CASM - Optimized Compilation of Abstract State

Machines !

Roland Lezuo, Philipp Paulweber and Andreas Krall
Institute of Computer Languages, Vienna University of Technology

Jun 12, 2014

1This work is partially supported by the Austrian Research Promotion Agency
(FFG) under contract 827485, Correct Compilers for Correct Application Specific
Processors and Catena DSP GmbH.

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Abstract State Machines

ASM in a nutshell:
e well-founded (formal) method
@ generalization of finite state machines
@ changes interpretation of an algebra

pure functions calculate successor state in parallel

ASM is well suited for:
@ programming language semantics

o clocked circuits (like micro-processors)

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

We use ASM in:
@ compiler verification

o formalization of instruction sets

rule addiu(addr : Int) =
let rs = FIELD(addr, FV_RS) in
let rt = FIELD(addr, FV_RT) in
let imm= FIELD(addr, FV_IMM) in
if rt != 0 then
GRP(rt) := BVadd(32, GPR(rs), BVse(16, 32, imm))

MIPS addiu (functional model)

Idea: re-use models for
@ instruction set simulation (ISS)
e compiled simulation (CS)

Issue: existing ASM tools too slow = CASM
o statically typed

@ compilation to C

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Parallel and Sequential execution semantics

Swap
{l
{ t = x
x 1=y x =y
y = X y := t
} |}
parallel semantics sequential semantics

= concise modeling parallelism in pipelines / VLIW

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

PAR/SEQ nesting

program updates state update-set

{ x=undef , y=undef {3

I {l

| | x := 23 x=23 x=23, y=undef { x1=23 }

: : z 8 () y=42 x=23, y=42 { x1=23, y1=42 }
| |1 X =y x=42 { xo=42, y1=42 }
[y 1= x y=23 { x=42, y»=23 }
(N x=42, y=23

I 13 x=undef , y=undef { x1=42, y1=23 }
| 7/

@ sequential execution of parallel blocks
@ updates collected into sets

@ on leaving a block: merge updates into surrounding one

Idea: no intermediate states, overlay update-set

@ run-time stack of update-sets

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

PAR/SEQ implementation

Linked Hash-Map
lookup: O(#ps), merge: O(#updates), insert: O(1)

last update
&update. .

key*. - Pseudo state (16 bit)
BEEEERE Address (48 bit)

= most expensive run-time operations

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

CASM baseline compiler

5 [BucoreAsMODCASM-ilIASmL | &
£ g
= z . 5 4 -
3] s = 8 S
g
- < b 4
102 1 3 23 > pd
o) -] n
[\‘ [N
o
10° | 3
~ S
f"? N
100 | =
10! T T ‘6" ‘/‘ ‘6
O > 0
SL@ (//Cf QJ/ 60 (/66
% KX %,
,? % S

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Optimization Patterns 1/3

Redundant Lookup and its Elimination

{

if X(3)
skip
if X(3)
skip

3 then

4 then

local X_3 = X(3) in
if X_3 = 3 then
skip
if X_3 = 4 then
skip

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Optimization Patterns 2/3

Preceded Lookup and its Elimination

local L_1 = foo in
{1 {l
X(4) := foo X(4) := L_1
if X(4) > O then if L_1 > 0 then
skip skip
|} I}

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Optimization Patterns 3/3

Redundant Update and its Elimination

{1 {l

X(5) foo

X(5) bar X(5) := bar
|+ | >

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Patterns in Compiled Simulation (simplified)

rule basicblock = {| //pipeline stages
call fetch(0x8000) enum S = { S1, S2, S3 }
call execute
call step // phases (latch-in, latch-out)

enum P = { P1, P2 }
call fetch(0x8001)

call execute rule fetch(r : Int) =
call step pipeline(S1) := PROGMEM(r)
70 ooo rule execute =
forall s in S do
call fetch(0x8023) if != undef then {|
call execute call () (P1)
call step call () (P2)
|} |}
@ redundant update rule step = {
pipeline(82) := pipeline(S1)
e preceded lookup pipeline(S3) := pipeline(S2)

@ redundant '

similar for register file

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Supporting Optimizations

Key: statical analysis of locations

in le

constant propagation
constant folding
inlining

lookup elimination

update elimination

sinking

compilation to C = less complex code, better C optimization

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Achieved Speedup and Performance

8 x % 4

[e)}
4.89

2.78

5.03
2.86
6.23
3.29

2.41

4.27

speedup depends on size of frequently executed basic blocks

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

Conclusion

@ re-use of formal models
@ baseline compiler order of magnitudes faster than other tools
@ for CS application: optimizations yield factor 6

@ current work: interprocedural analysis, new optimziations

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines

