Matrix (BM)Type inclusion tests can be performed in constant-timeif the subtype relation is encoded as a binary matrix.If N = card(T), and
 : T ! [1 : : :N] is a one-to-onemapping from types to indices, we build a N�N binarymatrix MBM such that:MBM [
(x);
(y)] � � 1 if x <: y0 otherwiseThe binary matrix encoding for the hierarchy of �g. 1is shown in �g. 3(a).The runtime representation of types decomposes thematrix into rows corresponding to a type and storeseach row into a Type rep data structure, �g. 3(b). Ev-ery type representation has the same layout. This datastructure has two �elds: a position, pos, and a sequenceof (N + 31) mod 32 words, row. The position �eld en-codes
 and is used during type inclusion testing tocompute a word index and a bit index. If we assume32 bit words, the word index is pos >> 5 and the bitindex is pos & 31.With BM, a type inclusion test is simply an arrayaccess, a bit shift and a comparison. Figure 3(c) testswhether the type of an object obj is a subtype of atype with known word pos and bit pos. The machineinstruction sequence for this test is given in the ap-pendix.This encoding is trivial to compute. Its main draw-back is that it has quadratic space requirements. Forlarge programs, half megabyte matrices are easily con-ceivable. Nevertheless, the simplicity of the binary ma-trix has motivated its use in practice [11], [4].The other constant-time algorithms presented in thispaper use encodings which can be viewed as compressedforms of the binary matrix. The constraint on the com-pression is that very fast random access to elementsmust be guaranteed. In this view, the works on parsetable optimization and dispatch table optimization areclosely related, as, in both cases, their aim is to com-press sparsely populated matrices. The parse table com-pression techniques discussed by Dencker, D�urre and3

A 0B 1C 2D 3E 4F 5G 6
 A 1 0 0 0 0 0 0B 1 1 0 0 0 0 0C 1 0 1 0 0 0 0D 1 0 1 1 1 0 0E 1 0 0 0 1 0 0F 1 1 0 0 0 1 1G 1 0 0 0 0 0 1
 0 1 2 3 4 5 6MBM(a) The encoding of �gure 1.class Type rep fint32 posarray [1...N] of int32 rowg (a) Runtime data structures.Type rep type := obj.type repint32 word := type.row[#word pos]if (bit extract(word, #bit pos) = 1)(c) Type inclusion test.Figure 3: Binary Matrix (BM).Heuft [5] have in
uenced works in the �eld of dispatchtable compression [7], [15]. The compact encoding is infact a straightforward adaptation of compact dispatchtables of [15].3.2.2 Cohen's AlgorithmCohen proposed the �rst practical algorithm for per-forming subtype tests in constant-time [3]. Cohen's ideais a variation of Dijkstra's \displays" [6]. Each typeis identi�ed by a unique type identi�er, tid, which issimply a number. The runtime type information datastructure also records each type's complete path to theroot as a sequence of type identi�ers. The key trick isto build, for each type x, an array of card(ancestors(x))type identi�ers so that for each ancestor y, the tid ofy is stored at an o�set equal to level(y) in the array.The Cohen encoding for sample hierarchy of �g. 4(a) isgiven in �g. 4(b).With this encoding, type inclusion tests reduce toa bound-checked array access and a comparison opera-tion. The bound check is necessary as array sizes arenot uniform. The runtime data structure, shown in

�g. 4(c), consists of a level �eld, level and a sequenceof L type identi�ers, row, where L is equal to the valueof the current type's level. Note that the type iden-ti�er of a type x is stored at x.row[x.level]. Thecode sequence that tests whether an object's type is asubtype of some known type is shown in �g. 4(d).The advantages of Cohen's algorithm are that it isboth easy to understand and easy to implement, it per-forms tests in constant-time and requires little space.The packed algorithmof section 4 extends the algorithmto multiple subtyping and proposes a type inclusion testthat is faster than the one outlined above.
A

B

D

C(a) A small single subtyping hierarchy.tid lvlA 1 0B 2 1C 3 1D 4 2 A 1B 1 2C 1 3D 1 2 4(b) The encoding of �gure 4(a).class Type rep fint16 levelarray [0...L] of int16 rowg (c) Runtime data structures.Type rep type := obj.type repif (type.level � #level&& type.row[#level] = #tid)(d) Type inclusion test.Figure 4: Cohen's encoding.4

3.2.3 Hierarchical Encodings (NHE)Hierarchical encoding represents each type with a set ofintegers. This set must be chosen so thatx <: y ,
(x) �
(y)where
(x) maps type x to its set representation. Thus,the set of a subtype has to be a superset of the set repre-senting its parent. The sets have a natural representa-tion as bit vectors; an example is shown in �g. 5(a). Inthe bit vector representation the test function becomesx <: y ,
(x) _
(y) =
(x)or alternativelyx <: y ,
(x) ^
(y) =
(y)A simple, but ine�cient way to construct the bit vec-tors is to map each type into the corresponding row ofthe binary matrix of section 3.2.1. The resulting bitvectors are extremely sparse as the number of ancestorsof a type is usually much smaller than the total num-ber of types. Better techniques have been proposed inthe literature, in particular the modulation method3 ofA��t-Kaci et al. [1] and the gene encoding technique ofCaseau [2], which try to minimize the range of integersused to construct the sets, thus shortening the corre-sponding bit vectors. It is well known that �nding anoptimal bit vector encoding for partial ordered sets isNP-hard [10] and that there exist classes of partial or-dered sets (distributive and simplicial lattices) wherean optimal encoding is as large as the number of typeswith only one supertype [10]. Fortunately, type hierar-chies can be encoded much more compactly than dis-tributive lattices. In a previous paper, we have devel-oped a new and improved version of the Caseau ap-proach [2] which we call Near Optimal Hierarchical En-coding (NHE) [12]. This version generalizes Caseau'salgorithm by expressing it as a graph coloring prob-lem. It is able to encode arbitrary partially orderedsets rather than just lattices [2]. Our algorithm gen-erates the sets faster and generates much smaller sets(about 50% percent smaller than our implementation of[2]), thus making type inclusion tests more e�cient.A complete description of the algorithm can be foundin [12], we will summarize it brie
y here. A simple ver-sion of the technique would assign a set element (i.e. aposition of a bit in the bit vector) to each node in thetype hierarchy graph. This element distinguishes thenode from other nodes. This distinguishing element iscalled a gene by Caseau. The set representation for a3The modulation method is an e�cient encoding of lattices whichis used to perform lattice operations such as �nding the least upperbound or greatest lower bound, as well as relative complementation.Type hierarchies are not necessarily lattices.

A 0000B 1000C 0100D 0110E 0010F 0011G 0001(a) The encoding �g. 1.class Type rep farray [1. . .H] of int32 rowg (b) Runtime data structures.Type rep type := obj.type repif ((type.row[i] & #rowi) = #rowi)// repeated for i from 1 to H(c) Type inclusion test.Figure 5: Near Optimal Hierarchical Encoding (NHE).type is formed as the union of all its ancestor's sets ofgenes plus its own gene. However, if the set of ancestorsof a type x with more than one immediate parent is nota subset of another ancestor set, then x does not need agene. We can construct a con
ict graph where the nodesrepresent types and the edges connect types which arenot allowed to use the same gene. Graph coloring isthen used to assign di�erent genes to con
icting nodes.A crucial part of the technique, performed prior to com-puting the con
ict graph, is inserting extra nodes intothe hierarchy in order to balance the graph { the aim isto reduce the maximum number of children possessedby any node and that will tend to reduce the number ofnodes that require distinct genes. Fig. 5(a) shows theNHE encoding of the example hierarchy (�g. 1). Thealgorithm uses only four genes as D and F are able toreuse the genes of their parents, the root A does notneed a gene as it encodes the empty set. This tech-nique yields the optimal encoding for single subtypingand near optimal encoding for multiple subtyping hier-archies.The bit vector is of �xed size and can be stored atany �xed position inside the class object. The runtimedata structure is shown in �g. 5(b), row is a sequenceof H integers, H is the length of the bit string in words.5

The comparison part of the test function has to be repli-cated for each machine word used in the bit vector.This leads to the problem that with increasing codelength both execution time and instruction space in-crease. The number of unrollings is only known at linktime when the entire hierarchy is at hand, so the al-gorithm is constant-time at run-time but not constant-time at compile-time4. The implementation of the run-time test against a known bit vector (#row) is shown in�g. 5(c).This implementationwill be referred to as inline nearoptimal hierarchical encoding, INHE. It has three draw-backs: �rst it requires varying numbers of instructions,second, even in the best case, the instruction sequenceis longer than for the other algorithms. This causescode bloat as discussed in sect. 7.3. A slightly sloweralternative is to wrap the test in a function, we referto this solution as the generic near optimal hierarchicalencoding, or GNHE. GNHE is implemented by codinga number of similar type test functions, one for eachunrolling factor. Then, depending on the length of thebit vector, the appropriate test function will be called.The third drawback of the method is that it is compu-tationally intensive and that the full encoding must beregenerated after any change to the type hierarchy.3.3 Relative NumberingWe mention brie
y one last encoding of the subtype re-lation based on relative numbering of trees. In a tree itis possible to �nd out if a node is a child of another nodeas follows. For each node store two numbers, left andright. Traverse the tree in order, for each new node in-crement a counter c. When a node is �rst encountered,store c in left. When the traversal leaves the node storethe current value of c in right. A node n1 is a child ofa node n2 ifn2:left � n1:left ^ n1:left � n2:rightA single subtyping hierarchy is a tree; relative number-ing is therefore a very compact and elegant represen-tation of the single subtyping relation. This scheme isused in the DEC SRC Modula-3 system. Unfortu-nately, there is no obvious way to extend the techniqueto multiple subtyping.4This use of \constant" is a slight abuse of language. In our setof benchmark programs the maximal number of unrollings is 3 as thelongest bit vector length is 96, [12]. The longest test takes 18 machineinstructions. The shortest test is performed in 8 machine instructions.Note also that the number of instructions is solely determined by thesupertype. So, if the supertype is known at link-time (this accountsfor the overwhelming majority of type tests in real programs) thenumber of instructions needed is also known statically.

4 Packed Encoding (PE)Experience with binary matrices shows that they are al-ways sparse. It is therefore not surprising that they canbe compressed. We propose a technique which workswell in practice and manages to reduce the size of en-codings of real type hierarchies.In the binary matrix encoding,
 is a one-to-onemapping from types to matrix indices. Each type has acolumn and a row of the matrix. In the packed encod-ing, we propose to reuse columns for unrelated types.This reuse of columns is similar in spirit to the reuseof genes in hierarchical encoding and to the levels ofCohen's algorithm.4.1 The encodingFor the packed encoding of a hierarchy hT ; <:i with Ntypes, we construct a N � P bucket matrix MPEMPE : T � [1 : : :P]! tidso thatx <: y , MPE [x;
(y)] = MPE [y;
(y)]where
 : T ! [1 : : :P] maps types to columns in-dices (N.B. we call columns of MPE , buckets), and� : T ! tid maps types to identi�ers, which are simplysmall numbers. The number of columns P is computedby the bucket assignment algorithm of sec. 4.3. For anexample of packed encoding, consider �g. 6 which en-codes the hierarchy of �g. 1.The type inclusion test to determine whether A is asubtype of B proceeds as follows:A <: B � MPE [A;
(B)] = MPE [B;
(B)]MPE [A; 1] = MPE [B; 1]1 = 1trueBuckets partition the set of types according to a sim-ple rule: no two types in the same bucket may haveA 1B 2C 2D 3E 4F 3G 2
 A 1B 1C 2D 1E 1F 2G 3� A 1 0 0 0B 1 1 0 0C 1 2 0 0D 1 2 1 0E 1 0 0 1F 1 3 2 1G 1 3 0 0
 1 2 3 4MPEFigure 6: Packed encoding of �g. 1.6

common descendants. Thus a valid packed encodingmust abide by the following bucket assignment rule.Rule 1 Bucket assignment. Types in the same bucketcan not have common subtypes.
(x) =
(y)) descendants (x)\descendants(y) = fgwhere x 2 T ^ y 2 T ^ x 6= y.Clearly, this rule implies that in pathological cases thepacked encoding may degenerate into a binary matrix.This occurs for a
at hierarchy with a bottom elementthat is a subtype of every other type. Fortunately, sucha hierarchy is unlikely as it implies that some type hasall the operations and attributes of all other types inthe program.Identi�ers are assigned so as to ensure that two typesin the same bucket will not have the same identi�er. Avalid encoding must abide by the following identi�erassignment rule.Rule 2 Identi�er assignment rule. Types in the samebucket have di�erent identi�ers.
(x) =
(y)) � (x) 6= � (y)where x 2 T ^ y 2 T ^ x 6= y.4.2 Implementing type inclusion testsThe runtime representation of a type assumed by thepacked encoding is shown in �g. 7(a). It is composedof a short integer bucket which represents the bucketto which the type was assigned, i.e. the value of
, andan array of bytes, row, which contains the identi�ers ofall ancestors of the type|each array is a row of MPE .The type identi�er (i.e. the value of �) does not needto be stored explicitly as it can be fetched from row.Furthermore, type identi�ers can be small numbers asthe assignment rule (rule 2) does not require them to beglobally unique. Identi�ers need only be unique withina bucket. In our set of benchmarks, only a few bucketscontain more than 255 types. So, we chose to limitidenti�ers to a byte and create additional buckets whennecessary.The type inclusion test for checking whether an ob-ject obj is a subtype of a type with identi�er #tid andbucket #bucket is shown in �g. 7(b). The type test isfaster than Cohen's encoding; it is not necessary to per-form a bound check since all row arrays have the samelength. The machine instruction sequence, shown in theappendix, is four instructions long. This is shorter thanany known multiple inheritance dispatch sequence5 andprobably short enough to be inlined.5Single inheritance dispatch in a statically typed language can bedone in three instructions [8]. Note also, that multiple subtypingdispatch in Java can be done in 3 instructions [11].

class Type rep fint8 bucketarray [1 ...P] of int8 rowg (a) Runtime data structures.Type rep type := obj.type repif (type.row[#bucket] = #tid)(b) Type inclusion test.Figure 7: Implementing the Packed Encoding (PE).4.3 Computing the packed encodingThe bucket assignment rule can be turned into an algo-rithm without too much e�ort. It su�ces to associatewith every type the set of its descendants, and to main-tain, for every bucket, a set that is the union of thedescendant sets of all of the types it contains. The al-gorithm is then to build a list of types sorted by theirlevel, to guarantee that we visit parents before children.Then, for each type in the list, the algorithm must �nda bucket for which the intersection between the bucket'sset of descendants and the type's set of descendants isempty. If no such bucket can be found, a new bucketis added. This is what we did in an earlier version ofthis paper. Unfortunately, the result is an extremelyine�cient algorithm which spends most of its time per-forming intersections and unions of large sets|the setsare arbitrary subsets of T .We present a more sophisticated algorithm which isan order of magnitude faster and yet remains simpleand easy to implement. The crucial idea is to separatethe single subtyping portion of the hierarchy from themultiple subtyping portion and to use this to re�ne thebucket assignment rule. We start by de�ning three dis-joint subsets of T . The �rst subset is the set of jointypes. A join type is a type with multiple parents (i.e.direct supertypes) which has only single subtyping de-scendants.join(T) � fx 2 multis(T)j 6 9y 2 multis(T) : y <: xgThe second subset is the set of spine types. Any ances-tor of a join type belongs to this set.spine(T) � fx 2 ancestors(y)jy 2 join(T)gThe last subset is the set of plain types, these are typeswhich are neither in spine nor in join. A plain type is7

a type that has a single parent, and whose descendantsare also plain types.plain(T) � T � (spine(T) [join(T))We will also use two list building functions level orderand rev level order. Each of them returns a list of typessorted by their level.level order(S) � [x1; : : : ; xN]where N � card(S);and level(xi) � level(xi+1)rev level order(S) � [x1; : : : ; xN]where N � card(S);and level(xi) � level(xi+1)Rule 3 Bucket assignment (plain and join). Plain andjoin types may be assigned the same bucket only if theyare not related by <:.
(x) =
(y)) x 62 ancestors(y) (a)
(x) =
(y)) y 62 ancestors(x) (b)where x 2 join(T)[plain(T) ^ y 2 join(T)[plain(T ^x 6= y.This rule is trivial since, for single subtyping, the onlyway for two types to have a common descendant is thateither x <: y or y <: x.Rule 4 Bucket assignment (spine). Two spine typesmay be assigned the same bucket only if they have nojoin type in common.
(x) =
(y)) joins(x) \ joins(y) = fgwhere x 2 T ^ y 2 T ^ x 6= y ^joins(z) � descendants (z) \ join(T).This rule is equivalent to rule 1. By construction, everyspine type has one or more join nodes in its descendantslist. If x <: y then joins(x) \ joins(y) = joins(x) 6= fg.If y <: x then joins(x) \ joins(y) = joins(y) 6= fg.If x 6<: y and y : 6> y then if the types have commondescendants at least one of them must be in spine(T).The bucket assignment algorithm, shown in �g. 8starts by assigning buckets to spine types, as the othertypes depend on them. Spine types are visited in reversetopological order as the lower types are less likely tocon
ict with each other. A spine type is added to abucket if the bucket is not full (fewer than 255 types)and if adding the type to the bucket does not violaterule 4. Checking the validity of the rule requires typesand buckets to have a set of join types. The set ofjoin types of the bucket is updated each time a typeis added. Note that the size of these sets is limited by

the number of join nodes in the hierarchy. If there isno bucket where to put the type, a new bucket mustbe created. Another reason for visiting join types inreverse level order is that we can build the join sets whileT := load hierarchy()Buckets := fgforeach(x 2 T)x:joins := fgx:used := fgforeach(x 2 join(T))foreach(y 2 parents(x))y:joins := y:joins [fxgforeach(x 2 rev level order(spine(T)))found := falseforeach(b 2 Buckets)if(card(b:elements) � 255^ x:joins \ b:joins = fg)found := trueb:elements := b:elements [fxgb:joins := b:joins [x:joinsbreakif(found = false)b := newBucketBuckets := Buckets [fbgb:elements := b:elements [fxgb:joins := x:joinsforeach(y 2 parents(x))y:joins := y:joins [x:joinsforeach(x 2 level order(plain(T) [join(T)))found := falseforeach(b 2 Buckets)if(card(b:elements) < 255^ b 62 x:used)found := trueb:elements := b:elements [fxgx:used := x:used [fbgbreakif(found = false)b := newBucketBuckets := Buckets [fbgb:elements := b:elements [fxgx:used := x:used [fbgforeach(y 2 children(x))y:used := y:used [x:usedFigure 8: Bucket assignment algorithm.8

assigning buckets. After assigning a bucket to a type,the join sets of the parents of the type are updated withthe joins of the current type. The second part of thealgorithm deals with non-spine types. These types arevisited in level order to ensure that buckets are assignedto parents before children. All that needs to be done isto compute for every type, the set of buckets that havealready been used by its ancestors. Any bucket notin this set can be used for the type. This implementsrule 3.Building the runtime data structures once the buck-ets have been assigned is merely a matter of traversingthe bucket set in any order and creating Type rep ob-jects. We maintain a counter n that indicate the columnindex of the bucket, this is used for setting bucket (
)and an intra bucket counter c which is used for typeidenti�ers (�). The size of the rows, P , is the cardinal-ity of the set of buckets. The last stage of the algorithmis to traverse the hierarchy in level order and set the row�elds of all types to their correct values.P = card(Buckets)n := 0foreach(b 2 Buckets)c := 0n := n+ 1foreach(x 2 b:elements)c := c+ 1x :type := newType repx :type:bucket := nx :type:row :=newArray [1 : : :P] of int8foreach(i 2 [1 : : :P])x :type:row [i] := 0x :type:row [x :type:
] := cforeach(x 2 level order(T))foreach(y 2 children(x))foreach(i 2 [1 : : :P])y :type:row[i] :=y :type:row[i] j x :type:row[i]// j is the logical-or operatorFigure 9: Building the PE type representation.4.4 DiscussionThe bucket construction algorithm is quite fast (seesec. 7.2), but does not guarantee an optimal bucket as-signment. In some cases it may allocate too many buck-ets. Consider the type hierarchy of �g. 10, The optimalassignment is

A

B C D E

F G HFigure 10: Type hierarchy.Bucket 1 2 3 4Types A B;D C;E F;G;HDepending on the order in which level{1 types are vis-ited the algorithm may return the following bucket as-signment:Bucket 1 2 3 4 5Types A B;E C;H D;F GThis assignment requires one extra bucket. Because Band E were put in the same bucket, C and D had to beplaced in di�erent buckets.The obvious approach for �nding the optimal assign-ment would require graph coloring, which we wanted toavoid, as one of the strong points of this algorithm is itsspeed. But, before looking for more complex solutions,it is a good idea to evaluate what there is to gain. Oneway to do this is to compute an approximation of thelower bound on the number of buckets needed in ourset of benchmark programs and compare that with thenumber of buckets generated by the bucket assignmentalgorithm. A very simple lower bound is the largestvalue of ancestors(x) for each hierarchy. It is guaran-teed by the bucket assignment rules that the optimalencoding will have at least that many buckets. We havedone that for our benchmark programs. The results aresummarized in table 1. The only three programs wherewe actually lose are GEO, EDE and LOV; all threeare the output of a code generator which makes exten-sive use of multiple subtyping|see 7.1 for a descriptionHierarchy VW2 DG3 NXT ET+ UNI SLFmax ancestors 15 14 8 9 10 41comp. buckets 15 14 8 9 10 41Hierarchy GEO LOV EDE LAU JAVmax ancestors 50 24 23 16 7comp. buckets 51 27 26 16 7Table 1: Assessing the quality of bucket assignments.9

of the benchmark suite. The di�erence in the case ofGEO is one bucket and, for LOV and EDE, three buck-ets. Such small numbers do not warrant complicatingthe algorithm. We also believe that these examples areatypical in their heavy use of multiple subtyping.5 Bit-Packed Encoding (BPE)The choice of an uniform bucket length for the packedencoding was motivated by an emphasis on speed oftype inclusion tests. If data size is the issue, the en-coding can be compressed further by allowing variablebucket lengths. A length of 8 bits is used for PE whichallows 255 types to share the same bucket. In practice,the number of types that actually share a bucket is muchlower. In fact, for the multiple subtyping hierarchies ofour benchmark suites, 33% of the buckets contain a sin-gle type. These buckets actually need a single bit. Thebit-packed encoding (BPE) uses variable sized represen-tations for buckets. With this simple change it improvesthe compression rate of all multiple subtyping examplesof the benchmark suite (see section 7.3).The BPE encoding is generated by an algorithmwhich is run after PE generation and which simplypacks as many buckets as possible in a single word.Fig. 11(a) shows the result for the hierarchy of �g. 1.The value of
 is the o�set in the bit string, � is thetype identi�er bit string. For practical purposes, theBPE algorithmwill not split type identi�ers across wordboundaries. Thus words may be padded to 32 bits ifneeded. In �g. 11(a), the identi�er of type A requiressingle bit while those of all the other type require 2 bits.The main di�erences between PE and BPE are theirruntime data structures and type inclusion tests. Withthe bit-packed encoding, each Type rep contains an ar-ray ofB 32 bit words, row, where B is obtained by pack-ing the PE encoding. Type identi�ers are representedby numbers no larger than 8 bits at an arbitrary o�set ina word. To be able to extract a type identi�er, it is thusnecessary to know its word, its position in a word and itslength. Thus, a Type rep contains a bucket word �eld,a bucket pos �eld and a bucket mask. The last �eld isused to mask irrelevant bits out of a byte. The runtimedata structure is shown in �g. 11(b). The type inclusiontest, shown in �g. 11(c), extracts the type identi�er byshifting by bucket pos and masking with bucket mask.We refer to the machine instruction sequence forthe BPE test of �g. 11(c) as inline bit-packed encoding(IBPE). The IBPE type test takes 6 machine instruc-tions. Similarly to the INHE, long instruction sequencesmay lead to code bloat. This can be avoided by per-forming most of the type test out of line, in a separateprocedure. This variant of BPE is called generic bit-packed encoding (GBPE). It reduces the per test site

overhead to 3 instructions. The GBPE type test is givenin the appendix.The BPE has another advantage over PE. For theworst case scenario of a
at hierarchy described in sec-tion 4.1, the space needed for BPE is exactly the sameas for the binary matrix. With PE's uniform bucketlengths, the encoding is 8 times as large.A 1B 2C 2D 4E 6F 4G 2
 A 1B 01C 10D 01E 01F 10G 11� A 100000B 101000C 110000D 110010E 100001F 111101G 111000
 123456MBPE(a) Encoding of �g. 1.class Type rep fint8 bucket wordint5 bucket posint8 bucket maskarray [1 ...B] of int32 rowg (b) Runtime data structures.Type rep type := obj.type repint32 word := type.row[#bucket word]word := word >> #bucket posword := word & #bucket maskif (word = #tid)(c) Type inclusion test.Figure 11: Bit-Packed Encoding (BPE).6 Compact Encoding (CE)A notable characteristic of all constant-time encodingsis redundancy. In Cohen's encoding, a row di�ers fromits parent in only one position. With multiple subtyp-ing, more than one position may di�er as each typemay have more than one parent. Yet, in general, rowsremain fairly constant from one generation to the next.The compact encoding is a straightforward adaptionof the compact dispatch table technique of Vitek and10

Horspool [15]. It reduces repetition by introducing shar-ing between rows of a type matrix. The idea is simple,start with a N�M matrix (either a binary matrix or thepacked encoding, in the followingwe take the packed en-coding) and break it into a number, m, of chunks. Eachchunk is composed of N rows and Mi columns. Then,for each chunk, compare all rows and merge equal rows.A
1 1B
2 1C
2 1D
3 2E
2 1F
3 2G
2 1
i A 1B 1C 2D 1E 1F 2G 3�A;B;C;D;E; F;G 1
1 1M1CEA;E 0B 1C;D 2F;G 3
2 1M2CE A;B;C;G 0 0D 1 0E 0 1F 2 1
3 1 2M3CE(a) The encoding of �g. 1.class Type rep fshort chunkshort bucketarray [1...M] of Row rowgclass Row farray [1...mi] of int8 elemg (b) Runtime data structures.Type rep type := obj.type repRow row := type.row[#chunk]if (row.elem[#bucket] = #tid)(c) Type inclusion test.Figure 12: Compact Encoding (CE).

This yields a set of smaller, Ni � Mi, matrices whereNi � N andMi � M for each of the chunks. The choiceof the chunk size and of the column in which to put ina chunk relies on heuristics as discussed in [15].The compact encoding for the small type hierarchyof �g. 1 is shown in �g. 12(a). In this encoding thepacked matrix (7 � 5) is split into three chunks. So,with m = 3, the three chunks have dimensions 1 � 1,4� 1, and 4� 2.The runtime data structure for each Type rep con-sists of a short integer chunk which indicates which
ito use, a second short integer bucket which is the valueof
 and an array of rows, row. An element in this ar-ray of rows is a chunk, a portion of one of the rows ofthe original matrix. The actual Row objects are sharedby multiple Type rep objects. Fig. 12(b) shows thesedata structures. As before, the type identi�er may berecovered from the type, so the identi�er of type x isstored at x.row[x.chunk].elem[x.bucket]. The typeinclusion test against a type with chunk #chunk, bucket#bucket and identi�er #tid is shown in �g. 12(c).7 EvaluationThis last section evaluates the di�erent constant-timetype inclusion test techniques according to four criteria:the runtime characteristics of the type test algorithms,space requirements of the associated encoding, genera-tion time of the encoding and suitability for incrementalhierarchy modi�cations.We compare �ve algorithms: the binary matrix (BM)of section 3.2.1, the near optimal hierarchical encodings(NHE) of section 3.2.3, the packed encoding (PE) ofsection 4, the bit-packed encoding (BPE) of section 5,and the compact encoding (CE) of section 6. Typetests with NHE and BPE can be either performed in-line (INHE and IBPE) or in a separate function (GNHEand GBPE). We refer to the algorithms by the abovementioned acronyms.7.1 Benchmark data setsChoosing data sets to compare encodings is a trickytask. While it is fairly easy to generate arbitrary di-rected acyclic graphs, they seldom resemble those of realprograms. For example, the degree of multiple subtyp-ing that humans seem to be comfortable with is usu-ally quite low; the average number of direct supertypesis very close to 1 in all large programs we have beenable to study. The encodings that we want to comparehave been designed to be space e�cient representationof type hierarchies, we thus feel that it is necessary tocompare them on real-life data sets.11

Library Lang. Types Level Parent Ancestornum. max. (max./avg.) (max./avg.)VW2 Smalltalk 1956 15 1 / 1 15 / 6.40DG3 Smalltalk 1357 14 1 / 1 14 / 6.40NXT Obj.-C 311 8 1 / 1 8 / 3.94ET+ C++ 371 9 1 / 1 9 / 4.30UNI C++ 614 10 2 / 1.01 10 / 4.02SLF Self 1802 18 9 / 1.05 41 / 30.88GEO Eiffel 1319 14 16 / 1.89 50 / 14EDE Eiffel 434 11 7 / 1.66 23 / 7.99LOV Eiffel 436 10 10 / 1.71 24 / 8.50LAU Laure 295 12 3 / 1.07 16 / 8.13JAV Java 225 7 3 / 1.04 7 / 3.43Table 2: Benchmark type hierarchies.Another consideration is whether to include singlesubtyping hierarchies. Since single subtyping is a spe-cial case of multiple subtyping, and it is fairly commonto �nd single subtyping hierarchies in languages withmultiple subtyping (e.g. ET++, see below), we mustinclude single subtyping in this evaluation. Further-more, as the packed encoding (PE) reduces to Cohen'sencoding in the single subtyping case, it is interestingto compare its space requirements with those of the hi-erarchical encoding.We use a collection of 11 medium to large type hier-archies to evaluate encodings6 [9].Some descriptive data about the hierarchies is givenin table 2. Level indicates the depth of each hierarchy,parent gives both the largest and average number ofdirect supertypes, and, �nally, ancestors gives largestand average number of supertypes for each hiearchy.VW2 and DG3 are both large Smalltalk-80 classlibraries, respectively VisualWork2 and Digitalk3. Eachclass corresponds to a type, the subtype relation is theinheritance relationship between classes. VW2 is ourlargest hierarchy with almost 2000 types. VW2 is alsoquite deep with 15 levels. NXT contains types extractedfrom the NeXTStep class library. ET+ is the ET++graphical user interface library. UNI is the UnidrawC++ toolkit. SLF contains data extracted from theSelf system7. This is our largest multiple subtypingexample, it is also the deepest hierarchy (18 levels). No-tice that the maximum number of parents is 9 which israther high. The largest number of ancestors 41 andthe average number of ancestors is more than 30. Bothvalues are much larger than in class-based languages.GEO, EDE and LOV are Eiffel applications producedby a code generator. They exhibit very large amountsof multiple subtyping, up to 16 parents for GEO. Theiraverage number of parents is also way higher than that6We thank Yves Caseau (LAU) and Karel Driesen (VW2, DG3,ET+, UNI, SLF). The benchmark data set is available fromhttp://www.cs.ucsb.edu/oocsb/classhierarchies/.7In Self shared behavior is implemented by maps, for our purposeeach map represents a type.

of the other hierarchies. LAU is the Laure language ofCaseau. Finally, JAV is the Java JDK 1.02 library. Werefer to the data sets by their acronyms.We consider these hierarchies to be fairly large, butexpect to see much larger hierarchies for big systems.Another source of large hierarchies is the growing num-ber of code generators that use object-oriented languages(Java for example) as their target. Generated code mayuse multiple subtyping more extensively as automatictools are better at keeping track of complex hierarchiesthan human programmers.7.2 Runtime behavior of type testsBased on the machine code sequences given in the ap-pendix, the di�erent algorithms are compared with re-spect to their speed, instruction count and register us-age. The comparison is based on a generic RISC ar-chitecture which executes one instruction every cyclewith a load latency of 2 cycles and no penalty for cor-rectly predicted branches. The variable H for INHEand GNHE is a factor of the length of the bit stringencoding the hierarchy. If the word size is 32 bits andthe encoding is n bits, H = (n+31) mod 32. In our setof programs the largest H was 3. For GNHE, we countthe number of instructions at the call site only. All al-gorithms under consideration guarantee constant-timetype tests. In the case of the INHE and GNHE, the timeis determined at link-time when the entire hierarchy isknown. The, perhaps surprising, result of table 3 is thattype tests with PE are as e�cient as type tests that usea binary matrix. The other techniques are slower, re-quire more registers and have higher instruction counts.Resources BM INHE GNHECycles 6 3 + 6H 5 + 6HInstructions 4 3 + 5H 4Registers 1 4 5Resources PE IBPE GBPE CECycles 6 8 11 8Instructions 4 6 3 5Registers 1 1 3 1Table 3: Comparing runtime characteristics.7.3 Space requirementsTable 4 summarizes space requirements of the di�erentencodings relative to the binary matrix encoding. Com-pression rates are computed as 1 � (sizeX=sizeBM).These measurements assume 32 bit pointers and 32 bitalignment of the data and do not include the size of themachine code sequences.12

The space requirements of the naive approach (BM)can come close to 0.5MB and these get compresseddown to 16 KB with NHE and 30 KB with PE andBPE. The size of BM depends on the number of types,we get equally large hierarchies with single (VW2) andmultiple subtyping (SLF). NHE has consistently bet-ter compression rates. It performs slightly worse oninputs containing multiple inheritance like EDE, LOVand JAV, but interestingly enough performs very wellon SLF and GEO. PE demonstrates good compressionrates for single subtyping and only adequate compres-sion rates multiple subtyping. BPE improves on PEfor all multiple subtyping hierarchies. For instance forSLF, the encoding size drops from 77 KB to 28 KB. CEfails to improve on the PE, except for LOV and EDEwhere it performs slightly better. The reason for thispoor performance is that gains due to sharing parts ofbit vectors are o�set by the cost of the additional point-ers in each type data structure. These numbers suggestthat CE needs larger hierarchies to become pro�table.Lib. BM NHE PE BPE CEVW2 485.3 16.0 30.5 30.5 39.3(96.7%) (93.7%) (93.7%) (91.9%)DG3 233.4 10.9 21.2 15.9 24.0(95.3%) (90.9%) (93.2%) (89.7%)NXT 12.4 1.2 2.4 2.4 3.7(90.3%) (80.6%) (80.6%) (70.2%)ET+ 17.8 1.4 4.3 2.8 4.8(92.1%) (75.8%) (84.3%) (73.0%)UNI 49.1 2.4 7.2 4.8 8.5(95.1%) (85.3%) (90.2%) (82.7%)SLF 410.8 14.7 77.4 28.1 85.0(96.4%) (81.2%) (93.2%) (79.3%)GEO 221.5 15.9 66.9 25.7 67.1(92.8%) (69.8%) (88.4%) (69.7%)EDE 24.3 3.4 11.9 5.1 10.5(86.0%) (51.0%) (79.0%) (56.8%)LOV 24.4 3.4 11.9 5.1 10.8(86.1%) (51.2%) (79.1%) (55.7%)LAU 11.8 1.1 4.6 2.3 6.2(90.7%) (61.0%) (80.5%) (47.5%)JAV 7.2 0.9 1.8 0.9 2.7(87.5%) (75.0%) (87.5%) (62.5%)Table 4: Space requirements (KB/compression rate).7.3.1 Considering instruction spaceWe were able to obtain the number of static type checkcalls (3861) for the Java library (JDK 1.0.2). If thespace requirements for both the table and the instruc-tions are considered, the rankings of the algorithms

are completely reversed. The results are presented intable 5. The generic algorithms (GPBE and GNHE)win as they require fewer instructions per test site. Thesize of the tables actually is irrelevant, code space domi-nates the size requirements. Nevertheless, the code sizemeasures should be taken with caution: (1) it is notclear how representative this data is, (2) many of thesetype tests will be inlined away by an optimizing com-piler, and (3) the JDK1.0.2 hierarchy was quite small.These numbers should be considered as upper boundson size requirements.Space BM INHE GNHEEcode only 60.3 123.4 60.3data + code 67.6 124.3 61.2Space PE IBPE GBPE CEcode only 60.3 90.5 45.2 77.1data + code 62.1 91.4 46.1 79.6Table 5: Space requirements with instructions (KB).7.4 Encoding generationThe time needed to generate the encoding can not beneglected as it will lengthen the overall compile and linkcycle time or even play a role at runtime in the case ofincremental hiearchy updates.We have measured the speed of all four algorithmson a 500 MHz 21164 Alpha processor. The runningtimes in milliseconds are shown in table 6. These timeswere obtained by computing the encoding 100 times foreach hierarchy.The di�erence between BM, PE, BPE and CE isquite small, all three algorithms run fast. The worsttime for BM is 10 msecs for VW2 which is the largestBM (B)PE CE NHEVW2 10 12 13 890DG3 6 8 9 426NXT 1 2 2 30ET+ 1 2 2 39UNI 2 3 4 93SLF 9 11 14 1367GEO 8 13 23 1902EDE 2 4 5 136LOV 1 4 5 168LAU 1 2 2 21JAV 1 1 2 19Table 6: Encoding generation times (msecs).13

hierarchy. PE and CE take 13 and 23 msecs, respec-tively, for GEO which is large and features heavy mul-tiple inheritance. NHE is slower, yet it still generatesencodings in less than 2 seconds.7.5 Incremental hierarchy updatesDealing with changes in the subtyping relation is di�-cult. As for most table compression algorithms smallchanges in the input can result in widely di�erent com-pressed outputs. Thus it is not always possible to avoidrecomputing the entire encoding.There are two kinds of changes to the subtype re-lation: destructive changes, changes that modify thetype graph either by adding or removing edges betweenexisting vertices, and additive changes, changes thatonly add new vertices and new edges to a type graph.The �rst kind is usually restricted to programming en-vironments during software development. The secondkind may actually occur at runtime when new softwarecomponents are dynamically linked. In class-based lan-guages, such as Java, new classes and interfaces canbe loaded at arbitrary points during program execu-tion. The new types thus created are always subtypesof already existing types. In languages with structuralsubtyping, new types may also be supertypes of existingtypes.Supporting dynamic changes to the subtype relationimplies that the information dependent on a particularencoding must be localized to some well de�ned portionof the program and easy to change or update to re
ectthe new situation. This comes at a cost in e�ciency.For one, compile- or link-time constants can not be up-dated. In general that would prove too costly. Thustype inclusion tests must be wrapped in function callsto a generic test function that expects two Type repobjects and is able to extract the necessary informationfor a type test out of their �elds.Another trick to speed up recomputation of the en-codings is not to recompute them. Or, at least, to waituntil the last possible time before doing so. The moti-vation is that changes often come in batches. As it iseconomical to recompute for as many types as possible,we must try to wait until all the types in the batch havebeen added before starting the update. What is the lat-est time? It is either the �rst subtype test, or, if we wantto be more precise, the �rst subtype test that involvesa new type. So, we can either modify|by overwritingcode|the type test function to trigger recomputation,or add extra information to type representations to in-dicate whether they have been initialized and add anextra check to each type test to verify that both typesalready have been installed.In any case, the next question is what to do when re-

computing is necessary. Assume that we have batcheda group of updates. If the batch contains destructiveupdates the encoding will have to be recomputed. Ifthe batch contains no destructive updates, the binarymatrix does not have to be updated. For a new type,each row has to be extended by an entry and a new rowmust be added. The cost of extension can be reducedby pre-allocating longer rows with some unused entries.In the case of the hierarchical encoding, recomputingcan not be avoided easily. For the packed and compactencodings, adding new subtypes does not necessarilymean recomputing the encoding. Recomputing is onlynecessary if we add new join types of previously exist-ing types. Otherwise the update can be performed byextending rows. For the bit-packed encoding, the samecomments as for PE apply, except that the encodingmust also be recomputed if the number of bits requiredto represent a bucket changes.When the encoding has to be recomputed, genera-tion time and memory requirements become important.BM, PE and BPE have the fastest generation times. CEfollows close behind PE. Finally, NHE is most compu-tationally intensive algorithm and thus less suited tofrequent encoding generation.8 ConclusionsIn this paper we have looked at the problem of test-ing for type inclusion in object-oriented programminglanguages with multiple subtyping. We evaluated �vemain techniques for computing type inclusion with dif-ferent trade-o�s. Which is the best type test method?If run-time speed is the primary concern, the PackedEncoding is a clear winner. It ties with the Binary Ma-trix as achieving the fastest type test times, it is almostas fast to compute, yet it requires much less storage fortables. The packed encoding is thus suited for stati-cally compiled programming languages as well as to en-vironments that permits dynamic addition of new types(as with Smalltalk and Java). If space and speed oftests are equal concerns, the Bit-Packed Encoding is thebest choice as it is consistently more compact than thePacked Encoding, yet it is fast to compute and guaran-tees constant time type inclusion tests. If space is themajor concern, our generic Near Optimal HierarchicalEncoding method will give the best results. Finally, webelieve that the Compact Encoding may compress somevery large hierarchies better than the other encodingsbut we were not able to substantiate this hypothesiswith the data at our disposal.Source code for the algorithms described in this pa-per is available from:http://www.complang.tuwien.ac.at/andi/typecheck/http://cuiwww.unige.ch/~jvitek/fcttit/14

AcknowledgmentsThe authors wish to thank Ole Agesen, Laurent Dami,Karel Driesen and Manuel Serrano for thoughtful com-ments on earlier versions of this paper; Christian Quein-nec for interesting discussions of alternative techniquesand uses of type inclusion tests; and the OOPSLA re-viewers as their technical comments helped us improvethis paper.References[1] H. A��t-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Ef-�cient implementation of lattice operations. ACMTransactions on Programming Languages and Sys-tems, 11(1):115{146, 1989.[2] Y. Caseau. E�cient handling of multiple inher-itance hierarchies. In Proc. Conference on Ob-ject Oriented Programming Systems, Languages& Applications, OOPSLA'93, Published as SIG-PLAN Notices 28(10), pages 271{287. ACM Press,September 1993.[3] N. H. Cohen. Type-extension type tests can beperformed in constant time. ACM Transactions onProgramming Languages and Systems, 13(4):626{629, 1991.[4] J. Dean, G. DeFouw, D. Grove, V. Litvinov, andC. Chambers. Vortex: An optimizing compiler forobject-oriented languages. In Proc. Conference onObject Oriented Programming Systems, Languages& Applications, OOPSLA'96. ACM Press, October1996.[5] P. Dencker, K. D�urre, and J. Heuft. Optimiza-tion of parser tables for portable compilers. ACMTransaction on Programming Languages and Sys-tems, 6(4):546{572, October 1984.[6] E. W. Dijkstra. Recursive programming. Numer.Programming, (2):312{318, 1960.[7] K. Driesen. Selector table indexing and sparsearrays. In Proc. Conference on Object Ori-ented Programming Systems, Languages & Appli-cations, OOPSLA'93, Published as SIGPLAN No-tices 28(10), pages 259{270. ACM Press, Septem-ber 1993.[8] K. Driesen, U. H�olzle, and J. Vitek. Messagedispatch on pipelined processors. In Proc. Euro-pean Conference on Object-Oriented Programming,ECOOP'95, Lecture Notes in Computer Science.Springer-Verlag, 1995.

[9] K. Driesen, U. H�olzle, and J. Vitek. The OOCSBclass heterarchy benchmark suite. Technical Re-port TRCS97-09, Dept. of Computer Science, Uni-versity of California, Santa Barbara, July 1997.[10] M. Habib and L. Nourine. Tree structure for dis-tributive lattices and its applications. TheoreticalComputer Science, 165:391{405, 1996.[11] A. Krall and R. Gra
. CACAO { a 64 bit JavaVMjust-in-time compiler. In G. C. Fox and W. Li, edi-tors, PPoPP'97 Workshop on Java for Science andEngineering Computation, Las Vegas, June 1997.ACM.[12] A. Krall, J. Vitek, and R. N. Horspool. Near opti-mal hierarchical encoding of types. In Proc. Euro-pean Conference on Object-Oriented Programming,ECOOP'97, Lecture Notes in Computer Science.Springer-Verlag, June 1997.[13] C. Queinnec. Designing MEROON v3. In C. Ra-thke, J. Kopp, H. Hohl, and H. Bretthauer, editors,Object-Oriented Programming in Lisp: Languagesand Applications. A report on the ECOOP'93Workshop, September 1993.[14] C. Queinnec. Fast and compact dispatching for dy-namic object-oriented languages. Information Pro-cessing Letters (accepted for publication), 1997.[15] J. Vitek. Compact dispatch tables for dynamically-typed object-oriented languages. M.sc. thesis, Uni-versity of Victoria, April 1995.[16] J. Vitek and R. N. Horspool. Taming messagepassing: E�cient method look-up for dynamically-typed languages. In Proc. European Conference onObject Oriented Programming, ECOOP'94, Lec-ture Notes in Computer Science. Springer-Verlag,1994.[17] N. Wirth. Type extensions. ACM Transactions onProgramming Languages and Systems, 10(2):204{214, 1988.[18] N. Wirth. Reply to \type-extension type testscan be performed in constant time". ACM Trans-actions on Programming Languages and Systems,13(4):630, 1991.
15

Appendix: Implementations in GenericRISC Assembly CodeIn all four code sequences below, control transfers tothe label FAIL if the type inclusion test fails and dropsthrough to the following instruction if it succeeds.Binary Matrixload [object + #type_rep], type_repload [type_rep + #word_pos], bitlshift bit, 31 - #bit_pos, bitbgez bit, #FAILPacked Encodingload [object + #type_rep], type_repload [type_rep + #bucket], tidcmp tid, #tidbne #FAILInline Bit-Packed Encodingload [object + #type_rep], type_repload [type_rep + #bucket_word], tidrshift tid, #bucket_pos, tidand tid, #bucket_mask, tidcmp tid, #tidbne #FAILGeneric Bit-Packed Encodingload [object + #type_rep], type_repadd #0, #par_tid, par_tidcall check_ncheck_n:load [type_rep + #bucket_word], tidrshift tid, #bucket_pos, tidand tid, #bucket_mask, tidcmp tid, par_tidbne #FAILretCompact Encodingload [object + #type_rep], type_repload [type_rep + #chunk], chunkload [chunk + #bucket], tidcmp tid, #tidbne #FAIL

Inline Near OptimalHierarchical Encodingload [object + #type_rep], type_repsethi high(#parent_type), parentsetlo low(#parent_type), parent// repeated H times:load [type_rep], this_tidload [parent], parent_tidand this_tid, parent_tid, this_tidcmp this_tid, parent_tidbne #FAILGeneric Near OptimalHierarchical Encodingload [object + #type_rep], type_repsethi high(#parent_type), parentsetlo low(#parent_type), parentcall GNHE_HGNHE_H:// comparison of one machine wordload [type_rep], this_tidload [parent], parent_tidand this_tid, parent_tid, this_tidcmp this_tid, parent_tidbne #FAIL// repeated H times:ret

16

