
Register Requirement for ExploitingLoops' Maximum Instruction-Level Parallelism�Jian Wangy Andreas Krall M. Anton ErtlInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstr. 8A-1040 Vienna, AustriaAbstractThis paper studies the interaction between register requirement and loops' maximumInstruction-Level Parallelism (ILP). First, we present the minimum data dependence graph(MinDDG) of a loop to represent the maximum ILP available in the loop. Then we analyzethe in
uence of register requirement on the data dependence graph and the MinDDG, andon the basis of which we present an approach to estimate the upper bound on registerrequirement for exposing loops' maximum ILP. Finally, the preliminary experimental resultsare given to verify our approach.Keywords: Parallel Processing, Instruction-level Parallelism, Loop Scheduling, SoftwarePipelining, Register Allocation, Data Dependence Graph1 IntroductionExploiting Instruction-Level Parallelism (ILP) within loops has become a key compilation issuefor the instruction-level parallel processors like Very Long Instruction Word (VLIW) and super-scalar machines [1, 2, 3]. Software pipelining is an e�cient compilation technique to exploit ILPfor loops, which initiates successive iterations before previous iterations complete [4, 5, 6, 7].Register Allocation is another key compilation issue [8, 9, 10, 11]. It has been well knownthat register allocation may introduce anti-dependences due to the re-use of registers, whichlimit the loops' ILP to be exploited by software pipelining [11, 3].The interaction between register allocation and loop-free code scheduling has been studiedsince the mid 1980s [12, 13, 8, 14, 15]. The register allocation for software pipelined loopand lifetime-sensitive software pipelining approaches have been studied by some researchers andsome e�cient techniques have been proposed [16, 17, 11, 10, 18, 19].However, the interaction between register requirement and loops' maximum ILP is still lessunderstood and is lately considered in few studies. Mangione-Smith, et al. developed a lowerbound on the number of registers needed for a given modulo scheduled loop [20]. Ning and Gaohave presented a framework of register allocation for software pipelining by which they deduce�This work was supported by the Lise Meitner Stipendium funded by the Austrian Science Foundation (FWF)and the Austrian Science and Research Ministry.yEmail: jian@mips.complang.tuwien.ac.at; Tel: 43-1-588014474; Fax: 43-1-5057838.1

the minimum number of registers needed for �nding the optimal software pipelined loop [21],but they do not consider the resource constraints. Their result can be used as a lower bound onthe register requirement for loops' maximum ILP.In this paper, we study the interaction between register requirement and loops' maximumILP from a new perspective. Before software pipelining a loop, we focus on an interestingproblem, that is, how many registers are needed for this loop such that its ILP can be maximallyexploited? Thus, our result is general, independent of any speci�c loop schedule and can be usedas the upper bound on register requirement for loops' maximum ILP.Although it has been well known that the re-use of registers introduces new anti-dependenceedges to the loop's data dependence graph(LDDG) and limits the loop's ILP, we have found thatnot all anti-dependences caused by the re-use of registers limit the loop's ILP. Thus, we �rstpresent a novel representation of a loop's maximum ILP based on the framework of decomposedsoftware pipelining(DESP) [22, 23] . This representation is called Minimum Data DependenceGraph of a loop (referred to as MinDDG). Those anti-dependence edges which are introduced toLDDG but do not cause new dependence edges to MinDDG do not limit the loop's ILP. Thenwe theoretically develop an approach to determine the minimum number of registers which isrequired for no new dependence edge being introduced to MinDDG, which is used as the upperbound.This paper is organized as follows. The next section �rst gives an outline of decomposedsoftware pipelining and then present the concept of MinDDG. Section 3 discusses the in
uenceof register requirement on LDDG and MinDDG. In Section 4, we use MinDDG as a basis todevelop the upper bound. In Section 5, we give and discuss the preliminary experimental results.We conclude this paper in Section 6.2 A Representation of Loop's Maximum ILPThe maximum ILP within a program is limited by the data dependences among operations andthe available machine resources. The data dependences of a loop-free code can be represented bya Directed Acyclic Graph (DAG). DAG gives a direct representation of maximum ILP within aloop-free code, as it is easy to see, from DAG, which operations can be executed simultaneously(if we have enough machine resources).However, the data dependences of a loop can not be represented by a DAG, but by a LoopData Dependence Graph (denoted as LDDG), (O;E; �; �), where O is the operation set and Ethe dependence edge set; the dependence distance � and the delay � are two non-negativeintegers associated with each edge. For example, e = (op; op0) and (�(e); �(e)) denote that op0can only be issued �(e) cycles after the start of the operation op of the �(e)th previous iteration[2, 24]. Obviously, the LDDG may include cycles so it does not give a direct representation ofmaximum ILP within a loop.This section aims at a direct representation of maximum ILP within a loop under the frame-work of DEcomposed Software Pipelining (denoted as DESP) [22, 23]. In order to make thispaper self-contained, we �rst give a brief introduction to DESP and some concepts which willbe used in the following sections.
2

2.1 Decomposed Software PipeliningDESP is a novel modulo scheduling approach, and its idea can be illustrated by Figure 2.1 asan example. First, we modify the LDDG by removing some edges so that the graph becomesacyclic; secondly, we apply the list scheduling technique [1, 2] on the modi�ed graph to generatethe software pipelined loop body under the resource constraints, and use the row-number todenote the cycle-number of each operation in the loop body; thirdly, we determine the iteration-number (denoted as column-number in the context of DESP) of each operation such that alldata dependences in LDDG are satis�ed.
5, 3, 1, 4;
6, 2;

1, 4;
2;

5,3, 1,4;
6, 2;

 5,3;
 6;

LDDG MLDDG

1

2

3 6

5

4

1

2

3 6

5

4

rn
1 5,3,1,4
2 6,2

cn 0 1

 1 5
 4 3
 2 6

 Figure 2.1 Decomposed Software Pipelining

loop independent dependence

loop-carried dependence

step 1
step 2

step 3

II=2

Formally, DESP theoretically decomposes the loop schedule � into two functions, row-numberand column-number.De�nition 2.1 Let G = (O;E; �; �) be the LDDG of a loop, and � a valid loop schedule forG with initiation interval II1. We de�ne the row-number rn and the column-number cn, twomappings from O to N (non-negative integer set), such that�(op; 1) = rn(op) + II � (cn(op)� 1) and �(op; i) = �(op; 1) + II � (i� 1):2 Thus, software pipelining can be described below with the concepts of row-number andcolumn-number.De�nition 2.2 (Decomposed Software Pipelining) Let G = (O;E; �; �) be the LDDGof a loop, we say that the row-number, rn, and the column-number, cn, are valid for the loop,if and only if the following constraints are satis�ed:1. resource constraints: 8opi; opj 2 O, if rn(opi) = rn(opj), then opi and opj must not con
ictwith respect to the resources2;2. dependence constraints:9II 2 N; rn(op0)� rn(op) + II � (�(e) + cn(op0)� cn(op)) � �(e); 8e = (op; op0) 2 E:II is called the initiation interval or the length of the software pipelined loop body. The goal of1That is, a new iteration of the loop can be issued every II cycles2Here, we only consider the pipelined operations and the single-cycle operations, but the de�nition is easilyextended to the case of multi-cycle non-pipelined operations.3

decomposed software pipelining is to �nd valid row-number and column-number with minimumII. 2In this paper, we assume that min(rn(op)) = 1 and min(cn(op)) = 0. In previous papers[22, 23, 25], we have proven the following theoretical results.Theorem 2.1 For a given LDDG, suppose we have constructed row-number rn whichsatis�es the resource constraints. We can construct column-number cn such that the datadependence constraints are also satis�ed, if and only if, for each cycle C of the LDDG,X8e2C �(e) � 0where �(e) = ��(e) + d(�(e) + rn(op)� rn(op0))=IIe, e = (op; op0). 2Theorem 2.1 implicitly points out the following corallary.Corallary 2.1 For a LDDG without cycle, if we have constructed row-number taking intoaccount the resource constraints, then we can always construct column-number such that thedata dependence constraints are also satis�ed. 2The column-number is an important parameter to control the register requirement of eachvariable. For example, if the longest de�nition-use path3 of variable x is from opi to opj,then cn(opj) � cn(opi) gives the estimate of the lifetime of x and thus determines the registerrequirement of x.2.2 Minimum DDGUnder the framework of DESP, we now deduce a direct representation of maximum ILP availablewithin a loop. As mentioned in the last subsection, DESP approach includes three steps. Thestep 2 construct row-number and determines initiation interval (II). Provided we have enoughhardware resources, the II is only limited by the modi�ed LDDG (referred to as MLDDG).Thus, we expect that the step 1 can generate a MLDDG which is of the minimum height andthe minimum number of edges and satis�es the following two conditions:1. MLDDG is acyclic so that the step 2 can work;2. MLDDG is sensitive to the condition of Theorem 2.1 so that the step 3 can work.Formally, we give the de�nitions as follows:De�nition 2.3 Let G = (O;E; �; �) be the LDDG of a loop, we remove some edges from Gand get MLDDG, MLDDG is valid for the loop if and only if1. MLDDG is acyclic; and2. for any schedule � on MLDDG, we can always �nd a non-negative integer II such that, foreach cycle C of G, P8e2C �(e) � 0, where �(e) is de�ned in Theorem 2.1. 2De�nition 2.4 Let G = (O;E; �; �) be the LDDG of a loop, we remove some edges from Gand get MinDDG, MinDDG is called the minimum DDG of the loop if and only if1. MinDDG is valid for the loop; and2. the height of MinDDG is not greater than the minimum II of the loop; and3A de�nition-use path is de�ned as a path from the operation writing a variable to the operation referencingthe variable in LDDG. 4

3. if we remove any edge from MinDDG, then the resulting graph is not valid for the loop anymore. 2The performance of a software pipelined loop is evaluated by its initiation interval (II) andthe II is actually the length of the pipelined loop body. The pipelined loop body is generatedwith a list scheduling to the minimum DDG (referred to as MinDDG) in the second step ofdecomposed software pipelining, as shown in Figure 2.1. Provided we have enough availablemachine resources, the maximum ILP of a loop is represented by its MinDDG. Figure 2.2 givestwo examples. For the �rst without dependence cycle, its MinDDG includes no dependence edgeso the ILP of the loop is maximally exposed. For the second with a dependence cycle (1-2-1), itsMinDDG only includes one dependence edge so the ILP of the loop is also maximally exposed.
while (i<1000) do
 { 1. t1=t2*a;
 2. t2=t1*b;
 3. t3=t2+c;
 4. t4=t3+t4;
 }

1

2
3

4

1

2 3

4

Figure 2.2 Examples of Loops’ LDDGs and MinDDGs

(b) The case with dependence cycle

while (i<1000) do
 { 1. t1=A[i];
 2. t2=t1*b;
 3. t3=t2+c;
 4. t4=t3+t4;
 }

1

2
3

4

1

2
3

4

(a) The case without dependence cycle

the loop LDDG MinDDG the loop LDDG MinDDG

In our previous papers [22, 23], we have developed a method for approximately generatinga MinDDG from the LDDG of a loop:(1) �nd out all strongly connected components (SCCs) in the LDDG, remove all edges whichare not included in the SCCs;(2) under the unlimited resource constraints, generate a software pipelined loop for the SCCs,denoted as (rn0; cn0);(3) for each edge e = (opi; opj) of SCCs, if rn0(opj) � rn0(opi) < �(e), then remove e fromthe SCCs.The remaining graph satis�es the �rst and the second conditions of De�nition 2.4, whichapproximately represents the MinDDG.3 In
uence of Register Requirement on LDDG and MinDDGThis section discusses the in
uence of register requirement on LDDG and MinDDG, and ad-dresses our important observation, i.e. not all anti-dependences caused by the re-use of registerslimit the ILP avaliable in a loop. Those anti-dependences which are introduced to LDDG butdo not cause new dependences to MinDDG do not limit the ILP avaliable in a loop which canbe exploited by software pipelining.In the case of register allocation for a software pipelined loop, more than one register couldbe allocated to one variable. For simplicity, we assume that the registers are well-distributed todi�erent iterations if one variable is allocated with more than one register, as shown in Figure3.1.Thus, the anti-dependence edges caused by the re-use of registers are introduced to LDDGin such a way that, 5

x <- {R1,R2}

x= ...

... =x

R1= ...

... =R1

R2= ...

... =R2

R1= ...

... =R1

R2= ...

... =R2
......

Figure 3.1 Register Allocation for Software Pipelined Loops(1) If the variable v is �rst de�ned by opi and then used by opj in the original loop body {we call (opi; opj) a loop-independent dependence, and v is allocated with Kv registers, then oneanti-dependence edge with the dependence distance of Kv (i.e. �((opj ; opi)) = Kv) is introducedto LDDG from opj to opi (e.g. the variable x in Figure 3.2);(2) If the variable v is �rst used by opj and then de�ned by opi in the original loop body{ we call (opi; opj) a loop-carried dependence, and v is allocated with Kv registers, then oneanti-dependence edge with the dependence distance (i.e. �((opj ; opi)) = Kv � 1) is introducedinto LDDG from opj to opi (e.g. the variable y in Figure 3.2).
1. x=y+a;

2. A[i]=x;

3. y=B[i];

1

2 3

(0,2)
(1,6)

1

2 3

(0,2) (1,6)

(Ky-1,0)

(Kx,0)

(a) a loop (b) LDDG (c) anti-dependence edges introduced
 by reuse of registers for x and y

Figure 3.2 Anti-Dependence Edges Caused by Re-Use of RegistersNow we use Figure 3.3 as an example to discuss how the anti-dependences caused by there-use of registers are introduced to MinDDG and its relationship with the register requirement.In Figure 3.3, (a) is the LDDG and its MinDDG, and we only focus on variables x and y. xis de�ned by op1 and used by op3, y is de�ned by op4 and used by op5. The MinDDG includesno dependence edges.First, if we allocate one register to x and another to y, i.e. Kx = 1 and Ky = 1, one anti-dependence edge (3,1) with the dependence distance of 1 and another (5,4) with the dependencedistance of 1 are introduced to the LDDG, as shown in LDDG1 of (b). The new edge (3,1) causesa new cycle 1-2-3-1 and thus introduces two new edges, (3,1) with the dependence-distance of0 and (1,2) with dependence-distance of 2, to the MinDDG, as shown in MinDDG1 of (b).The new edge (5,4) also causes a new cycle 4-5-4 but does not introduce any new edge to theMinDDG. Therefore, we say that the anti-dependence edge (3,1) caused by the re-use of registerlimits the loop's ILP, but the edge (5,4) does not.Secondly, we still allocate one register to y but two to x. The dependence distance of theedge (3,1) becomes 2, thus one new edge (3,1) is only introduced to the MinDDG, as shown inLDDG2 and MinDDG2 of (c). We can observe that, more registers allocated to the variables,6

1

2

3

4

5

1

2

3

4

5

(0,1)

(0,2)

(0,1)

x=

=x

y=

=y

LDDG MinDDG

(a)

1

2

3

4

5

1

2

3

4

5

(0,1)

(0,2)

(0,1)

x=

=x

y=

=y

LDDG1 MinDDG1

(b) Kx=1, Ky=1

(1,0)

(1,0)

0

2

1

2

3

4

5

1

2

3

4

5

(0,1)

(0,2)

(0,1)

x=

=x

y=

=y

LDDG2 MinDDG2

(c) Kx=2, Ky=1

(2,0)

(1,0)

0

1

2

3

4

5

1

2

3

4

5

(0,1)

(0,2)

(0,1)

x=

=x

y=

=y

LDDG3 MinDDG3

(d) Kx=3, Ky=1

(3,0)

(1,0)

Figure 3.3 Influence of Register Requirement on LDDG and MinDDGless new dependence edges introduced to the MinDDG and thus less limitation on the loop'sILP.Finally, we increase the registers of x by 1, the dependence distance of the edge (3,1) becomes3. Now, any new dependence edge is not introduced to the MinDDG, as shown in LDDG3 andMinDDG3 of (d).The above observation gives us a hint that, for each variable4 of a loop, there exists aminimum register requirement for that no new dependence edge is introduced to the loop'sMinDDG and thus the loop's ILP can be maximally exposed.The next section will quantitively estimate this minimum register requirement, which is theupper bound on the register requirement for exploiting loops' maximum ILP.4 The Upper Bound on Register Requirement for Loops' Max-imum ILPWe are ready to estimate the upper bound on register requirement for loops' maximum ILP.First, we give a formal description of the problem. Then an approximate solution is developed.4.1 The Formal DescriptionWe �rst de�ne a new graph, LDDG+, to conclude the analysis of the last section.4In this paper, we only consider the loop-variant variables.7

De�nition 4.1 Given the LDDG, (O;E; �; �), of a loop, we de�ne LDDG+ = (O;E[Elid[Elcd; �; �), where(1) Elid = f(opi; opj)jopi; opj 2 O; opj �rst de�nes a variable and then opi uses the variable inthe loop body. g; Elcd = f(opi; opj)jopi; opj 2 O; opi �rst uses a variable and then opj de�nesthe variable in the loop body. g;(2) 8e 2 Elid [Elcd; �(e) = 0;(3) 8e 2 Elid; �(e) = Kv; 8e 2 Elcd; �(e) = Kv�1. WhereKv is the number of registers allocatedto v and v is the corresponding variable. 2Figure 3.2 is an example, where (b) is LDDG and (c) is LDDG+. Actually, LDDG+ is thegraph extended by all anti-dependence edges caused by the re-use of registers to LDDG.Now, given LDDG = (O;E; �; �), let Kv represent the number of registers allocated tov, we can construct LDDG+ = (O;E [Elid [Elcd; �; �) and MinDDG = (O;Emin; �). Anydecomposed software pipelined loop fII; rn; cng which is based on the MinDDG should satisfythe data dependence constraints below:rn(opj)� rn(opi) + II � (�(e) + cn(opj)� cn(opi)) � �(e); 8e = (opi; opj) 2 E;rn(opj)� rn(opi) � �(e);8e = (opi; opj) 2 Emin;rn(opj)� rn(opi) + II � (Kv + cn(opj)� cn(opi)) � 0;8(opi; opj) 2 Elid;rn(opj)� rn(opi) + II � (Kv � 1 + cn(opj)� cn(opi)) � 0;8(opi; opj) 2 Elcd;If II and rn are given, then the minimum register requirement can be found by solving thefollowing integer programming problem.De�nition 4.2 Given the LDDG, (O;E; �; �), of a loop, if we have found II and rn, letLDDG+ = (O;E[Elid[Elcd; �; �) andMinDDG = (O;Emin; �), then the problem of �nding theminimum register requirement can be modelled as an integer programming problem as follows:min X8v2V KvSubject tocn(opj)� cn(opi) � ��(e) + d(�(e) � rn(opj) + rn(opi))=IIe;8e = (opi; opj) 2 E �Emin;cn(opj)� cn(opi) � ��(e);8e = (opi; opj) 2 Emin;Kv + cn(opj)� cn(opi) � d(rn(opi)� rn(opj))=IIe;8(opi; opj) 2 Elid;Kv + cn(opj)� cn(opi) � 1 + d(rn(opi)� rn(opj))=IIe;8(opi; opj) 2 Elcd;Kv; cn(op) integers; 8op 2 O; u 2 V:Where V is the set of all loop-variant variables. The minimum register requirement correspond-ing to fII; rng is denoted as RRmin(II; rn). 2.In order to �nd the upper bound of register requirement, we can not assume that II and rnare known. Generally, the problem of �nding the upper bound can be described as follows:De�nition 4.3 Given the LDDG, (O;E; �; �), of a loop, let LDDG+ = (O;E [Elid [Elcd; �; �) and MinDDG = (O;Emin; �), the upper bound of register requirement, RRup, is8

de�ned as RRup = maxII;rn(RRmin(II; rn)):Where II and rn satisfy(1) IIlow � II � IIup, IIlow is the lower bound on the initiation interval and IIup the upperbound;(2)rn(opj)� rn(opi) � �(e); 8e = (opi; opj) 2 Emin;(3) For any cycle C of the LDDG,X8e=(opi;opj)2C(��(e) + d(�(e) + rn(opi)� rn(opj))=IIe) � 0:2 IIup can be determined by the length of the original loop body. IIlow can be determined bythe critical cycle of the LDDG and the usage of the critical resources in the loop body.The following three theorems are important to develop a solution. In order not to make thepaper too long, we cut o� their proofs. Readers can refer to our detailed research report [26]for more.Theorem 4.1 If II and rn satisfy that, for any cycle C of the LDDG,X8e=(opi;opj)2C(��(e) + d(�(e) + rn(opi)� rn(opj))=IIe) � 0:Then RRmin(II; rn) exists.2Theorem 4.2 Given a loop, RRup is the minimum register requirement which is su�cientand necessary for no new dependence edge being introduced into the MinDDG. 2Theorem 4.3 The constraint matrix in the integer programming problem of De�nition 4.2is totally unimodular. 2Theorem 4.3, which is directly derived from the work of Ning and Gao [21, 27], points outthat the integer programming problem of De�nition 4.2 can be solved as a linear programmingproblem and the optimal solution is guaranteed to be integral. Therefore, in order to solveour integer programming problem, we can use general linear programming algorithms such assimplex, ellipsoid or interior point methods [28, 29, 30]. Also, Ning and Gao presented a moree�cient algorithm whose computation complexity is O(n3 logn), where n is the number of nodesin LDDG.4.2 The Approximate SolutionThe exact solution to the problem of �nding the upper bound remains open. In this subsection,we develop an approximate solution. The \upper bound" we �nd may be greater than the realupper bound.First, we compute II by the following formulaII = max8C2LDDGdXe2C �(e)=Xe2C �(e)e:That means we use the lower bound on initiation interval which is determined by the criticalcycle of the LDDG. 9

Secondly, note that, for each edge (opi; opj) of LDDG,�II + 1 � rn(opi)� rn(opj) � II � 1:We consider the worst case where we set rn(opi)� rn(opj) = II � 1.Thirdly, for each edge (opi; opj) in LDDG+ but not in the LDDG, in order to get a moreprecise solution, we do not simply set rn(opi) � rn(opj) = II � 1; instead, set d(rn(opi) �rn(opj))=IIe to 1 or 0 in terms of the situation of the edges in the LDDG. Here we denoted(rn(opi)� rn(opj))=IIe as G(opi; opj). G(opi; opj) may take 1 or 0.Thus, an approximate upper bound can be found as follows:min X8v2V KvSubject tocn(opj)� cn(opi) � ��(e) + d(�(e) + II � 1)=IIe;8e = (opi; opj) 2 E �Emin;cn(opj)� cn(opi) � ��(e);8e = (opi; opj) 2 Emin;Kv + cn(opj)� cn(opi) � G(opi; opj);8(opi; opj) 2 Elid;Kv + cn(opj)� cn(opi) � 1 +G(opi; opj);8(opi; opj) 2 Elcd;Kv; cn(op) integers; 8op 2 O; u 2 V:Where V is the set of all loop-variant variables. LDDG = (O;E; �; �), LDDG+ = (O;E[Elid[Elcd; �; �) and MinDDG = (O;Emin; �),Obviously, the above integer programming problem is of the same properties as that ofDe�nition 4.2, so it can be also solved e�ciently.Finally, we should point out that, for some cycle, if we set rn(opi)� rn(opj) = II � 1 for allits edges, then no solution exists since the condition of Theorem 4.1 is not satis�ed. In this case,we should carefully handle the cycle. In our current method, we only set rn(opi) � rn(opj) =II� 1 for loop-independent dependence edges, while compute rn(opi)� rn(opj) for loop-carrieddependence edges to make the condition of Theorem 4.1 satis�ed.5 Preliminary Experimental ResultsWe select six examples to verify our approach. Except for example 1(as shown in Figure 5.1(1)),the other �ve examples are selected from the Livermore benchmarks. As our preliminary exper-iments are mainly conducted by a manual simulation, we try to select some simple loops in arandom way. The machine model we use in the experiments is shown in Figure 5.1(2).The results are presented in Table 1. In the last column, we give the register requirementfor generating an optimal software pipelined loop by DESP software pipelining approach. Theupper bound we �nd approach to the real register requirement for exploiting loops' maximumILP.It should be pointed out that, in this paper, we do not address another important problem{ which variables can share the same registers. We only address the register requirement of10

The Original Loop:

for i=1 to n do
s=s+a[i]
a[i]=s*s*a[i]
enddo

The Code of
the Loop Body:

1. t0=t0+1;
2. t1=a[t0];
3. s=s+t1;
4. t2=s*s;
5. t3=t1*t2;
6. a[t0]=t3

(1) The Loop of Example 1

Pipeline Number Operation Latency

Memory port 2 Load 13
 Store 1
Address ALU 2 Add/Sub 1
Adder 1 FAdd/FSub 1
 IAdd/ISub 1
Multiplier 1 FMUL 2
 IMUL 2

(2) The Machine Model

Figure 5.1 Example 1 and the Machine Model

Table 1. Register Requirement for Loops’ Maximum ILP

Example L II The upper bound DESP

 1 20 2 28 27
 2 22 3 41 39
 3 17 1 30 30
 4 18 3 22 21
 5 16 1 29 29
 6 17 2 29 27

note 1: L = the length of the longest dependence path in the
 loop body.
note 2: II = the estimated initiation interval.each variable and consider the loop's register requirement as the sum of all variables' registerrequirements. This simple approach is e�cient for the short loops and the well-software pipelinedloops, where the operations from di�erent iterations are fully overlapped and the live ranges ofall variables interfere. For the big loops, however, our simple approach should be extended inthe following two ways:1. Construct the weighted interference graph, the weight on each node represents the registerrequirement of the corresponding variable. Thus, the number of registers can be counted by theconventional method [9];2. Check any two variables whose live ranges do not interfere: Supposing they use the sameregisters, check whether new dependence edges is introduced to the MinDDG.6 ConclusionIn this paper, we �rst present the minimum data dependence graph (MinDDG) of a loop torepresent the maximum ILP available in the loop and analyze the in
uence of register require-ment on the data dependence graph and the MinDDG, then on the basis of which we presentan approach to estimate the upper bound on register requirement for exposing loops' maximumILP. The preliminary experimental results show the e�ciency of our approach.References[1] J.A. Fisher, D. Landskov, and B.D. Shriver. Microcode compaction: Looking backwardand looking forward. In proceedings of 1981 National Computer Conference, 95-102 1981.[2] F. Gasperoni. Compilation techniques for vliw architectures. Technical Report TR435, NewYork University, March 1989. 11

[3] B. R. Rau and J.A. Fisher. Instruction-level parallel processing: History, overview andperspective. The Journal of Supercomputing, 7(1), January 1993.[4] B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily schedulable horizon-tal architecture for high performance scienti�c computing. In proceedings of the 14th In-ternational Symposium on Microprogramming and Microarchitectures (MICRO-14), pages183{198, October 1981.[5] A. Aiken and A. Nicolau. Perfect pipelining: A new loop parallelization technique. Inproceedings of European Symposium on Programming, Lecture notes in Computer Science,No.300, pages 221 {235. Spring-Verlag, June 1988.[6] P. Y. T. Hsu. Highly Concurrent Scalar Processing. PhD thesis, University of Illinois,Urbana-Champaign, 1986.[7] A.E. Charlesworth. An approach to scienti�c array processing: The architecture design ofthe ap-120b/fps-164 family. Computer, pages 18{27, September 1981.[8] D.G. Bradlee, S. J. Eggers, and R.R. Henry. Integrated register allocation and instructionscheduling for riscs. In proceedings of the 4th International Conference on ASPLOS, 1991.[9] G. J. Chaitin. Register allocation and spilling via graph coloring. In proceedings of ACMSIGPLAN Symp. on Compiler Construction, 1982.[10] L.J. Hendren, G.R. Gao, E. R. Altman, and C. Mukerji. Register allocation using cyclicinterval graph: A new approach to an old problem. Technical Report ACAPS TechnicalMemo 33, McGill University, 1992.[11] B. R. Rau, M. Lee, P.P. Tirumalai, and M.S. Schlansker. Register allocation for softwarepipelined loops. In proceedings of PLDI, 1992.[12] R.F. Touzeau. A fortran compiler for the fps-164 scienti�c compute. In proceedings of ACMSIGPLAN Symposium on Compiler Construction, 1984.[13] J. R. Goodman and W. Hsu. Code scheduling and register allocation in large basic blocks.In proceedings of International Conference on Supercomputing, 1988.[14] S.A. Mahlke, W.Y. Chen, P.P. Chang, and W.W. Hwu. Scalar program performance onmultiple-instruction-issue processors with a limited number of registers. In proceedings ofthe 25th HAWAII International Conference on System Sciences, January 1992.[15] Wolfgang Ambrosch, M. Anton Ertl, Felix Beer, and Andreas Krall. Dependence-consciousglobal register allocation. In proceedings of PLSA, April 1994.[16] C. Eisenbeis, W. Jalby, and A. Lichnewsky. Compile-time optimization of memory andregister usage on the cray-2. In proceedings of the second Workshop on Languages andCompilers, 1989.[17] M.S. Lam. A Systolic Array Optimizing Compiler. PhD thesis, CMU, 1987. CMU-CS-87-187.[18] R. Hu�. Lifetime-sensitive modulo scheduling. In proceedings of ACM SIGPLAN PLDI,pages 258{267, June 1993.[19] Jian Wang, Christine Eisenbeis, and Philippe Canalda. Using timed petri net to analyzethe maximum computation rate for loop programs. In proceedings of the 3rd InternationalConference for Young Computer Scientists, July 1993.12

[20] William Mangione-Smith, S. G. Abraham, and E. S. Davidson. Register requirements ofpipelined processors. In proceedings of 1992 ACM International Conference on Supercom-puting, 1992.[21] Qi Ning and Guang R. Gao. A novel framework of register allocation for software pipelining.Technical Report ACAPS Technical Memo 42, McGill University, 1993.[22] Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining: A new approach toexploit instruction level parallelism for loop programs. In Michel Cosnard, Kemal Ebcioglu,and Jean-Luc Gaudiot, editors, proceedings of IFIP WG 10.3 Working Conference on Archi-tectures and Compilation Techniques for Fine and Medium Grain Parallelism, pages 3{15.IFIP, North-Holland, January 1993.[23] Jian Wang and Christine Eisenbeis. Decomposed Software Pipelining. Reseach RepportRR-1838, INRIA-Rocquencourt, France, 1993.[24] Bogong Su and Jian Wang. Loop-carried dependence and the general URPR softwarepipelining approach. In proceedings of the 24th Annual Hawaii International Conference onSystem Sciences, pages 366{372. IEEE and ACM, January 1991.[25] Jian Wang, Christine Eisenbeis, Martin Jourdan, and Bogong Su. Decomposed SoftwarePipelining: A new perspective and a new approach. International Journal of ParallelProgramming, 22(3):357{379, 1994.[26] Jian Wang, Andreas Krall, and M. Anton Ertl. Register requirement for exposing loops'maximal instruction-level parallelism. Technical Report TR 1851/94/3, Institut f�ur Com-putersprachen, TU Wien, Austria, 1994.[27] Q. Ning and G.R. Gao. A novel framework of register allocation for software pipelining. Inproceedings of POPL, January 1993.[28] V. Chvatal. Linear Programming. W.H. Freeman and Company, 1983.[29] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,(4), 1984.[30] L.G.. Khachian. A polynomial algorithm in linear programming. Soviet Math. Doklady,(20), 1979.

13

