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ABSTRACT
If-conversion is a simple yet powerful optimization that con-
verts control dependences into data dependences. It allows
elimination of branches and increases available instruction
level parallelism and thus overall performance. If-conversion
can either be applied alone or in combination with other
techniques that increase the size of scheduling regions. The
presence of hardware support for predicated execution allows
if-conversion to be broadly applied in a given program. This
makes it necessary to guide the optimization using heuristic
estimates regarding its potential benefit. Similar to other
transformations in an optimizing compiler, if-conversion in-
herently su↵ers from phase ordering issues. Driven by these
facts, we developed two algorithms for if-conversion target-
ing the TI TMS320C64x+ architecture within the LLVM
framework. Each implementation targets a di↵erent level of
code abstraction. While one targets the intermediate rep-
resentation, the other addresses machine-level code. Both
make use of an adapted set of estimation heuristics and prove
to be successful in general, but each one exhibits di↵erent
strengths and weaknesses. High-level if-conversion, applied
before other control flow transformations, has more freedom
to operate. But in contrast to its machine-level counter-
part, which is more restricted, its estimations of runtime
are less accurate. Our results from experimental evaluation
show a mean speedup close to 14% for both algorithms on
a set of programs from the MiBench and DSPstone bench-
mark suites. We give a comparison of the implemented op-
timizations and discuss gained insights on the topics of if-
conversion, phase ordering issues and profitability analysis.
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1. INTRODUCTION
In many embedded applications, very long instruction word

(VLIW) architectures are popular due to their reduced hard-
ware complexity (compared to superscalar alternatives) com-
bined with potential runtime and resource e�ciency. How-
ever, the performance of a VLIW machine greatly depends
on the compiler. It has to produce highly optimized code in
order to avoid performance bottlenecks. Therefore, sophisti-
cated optimization approaches are required when targeting
a VLIW architecture. This is especially true for the in-
struction scheduling phase, which needs to hide the delay of
branches and other long-latency instructions. Code enlarge-
ment techniques are beneficial for improving the e�ciency of
the scheduler, but inherently expose a higher register usage.
This, in turn, can cause the register allocator to insert spill
code, thus having an adverse e↵ect.

In this paper we describe and compare against each other,
two if-conversion variants implemented within the LLVM
compiler framework [18]. This modern framework provides
a wide collection of optimizations on its intermediate rep-
resentation together with a relatively flexible back-end code
generator structure. This design makes it easy to add new
architectures, but on the other hand restricts the scope of
optimizations. As a result, some common code transfor-
mation passes in LLVM are implemented in two di↵erent
versions, targeting di↵erent code representations.

For implementation and evaluation we targeted the Texas
Instruments (TI) TMS320C6000 DSP family [19] and con-
centrated especially on C64x and C64x+ VLIW CPUs. All
presented benchmarks were evaluated using TI’s instruc-
tion set simulator configured for cycle accuracy, but without
cache simulation (i.e. perfect instruction and data caches are
assumed). Even if primarily targeting a VLIW architecture,
we believe however, that our implementations are general
enough to be adaptable to any predicated architecture with
only minor modifications.

This paper is organized as follows. In the next section
we present a selection of works published in the past and
related to this paper. Section 3 introduces the target archi-
tecture, section 4 first depicts the particular problem more
concretely and then presents details of the algorithms we
have developed. The evaluation environment is addressed
in section 5, which also shows and relates results for our
collection of benchmarks. Section 6 concludes and looks at
issues related to if-conversion that we intend to study closer
in the future.
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2. RELATED WORK
If-conversion is related to region formation and region en-

largement techniques. These share the goal of extending
the scope of scheduling beyond a single basic block to a
region, ideally, as large as possible. The first region schedul-
ing technique was trace scheduling introduced by Fisher in
[7]. A trace is a cycle-free sequence of blocks along a fre-
quently executed path, with multiple entrances and exits.
Due to its flexibility, trace formation is straightforward, but
maintaining data consistency (especially at side entries) is
complicated. Traces were followed by superblock scheduling,
which restricts entrances to a single entry into the first block.
Superblocks and their related region enlargement technique
tail duplication, are described in a paper by Hwu et al. [8].
Mahlke et al. [11] combine the idea of if-conversion with
superblock formation to produce a hyperblock. Doing so
eliminates side entrances and leads to an increase in region
size and thus scheduling e�ciency, while avoiding the com-
plexity of trace scheduling.

Fang [6] explains the idea of predication and presents an
if-conversion algorithm along with an optimization that aims
to assign predicates early. However, the paper contains no
results and implicitly suggests the algorithm to be run af-
ter register allocation. Park et al. [12] describe a simi-
lar if-conversion algorithm, formally prove its correctness
and point out some of the performance degrading pitfalls.
Warter et al. propose reverse if-conversion [16] that makes
it possible to undo some of the earlier conversion steps,
countering the greedy behaviour of forward if-conversion.
A framework incorporating both, forward and backward if-
conversion mechanisms is presented by August et al. in [2].
The authors advise to if-convert aggressively and early, by
using profitability estimation heuristics. Later in the opti-
mization chain some of these conversions are undone, in case
the profitability has been overestimated. The verification of
the estimation together with the if-reversion is driven by the
instruction scheduler. This suggests both steps to be inte-
grated. While sophisticated and e↵ective, such a framework
also exposes a much higher complexity compared with non-
integrated approaches. Leupers [10] describes an e�cient
two-pass, dynamic programming inspired algorithm for if-
conversion. His approach targets fully predicated VLIW ar-
chitectures, works on a high-level IR and optimizes for worst-
case execution time. Stoutchinin and Gao [14] also suggest
to run if-conversion early. They extend single assignment
form (SSA) to create  -SSA, which allows application of tra-
ditional SSA optimizations after if-conversion. However, no
concrete implementation is proposed and only results about
code size increase are presented. Bruel [3] also describes
an SSA-based implementation targeting a partially predi-
cated VLIW machine. A key aspect is the preprocessing of
regions to eliminate side entries by duplicating blocks and
thus increasing the potential for if-conversion. While phase
ordering is not addressed, this technique results in substan-
tial speedup for the presented benchmarks. Ebner et al. [5]
also target a VLIW architecture and describe a leveraging
approach, but perform if-conversion after the register allo-
cation as a late optimization. Winkel [17] combines global
code motion with decisions about speculation and predica-
tion for the Itanium processor. By formulating the problem
as an integer linear program, his solutions are optimal, but
limited to regions with a size of up to 200 instructions.

Di↵erent approaches have been proposed to tackle the

problem of phase ordering in traditional compilers that ap-
ply optimizations in a sequence of analyses and transfor-
mations. A class of meta optimizers attempts to improve
the ordering of optimizations in a program-specific way. For
example, this can be done by either searching the space of
compilation sequences [1], using genetic algorithms [4], or by
machine learning [13]. Systems like Denali [9] and equality
saturation [15] approach the problem di↵erently. Instead
of applying transformations in a sequence, they represent
blocks or programs and their various alternative optimiza-
tions in a graph and try to select a near-optimal (as far as
the cost model goes) set of transformations from it.

3. TARGET ARCHITECTURE
As mentioned above, the Texas Instruments C64x and

C64x+ processors served as a target for our implementa-
tions. Within the family of 32-bit C6000 VLIW processors,
the C64x+ has an instruction set that contains DSP instruc-
tions, a SIMD instruction subset and hardware loops. Addi-
tionally to the normal 32-bit wide instructions, the C64x+
also has 16-bit wide compact instructions. C6000 is a dual-
cluster architecture. That means, to increase the number
of functional units without adding a significant amount of
interconnect logic, registers are only connected to a subset
of the available units. Each cluster contains four functional
units: L, S, M, and D. Units L and S are the integer arith-
metic logic units (ALUs); S additionally performs control
flow changes. Loads, stores and complex address computa-
tions are handled by the D unit. Unit M is exclusively used
for all simple and complex (e.g. dot product) multiplica-
tions. The units of each cluster are connected to their own
register file containing 32 general purpose registers.

An instruction packet can contain up to 8 single opera-
tions, in the best case utilizing all available functional units
in parallel. All units are fully pipelined, i.e. a new in-
struction can be issued every cycle. Operations within an
instruction packet are subject to various structural restric-
tions. For example, the number of simultaneous reads from
the same register is limited to two and only one cross-cluster
register read may occur per cluster. With one exception,
all instruction latencies are explicit and it is the job of the
programmer or compiler to account for the required delay
slots and fill them with useful instructions. 16-bit multiplies
have a latency of two, 32-bit multiplies take four, loads take
five, and branches take six cycles to complete. Most other
instructions have one cycle latency. The exception to the
statically exposed latency of the instruction types above, is
the one cycle long inter-cluster cross path stall, which is dy-
namically inserted by the hardware. It occurs since results
need to complete the write-back stage in the pipeline, before
they can be read from the other cluster. All latencies de-
scribed above are due to the micro architecture of the C64x
and happen within the CPU. Delays from external memory,
which may occur when loading instructions or data, are im-
plementation specific. These external latencies depend on
the properties and availability of caches and are commonly
orders of magnitude higher than internal ones.

The C64x+ is fully predicated. Essentially every instruc-
tion that is not a compact instruction and not a call, can be
predicated with a register and boolean flag that may negate
the predicate. As a subset of the general purpose registers,
three registers per cluster (six in total) can be used as pred-
icates.
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4. IF-CONVERSION
Among compilation techniques for VLIW architectures if-

conversion with the help of predication plays an important
role. Not only is it able to remove hard to predict conditional
branches, but also, more importantly, it helps increasing the
size of basic blocks. This gives instruction scheduling, which
in many compilers is not able to schedule beyond basic block
boundaries, more freedom to reorder instructions and thus
utilize the hardware more e�ciently.

The use of predication for if-conversion has been described
in [12] and [6]. The basic idea is to encode a special flag into
a machine instruction, that determines at runtime whether
the instruction is to be executed or ignored. An instruction
set architecture (ISA) can either be predicated fully, which
means that practically every instruction supports predica-
tion, or partially, which restricts the use of predication to a
few special operations (e.g. conditional move instructions).

int foo (int z, int val) {

  int x = val;

  if (z > 10) x = x + 1;

  return x * x;

}

Figure 1: Simple C-code example.

foo:
move val, t1
cmp_leq z, 10, t2
branch_eq t2, 1, tail

body:
add t1, 1, t1

tail:
mul t1, t1, t1
ret t1

foo:
move val, t1
cmp_leq z, 10, p

[!p] add t1, 1, t1
mul t1, t1, t1
ret t1

Figure 2: Two variants of (pseudo) assembler code,

left using a conditional branch, right using a predi-

cate.

Figure 1 shows a simple C function using an if-statement.
Two corresponding (pseudo) assembler variants are shown
in Figure 2. The left variant uses a conventional conditional
branch instruction (together with two fallthrough transi-
tions), while the right one incorporates predication. As can
be seen, the predicated variant has a lower instruction count,
no control flow between basic blocks (there is actually only
one basic block) and presents a larger scope of 5 instructions
to the scheduler. Such a code transformation is achieved by
the proper replacement of conditional statements with pred-
icate definitions and uses and is widely known as (forward)
if-conversion.

4.1 Implementation
The main di↵erence between the if-conversion implemen-

tations we compare, is when they take place during compi-
lation (see Figure 3). Early if-conversion targets the LLVM
intermediate representation (LLVM IR), which itself is ar-
chitecture independent. On the other hand, machine-level if-
conversion occurs after instruction selection, but before reg-
ister allocation. In both cases, if-conversion itself is specifi-
cally scheduled early, so that subsequent optimization passes

can take advantage of the larger blocks and simplified con-
trol flow.

Machine-level if-conversion is implemented in a straight-
forward manner. Since it modifies the target specific in-
structions directly, predicate registers can be defined and
used anywhere in the function. Also, machine instructions
provide definitive information (such as instruction size, la-
tency, possible side e↵ects), which has to be estimated on the
intermediate level, and thus allow a more exact cost-benefit
analysis.

Due to the lack of predication in the LLVM IR, adding
IR-level if-conversion to LLVM is more complicated and in-
volves several phases. Speculation without predication is
supported with the built-in select instruction, but to extend
if-conversion to instructions that may cause side e↵ects and
thus need to be predicated, our optimization pass has to
make use of target specific intrinsics1. It is only during the
lowering phase (when IR instructions are lowered to target
specific machine code), that predicates get eventually ap-
plied to instructions based on the predication intrinsics. The
reason why it still makes sense to implement if-conversion
at the IR level is the flexibility it gains. All optimizations
available for the intermediate representation can be applied
to the result of if-conversion. Furthermore, as an IR-level
pass, it can be scheduled before other transformations that
might inhibit if-conversion. Virtual registers, which occur in
both representations, have the advantage of being more flex-
ible to handle during conversion; retaining SSA form greatly
simplifies implementation and allows existing SSA transfor-
mations to be used after if-conversion. A major disadvan-
tage of any conversion using virtual registers is however, that
the register pressure cannot be computed exactly and needs
to be estimated heuristically. This creates a potential for
’over-converting’, i.e. if-converting too aggressively, which
leads to a performance degradation.

Tail duplication makes it possible to remove side entries
into regions that would otherwise be profitable to convert.
While duplicating instructions has to be done under consid-
eration of code size enlargement, it increases the scope of
convertible patterns by some degree. Ultimately it allows,
if desired, more aggressive code transformations. We only
perform tail duplication on the machine level, because of
the coarse estimation of code size that is available on the IR
level.

4.2 Iterative if-conversion
Both algorithms process the control flow graph of a func-

tion in a bottom-up manner. Basic blocks of a given function
are analyzed, information about contained machine instruc-
tions is extracted and recorded. After analysis, each basic
block is associated with a record that contains information
including whether its instructions can be speculated (in SSA
form) or need to be predicated because of side e↵ects. Note
that, because of the overhead involved, function calls are
never considered for predication. Additionally, the number
of instructions and the estimated execution cycles for a basic
block are recorded.

Given this information, the algorithms extract patterns
suitable for conversion by inspecting structural relationships

1Intrinsics can be used to model features of a specific ar-
chitecture within the otherwise target-independent LLVM
IR.
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C front IR opts MC optsInst. sel. Target obj.If-conv.

Intermediate representation Machine representation

a)

C front IR opts MC optsIf-conv. Target obj.IR opts

Intermediate representation Machine representation

b)

Inst. sel.

Figure 3: Simplified LLVM compiler pass pipeline including machine-level (a) and IR-level (b) if-conversion.

head BB

false BB

tail BB

a) b)

c)

head BB

false BB

tail BB

true BB

head BB

false BB

true BB

Figure 4: Basic patterns used for if-conversion: a)

if-then triangle, b) if-else diamond, c) open if-then

pattern.

(such as dominance and successor relationships) between ba-
sic blocks. Figure 4 shows the basic patterns used for con-
version. Applied iteratively, these serve as building blocks,
which together with tail duplication cover all conditional-
branch-based control flow in a program. Extracted patterns
are stored within a list of candidates and ordered descending
by the execution frequency of the head block. This frequency
is either supplied by the profiling information or computed
statically by an estimator.

After extraction, candidate regions are examined for their
conversion profitability (see section 4.3 for details) and even-
tually converted. Both algorithms are organized as an itera-
tive process, which runs until a specified threshold is reached
or there is nothing more to convert. Thus, a given sequence
of basic blocks can be converted more than once. When if-
conversion needs to handle instructions or whole basic blocks
that already make use of predicates, a common solution is
to connect these by logical operations, which depend on the
original control semantics.

Algorithm 1 describes the general structure of the if-
conversion used for the machine level and Figure 5 illus-
trates an example. Assuming blocks for.cond and land.end
use variables p and q as branching conditions respectively,
iterative if-conversion first collapses the diamond contain-
ing for.cond, land.rhs, BB#6, and land.end. Here (assum-

ing land.rhs to be the true destination of the corresponding
branch), predicate p is assigned to land.rhs, while instruc-
tions contained in BB#6 are assigned the inverted predi-
cate !p. The second step assigns predicate q or !q (depend-
ing whether for.body is the true successor of land.end) to
for.body and produces a single basic block (for.cond) for the
whole loop.

entry

for.cond

BB#6

land.rhs

land.end

for.body

for.end

entry

for.cond

for.end

a)

b)

Figure 5: Iterative if-conversion: a) original CFG

fragment, b) resulting CFG after two conversions.

4.3 Profitability heuristics
To estimate profitability of conversion, both implementa-

tions rely on simple heuristics that take into account the size
of basic blocks and their estimated execution time based on
the instruction latencies (cycles). Additionally, execution
frequencies of basic blocks and edges between them con-
tribute to the estimate as weights. These are either obtained
from profiling information or can be statically estimated.

To decide whether it is profitable to perform if-conversion,
the cost of a candidate region C with n blocks (which are
all convertible) is estimated as

Cost(C) = branch cost(C) +
nX

i=1

cycles(Block

i

) ⇤Weight

i
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Algorithm 1 Iterative if-conversion

while true do

patterns initialize as empty list
for each block BB in the current function do

if BB is head of a pattern then

P  pattern for BB

if P is convertible then

patterns patterns+ P

end if

end if

end for

Sort patterns by execution frequency
converted false

for each pattern P contained in patterns do

if is profitable to convert P then

if P has side-entries then
Run tail-duplication on P

end if

head head basic block of P
preds branching predicates for head
Predicate blocks of P using preds

Merge blocks of P
if profile information available then

Update profile information
end if

converted true

end if

end for

if converted is false then

break

end if

end while

and compared to an estimate that takes if-conversion into
account:

Cost

conv

(C) = cycles(
n[

i=1

Block

i

) ⇤Weight

C

Cycle estimations on both levels su↵er from incomplete in-
formation. For example, since register allocation happens at
a very late stage, most instructions operate on virtual reg-
isters and thus, neither algorithm can take register depen-
dencies or spill cost into account. Furthermore, since IR-
level if-conversion precedes instruction selection, instruction
properties (i.e., the concrete number and their latency) are
also based on estimates there. Ultimately, both algorithms
make use of constant factors to balance their estimated cost
against real-world experience. These constant factors are
based on the behavior of small test programs and inherently
depend on how e↵ective the code generator can exploit ILP
in the converted basic blocks. Thus, any major change in the
code generator would mean that the constant factors need
to be adapted as well. To generally avoid adverse e↵ects
from resource conflicts (registers or functional units) within
converted regions, the size of the resulting block needs to be
controlled. In case of the C64x+ architecture, the number
of predicate registers is an important limit. Thus our imple-
mentation rejects conversions that require more than three
predicates at the same time.

5. EVALUATION

5.1 Benchmark environment
Our evaluation results are based on well-known bench-

mark collections such as MiBench, DSPstone and Olden.
Additionally, two micro-benchmarks (both sort algorithms)
and two programs from BenchmarkGames have also been
tested. Especially MiBench presents a wide set of bench-
marks covering automotive, security, o�ce and telecommu-
nication application domains. Some tests had to be omitted
however, due to headers or system calls being unavailable in
the used standard library. Also, we excluded tests that ex-
hibit an extremely simple structure and thus low cycle count
(below a threshold of 1000 cycles). An adpcm benchmark is
contained in the DSPStone and MiBench suites. Although
the programs are di↵erent, the results only include the lat-
ter one, to prevent skewing of the average. For larger test
programs and when possible, the small input data set was
used. But due to the limited throughput of the simulator,
the size of the input had to be further restricted in some
cases. Note, that with some benchmark programs (e.g. MB-
qsort), computation is mainly performed within standard
library calls. Since we cannot optimize the standard library
itself, these programs are expected to have low potential for
if-conversion.

All results were obtained using TI’s instruction set simula-
tor, configured for cycle-accurate timing but without model-
ing of caches. To investigate a possible impact on instruction
cache misses, we measured the code size increase instead.

For benchmarks, both presented if-conversion implemen-
tations make use of execution frequencies that we obtained
by profiling the respective full input data set. The profiling
framework provided by LLVM targets the intermediate rep-
resentation and could be used by our if-conversion algorithm
at that level directly. Using the same profile information
at the machine level turned out to be troublesome and led
to significant imprecisions in the execution frequencies for
some benchmark programs. At the time of LLVM version
2.9, machine-level profile information is available, but not
accurately maintained by some transformation passes that
change the CFG. As a workaround, additional instrumen-
tation and profile loading passes have been added at the
machine level.

Within LLVM, most of the built-in optimizations are done
on the IR level. We apply standard optimizations (e.g. inlin-
ing, redundancy elimination) independent of the if-conversion
algorithm used. The back-end eventually performs clus-
ter assignment and scheduling using a unified assign-and-
schedule (UAS) algorithm. Target specific loop optimiza-
tions, such as software pipelining, are not available and thus
have no impact on the results. One of LLVM’s standard
passes, which tries to eliminate unnecessary branches in the
CFG (-simplifycfg) is specifically omitted, since it per-
forms limited if-conversion using speculation and the select
instruction. It is thus superseded by our if-conversion.

5.2 Results
Table 1 gives an overview of the benchmark results. The

geometric mean of the speedup achieved over all benchmark
programs is 13.82% for the IR-level and 14.38% or 13.85%
for the machine-level if-conversion, when using profile infor-
mation or relying on a profile estimator respectively. This
speedup is compared to a baseline version compiled with the

7



same optimization passes but without if-conversion. Com-
pared to related work, the lower speedup can be explained
due to our back-end code generator, which is at an experi-
mental stage and cannot fully exploit the higher potential in-
struction level parallelism (ILP) that if-conversion provides.
Bruel in [3] reports a mean improvement of 25% on a compa-
rable, but narrower (4-issue, non-clustered) VLIW architec-
ture. In [5], Ebner et al. achieve a speedup of 18% also on
a 4-way VLIW processor, but performing their if-conversion
after register allocation. In both reports the speedup of the
adpcm benchmark is significantly higher than that of all other
benchmarks (factor 3 and factor 2.82 respectively). We also
see adpcm as an outlier in our results and know from sim-

plifycfg, which only yields a significant improvement of
35% for this benchmark, that it has a strong disposition to
the conversion of its small conditional blocks. Thus adpcm

is, in our opinion, a better indicator for ILP-related opti-
mizations in the back-end code generator than for accurate
if-conversion decisions.

Even though the average speedups of both if-conversion
implementations are very close, the di↵erence for individ-
ual programs goes up to 28 percent points in one case (MB-
CRC32). To gain more insight we turn to the details given
in Table 2. Its columns list the number of basic blocks be-
fore if-conversion, number of converted (and thus removed)
blocks, as well as tail duplications performed by the IR-
level and machine-level if-conversion respectively. Contrary
to what one might expect, the lack of speedup the IR-level
if-conversion exhibits in MB-CRC32, actually is a case of op-
timizing too aggressively. MB-stringsearch behaves di↵er-
ently: while at the machine level 16 conversions are being
applied, the IR-level if-conversion only performs a single one.
All other possible if-conversions (51 decisions in total) are
not applied, as they are prevented by the cost function. We
can also see in Table 2 that a single optimization decision can
have substantial impact on the outcome. Larger benchmark
programs like susan show that the number of blocks and
opportunities to perform if-conversion is higher at IR level.
Upon reaching the machine-level if-conversion, LLVM’s code
transformations implicitly change the control flow of a pro-
gram. Working on the IR-level thus increases the chances
of finding profitable regions for if-conversion. On the other
hand it is prone to underestimate the overhead of predica-
tion and, as can be seen in Table 2, sometimes performs
too many conversions. In the case of the IR-level optimized
MB-CRC32, the presence of one adverse schedule completely
cancels out any benefit, while the machine-level if-conversion
is able to make the right choice.

We do not compare our results to those of the limited IR-
level if-conversion performed by LLVM’s simplifycfg-pass
in detail. Since the latter does not target a specific hard-
ware architecture, it can only make conservative decisions
and does not use predication at all. Thus -simplifycfg

performs no conversion for the majority of our benchmarks
and only achieves 3.6% average speedup.

Regarding code size, we noticed that even for the largest
benchmark programs (see Table 2) it does not increase (it
actually decreases slightly), even in the presence of tail du-
plication. It appears that with if-conversion being as conser-
vative as it is in our case, increased instruction cache misses
are no issue.

Another observation we made is that for the majority
of presented benchmarks, the quality of if-conversion de-

Benchmark #BBs #BB

conv

#BB

dup

IR ML IR ML IR ML
MB-adpcm 82 62 37 21 - 2
MB-bitcount 76 65 6 6 - 1
MB-CRC32 22 19 2 1 - 0
MB-dijkstra 75 57 13 8 - 3
MB-stringsearch 150 107 1 16 - 0
MB-susan 892 542 225 26 - 6

Table 2: Detailed statistics (IR versus machine-

level)

cisions is not strongly degraded by using static estimates
instead of dynamic profiling information. In Table 1 we also
give estimator-based results for machine-level if-conversion,
for which it is more di�cult to obtain accurate profiling
data. Three benchmarks (DSP-fir2dim, DSP-matrix2, BG-
fannkuch) even perform better when using the estimator. In
these cases, the profitability heuristic lacks aggressiveness by
either overestimating predication overhead or underestimat-
ing scheduling benefits of larger code regions.

6. CONCLUSION AND FUTURE WORK
Both of the described if-conversion algorithms perform

reasonably well for the presented selection of benchmarks.
The elimination of conditional branches reduces the num-
ber of pipeline stalls and merging basic blocks naturally en-
larges scheduling regions. This leads to increased scheduling
e�ciency and resource utilization and results in a signifi-
cant runtime speedup for the majority of our benchmarks.
However, a few test programs do not profit from the if-
conversions applied, and due to the imprecision inherent to
the profitability heuristics, some even exhibit slight perfor-
mance degradation. Performing if-conversion early (on the
IR level) can in general compete with its machine-level coun-
terpart, but may be too optimistic in some cases. Aggressive
if-conversion, as it can be achieved in combination with tail
duplication, requires exact scheduling estimates and is bet-
ter suited for the machine level. This situation would seem
to lend itself to a combined approach, which comes at the
cost of maintaining separate estimation models and imple-
mentation details.

If-conversion as presented here integrates into LLVM’s
pass pipeline design without the need for comprehensive
changes. The algorithms are general enough to support
other architectures, regardless of the way predication is han-
dled by the ISA. The most e↵ort would be required for
adapting the cost model. Also, with more VLIW specific
features being introduced to the framework, we foresee even
better support for if-conversion in future versions of LLVM.

We have seen that guiding if-conversion decisions using
profile information does not considerably benefit results as
long as cost estimation remains imprecise. It is clear that
fine-tuning of optimization parameters is not the ultimate
solution here and we are currently investigating to integrate
if-conversion better with region formation and the scheduler.
Another interesting approach, based on the idea by Tate et
al. [15], would be to apply if-conversion as part of a non-
destructive optimization framework.

Spill code can be another source for performance degra-
dation. Therefore, a reliable method for estimating or com-
puting register pressure is desirable in order to avoid conver-
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Benchmark
Baseline

(kCycles)
IR-ifconv

prof. (kCycles)
ML-ifconv

prof. (kCycles)
ML-ifconv

estim. (kCycles)
IR-speedup
prof. (%)

ML-speedup
prof. (%)

ML-speedup
estim. (%)

Simple-bubblesort 1.70 1.38 1.55 1.55 18.46 8.37 8.37

Simple-quicksort 1.41 1.17 1.26 1.26 16.83 11.01 10.44

DSP-fir2dim 6.20 5.50 5.66 5.33 11.26 8.76 13.92

DSP-lms 1.22 1.16 0.98 0.98 5.16 19.98 19.98

DSP-↵t 90.07 89.42 89.07 89.41 0.72 1.11 0.73

DSP-matrix1 32.84 26.19 24.62 24.62 20.26 25.02 25.02

DSP-matrix2 29.28 22.79 24.09 23.90 22.18 17.72 18.38

DSP-n complex updates 1.42 1.42 1.30 1.30 0.00 8.64 8.64

DSP-n real updates 1.05 0.69 0.92 0.92 34.09 12.63 12.63

DSP-startup 7.26 5.44 5.68 5.68 25.08 21.80 21.80

MB-adpcm 1136.39 526.81 599.57 599.57 53.64 47.24 47.24

MB-basicmath 1919.05 1757.54 1919.05 1919.05 8.42 0.00 0.00

MB-bitcount 1002.55 820.11 810.59 810.59 18.20 19.15 19.15

MB-blowfish 393.38 395.25 370.44 370.44 -0.48 5.83 5.83

MB-CRC32 7376.18 7376.18 5310.91 5310.91 0.00 28.00 28.00

MB-dijkstra 87441.65 71757.59 79975.22 82901.63 17.94 8.54 5.19

MB-FFT 49896.15 50350.01 49910.29 49910.29 -0.91 -0.03 -0.03

MB-qsort 57888.96 56059.27 57788.96 57788.96 3.16 0.17 0.17

MB-stringsearch 5312.74 5304.64 4568.07 5246.85 0.15 14.02 1.24

MB-susan 51545.54 45264.09 43007.53 43007.53 12.19 16.56 16.56

Olden-bisort 48526.77 46456.66 45792.90 45792.90 4.27 5.63 5.63

BG-fannkuch 238.99 234.09 220.21 214.24 2.05 7.86 10.35

BG-nsieve-bits 32078.41 26262.03 24194.72 24194.72 18.13 24.58 20.71

Average 13.82 14.38 13.85

Table 1: Benchmark results
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Figure 6: Benchmark results
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sions which may increase spill code by an intolerable amount.
Thus, we also intend to do a closer investigation on the inter-
action between if-conversion and the register allocator in the
future. We also believe that better results can be achieved
by improving the region selection of if-conversion. Increasing
its scope creates additional optimization potential by giving
more freedom to if-conversion.

Another interesting issue we want to address in the future
is the question how much if-conversion influences instruction
cache performance on our target. Eliminating control de-
pendencies by removing conditional branches between basic
blocks and merging or rearranging them properly increases
spatial locality of the code, which in turn is profitable for
an e↵ective reduction of cache misses. This is an important
issue, when the instruction cache has a predominant impact
on the overall system performance.
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