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Abstract State Machines

ASM in a nutshell:
e well-founded (formal) method
@ generalization of finite state machines
@ changes interpretation of an algebra

pure functions calculate successor state in parallel

ASM is well suited for:
@ programming language semantics

o clocked circuits (like micro-processors)
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We use ASM in:
@ compiler verification

o formalization of instruction sets

rule addiu(addr : Int) =
let rs = FIELD(addr, FV_RS) in
let rt = FIELD(addr, FV_RT) in
let imm= FIELD(addr, FV_IMM) in
if rt != 0 then
GRP(rt) := BVadd(32, GPR(rs), BVse(16, 32, imm))

MIPS addiu (functional model)

Idea: re-use models for
@ instruction set simulation (ISS)
e compiled simulation (CS)

Issue: existing ASM tools too slow = CASM
o statically typed

@ compilation to C
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Parallel and Sequential execution semantics

Swap
{l
{ t = x
x 1=y x =y
y = X y := t
} |}
parallel semantics sequential semantics

= concise modeling parallelism in pipelines / VLIW
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PAR/SEQ nesting

program updates state update-set

{ x=undef , y=undef {3

I {l

| | x := 23 x=23 x=23, y=undef { x1=23 }

: : z 8 () y=42 x=23, y=42 { x1=23, y1=42 }
| |1 X =y x=42 { xo=42, y1=42 }
[ y 1= x y=23 { x=42, y»=23 }
(N x=42, y=23

I 13 x=undef , y=undef { x1=42, y1=23 }
| 7/

@ sequential execution of parallel blocks
@ updates collected into sets

@ on leaving a block: merge updates into surrounding one

Idea: no intermediate states, overlay update-set

@ run-time stack of update-sets
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PAR/SEQ implementation

Linked Hash-Map
lookup: O(#ps), merge: O(#updates), insert: O(1)

last update
&update. .

key*. - Pseudo state (16 bit)
BEEEERE Address (48 bit)

= most expensive run-time operations
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CASM baseline compiler

5 [BucoreAsMODCASM-ilIASmL | &
£ g
= z . 5 4 -
3] s = 8 S
g
- < b 4
102 1 3 23 > pd
o) - ] n
[\‘ [N
o
10° | 3
~ S
f"? N
100 | =
10! T T ‘6" ‘/‘ ‘6
O > 0
SL@ (//Cf QJ/ 60 (/66
% KX %,
,? % S

Roland Lezuo, Philipp Paulweber and Andreas Krall CASM - Optimized Compilation of Abstract State Machines



Optimization Patterns 1/3

Redundant Lookup and its Elimination

{

if X(3)
skip
if X(3)
skip

3 then

4 then

local X_3 = X(3) in
if X_3 = 3 then
skip
if X_3 = 4 then
skip
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Optimization Patterns 2/3

Preceded Lookup and its Elimination

local L_1 = foo in
{1 {l
X(4) := foo X(4) := L_1
if X(4) > O then if L_1 > 0 then
skip skip
|} I}
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Optimization Patterns 3/3

Redundant Update and its Elimination

{1 {l

X(5) foo

X(5) bar X(5) := bar
|+ | >
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Patterns in Compiled Simulation (simplified)

rule basicblock = {| //pipeline stages
call fetch(0x8000) enum S = { S1, S2, S3 }
call execute
call step // phases (latch-in, latch-out)

enum P = { P1, P2 }
call fetch(0x8001)

call execute rule fetch(r : Int) =
call step pipeline(S1) := PROGMEM(r)
70 ooo rule execute =
forall s in S do
call fetch(0x8023) if != undef then {|
call execute call ( ) (P1)
call step call ( ) (P2)
|} |}
@ redundant update rule step = {
pipeline(82) := pipeline(S1)
e preceded lookup pipeline(S3) := pipeline(S2)

@ redundant '

similar for register file
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Supporting Optimizations

Key: statical analysis of locations

in le

constant propagation
constant folding
inlining

lookup elimination

update elimination

sinking

compilation to C = less complex code, better C optimization
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Achieved Speedup and Performance
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speedup depends on size of frequently executed basic blocks
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Conclusion

@ re-use of formal models
@ baseline compiler order of magnitudes faster than other tools
@ for CS application: optimizations yield factor 6

@ current work: interprocedural analysis, new optimziations
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