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Abstract
Instruction selection is a well-studied compiler phase that trans-
lates the compiler’s intermediate representation of programs to a
sequence of target-dependent machine instructions optimizing for
various compiler objectives (e.g. speed and space). Most existing
instruction selection techniques are limited to the scope of a single
statement or a basic block and cannot cope with irregular instruc-
tion sets that are frequently found in embedded systems.

We consider an optimal technique for instruction selection that
uses Static Single Assignment (SSA ) graphs as an intermediate
representation of programs and employs the Partitioned Boolean
Quadratic Problem (PBQP ) for finding an optimal instruction se-
lection. While existing approaches are limited to instruction pat-
terns that can be expressed in a simple tree structure, we con-
sider complex patterns producing multiple results at the same
time including pre/post increment addressing modes, div-mod in-
structions, and SIMD extensions frequently found in embedded
systems. Although both instruction selection on SSA-graphs and
PBQP are known to be NP-complete, the problem can be solved
efficiently - even for very large instances.

Our approach has been implemented in LLVM for an embedded
ARMv5 architecture. Extensive experiments show speedups of up
to 57% on typical DSP kernels and up to 10% on SPECINT 2000
and MiBench benchmarks. All of the test programs could be com-
piled within less than half a minute using a heuristic PBQP solver
that solves 99.83% of all instances optimally.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Algorithms, Languages, Performance

Keywords Compiler, Code Generation, Instruction Selection,
PBQP

1. Introduction
Instruction selection is a transformation step in a compiler which
translates the intermediate code representation into a low-level in-
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termediate representation or to machine code. Due to its significant
contribution to the overall code quality of a compiler, instruction
selection received a lot of attention in the recent past [9, 14, 5, 7,
19, 8, 22, 20, 11, 2]. Standard techniques confine their scope to
statements or basic blocks achieving locally optimal code only. Re-
cently, a new approach [7, 16] has been introduced which is able
to perform instruction selection for whole functions in SSA form.
This approach uses a discrete optimization problem for selecting
instructions. Similar to tree pattern matching [8, 11] this approach
maps the instruction selection problem to a graph grammar parsing
problem where production rules have associated costs. The gram-
mar parser seeks for a cost minimal syntax derivation for a given
input graph. The parsed graph is the SSA graph [13] – a graph
representation of the SSA form [4]. Nodes in an SSA graph are
simple operations including loads/stores, arithmetic operations, ϕ-
functions, and function calls. The incoming edges constitute the
arguments of an operation and are ordered. The outgoing edges de-
note the transfer of the operation’s result.

The approach in [7] restricts patterns to trees such that com-
plex patterns with multiple inputs and multiple results cannot be
matched. For example, the DIVU instruction in the Motorola 68K
architecture performs the division and the modulo operation for
the same pair of inputs. The approach in [7] cannot take advan-
tage of coalescing both operations into a single DIVU. Other exam-
ples of instructions are the RMW (read-modify-write) instructions on
the IA32/AMD64 architecture, autoincrement- and decrement ad-
dressing modes of several embedded systems architectures, the IRC
instruction of the HPPA architecture, and fsincos instructions of
various math libraries.

Usually, complex patterns are handled in tree-based approaches
using a local peephole optimizer in a post-processing step for
code strengthening or exposed to the programmer in the form of
compiler known functions (intrinsics) requiring significant efforts.
To overcome those deficiencies, we introduce an algorithm that is
able to handle general graph patterns with arbitrary cost functions
while accounting for potential memory dependencies. The main
contributions of this work are as follows: (1) introducing complex
graph patterns, and (2) conducting extensive experiments for DSP
kernels, embedded applications (MiBench), and for the SPECINT
2000 benchmark suite showing the effectiveness and efficiency of
our algorithm in comparison with heuristic strategies.

This paper is organized as follows: In Section 2 we survey re-
lated work. In Section 3 we provide the background and notations.
We motivate our approach in Section 4, and in Section 5 we out-
line the algorithm for instruction selection. In Section 6 we discuss
experimental results. We conclude in Section 7.

2. Related Work
Tree pattern matching is a well known and widely used technique
for instruction selection introduced by Aho and Johnson [2], who
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were the first to propose a dynamic programming algorithm for
the problem of instruction selection. The unit of translation is a
single statement represented in the form of a data flow tree. The
matcher selects rules such that a cost minimal cover is obtained.
Balachandra et al. [3] present an important extension that reduces
the algorithm to linear time by precomputing itemsets, i.e., static
lookup tables, at compiler compile time.

The same technique was applied by Fraser et al. [11] in order
to develop burg — a tool that converts a specification in the form
of a tree grammar into an optimized tree pattern matcher written
in C. While burg computes costs at generator generation time
and thus requires constant costs, iburg [12] can handle dynamic
costs by shifting the dynamic programming algorithm to instruction
selection time. This allows the use of dynamic properties for cost
computations, e.g., concrete values of immediates. The additional
flexibility is traded for a small penalty in execution time. Ertl
et al. [9] save the computed states for tree nodes in a lookup table.
This approach retains the flexibility of dynamic cost computations
at nearly the speed of precomputed states.

DAG matching techniques are an approach to overcome the
limited scope of tree pattern matching. However, DAG matching
is an NP -complete problem [23]. Ertl [8] presents a generalization
of tree pattern matching for DAGs. A checker can determine if the
algorithm delivers optimal results for a given grammar. Liao et al.
present a DAG matcher based on a mapping to the binate covering
problem in [20].

Recently, a novel approach [7, 16] has been introduced which
is able to perform instruction selection for whole functions in
SSA form [13, 4]. In contrast to DAG matching techniques, this
approach is not restricted to acyclic graphs and widens the scope of
instruction selection to the computational flow of a whole function.
The NP -completeness of DAG matching extends to SSA graphs as
well. To get a handle on the instruction selection problem, in [7, 16]
a reduction to PBQP was described that delivers provably optimal
solutions for most benchmark instances in polynomial time. A
solution for the PBQP instance induces a complete cost minimal
cover of the SSA graph.

In [24], a technique is introduced that allows a more efficient
placement of chain rules across basic block boundaries. This tech-
nique is orthogonal to the generalization to complex patterns pre-
sented in this paper.

3. Background
Static Single Assignment Form (SSA form) is a program rep-
resentation in which each variable has a single assignment in the
source code [4]. The example in Fig. 1 shows the SSA form and
SSA graph of an input program. The input program (Fig. 1(a)) has
two assignments for variable i. Therefore, it is not in SSA form.
We transform the code to SSA form by splitting variable i into
variables i1 and variable i2 as shown in Fig. 1(b). Function ϕ
merges the values of program variable i1 and i2. The merged value
is assigned to variable i3.

SSA graphs introduced in [13] are an abstraction representation
of procedures in SSA form where the nodes represent operations
and the edges correspond to data dependencies of the program. The
SSA graph of our example in Fig. 1(a) is depicted in Fig. 1(c) .
Note that incoming edges have an order which reflects the argument
order of the particular operation.

We denote an SSA graph as a quadruple G = (V, E, op, opnum)
with a set of nodes V , a set of edges E ⊆ V × V , a func-
tion op : V → Σ, and a function opnum : E → N. The
set Σ is a ranked alphabet of operand symbols. Each node in V
has an associated arity τV : V → N . For an edge e = (u, v),
1 ≤ opnum(e) ≤ τV (v) denotes the order of arguments for the

x:=f();
if x>0 then
i=1;

else
i=2;

endif
print(x,i);

x0:=f();
if x0>0 then
i1:=1;

else
i2:=2;

endif
i3:=ϕ(i1,i2);
print(x0,i3);

(a) Input (b) SSA Form

>

0f()

if

φ

21

print()

(c) SSA Graph

Figure 1. Example: SSA form and SSA graph

operation op(v). For any node u, |preds(u)| = τV (u) and for any
two incoming edges (v, u), (w, u) v, w ∈ preds(u), v 6= w we
require that opnum((v, u)) 6= opnum((w, u)). For all operations
except ϕ nodes, the arity τV (u) of a node u ∈ V and the arity
of its operation τΣ(op(u)) are equal and can be used interchange-
ably. A (data) path π is a sequence of nodes v1, . . . , vk such that
(vi, vi+1) ∈ E for all 1 ≤ i < k. A path is cyclic if there are
several occurrences of a node in the path. The length of a path π is
given by |π|.

PBQP is a specialized quadratic assignment problem [25, 6]
which is known to be NP-complete. Consider a set of discrete vari-
ables X = {x1, . . . , xn} and their finite domains {D1, . . . , Dn}.
A solution of PBQP is a simple function h : X → D where D is
D1 ∪ . . .∪Dn; for each variable xi we choose an element di in Di.
The quality of a solution is based on the contribution of two sets of
terms:

1. for assigning variable xi to the element di in Di. The quality of
the assignment is measured by a local cost function c(xi, di).

2. for assigning two related variables xi and xj to the elements
di ∈ Di and dj ∈ Dj . We measure the quality of the assignment
with a related cost function C(xi, xj , di, dj).

Thus, the total cost of a solution h is given as

f =
X

1≤i≤n

c(xi, h(xi)) +
X

1≤i<j≤n

C (xi, xj , h(xi), h(xj)) . (1)

PBQP asks for an assignment with minimum total costs.
We solve PBQP using matrix notation. A discrete variable xi is

represented as a boolean vector ~xi whose elements are zeros and
ones and whose length is determined by the number of elements in
its domain Di. Each 0-1 element of ~xi corresponds to an element
of Di. An assignment of xi to di is represented as a unit vector
whose element for di is set to one. Hence, a valid assignment for
a variable xi is modeled by the constraint ~xT

i
~1 = 1 that restricts

vectors ~xi such that only one vector element is assigned one; all
other elements are set to zero.

The related cost function C(xi, xj , di, dj) is decomposed for
each pair (xi, xj). The costs for the pair are represented as matrix
Cij . A matrix element corresponds to an assignment (di, dj). Sim-
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ilarly, the local cost function c(xi, di) is mapped to cost vectors
~ci. Quadratic forms and scalar products are employed to formulate
PBQP as a mathematical program:

min f =
X

1≤i≤n

~xT
i ~ci +

X
1≤i<j≤n

~xT
i Cij~xj .

s.t. ∀1 ≤ i ≤ n : ~xi ∈ {0, 1}|Di|

∀1 ≤ i ≤ n : ~xT
i
~1 = 1

4. Motivation
As shown by Eckstein et al. [7] the instruction selection problem
is modeled as PBQP in a straightforward fashion. The PBQP for-
mulation overcomes many of the deficiencies of traditional tech-
niques [11, 12, 2], which often fail to fully exploit irregular instruc-
tion sets of modern architectures and need to employ ad-hoc tech-
niques for irregular features (e.g., peep-hole optimizations, etc.).
The authors describe a new approach that extends the scope of stan-
dard techniques to the computational flow of a whole function by
means of SSA -graphs. However, their approach is limited to tree
patterns that restrict the modeling of advanced features found in
common embedded systems architectures.

In the PBQP based approach [7] an ambiguous graph gram-
mar consisting of tree patterns with associated costs and seman-
tic actions is used to find a cost-minimal cover of the SSA -graph.
The input grammar is normalized, i.e., each rule is either a base
rule or a chain rule. A base rule is a production p of the form
nt0 ← op(nt1, . . . , ntkp) where nti (for all i, 0 ≤ i ≤ kp) are
non-terminals and op is a terminal symbol (i.e. an operation that is
represented as a node in the SSA graph). A chain-rule is a produc-
tion of the form nt0 ← nt1, where nt0 and nt1 are non-terminals.
A production rule nt← op1(α, op2(β), γ)) can be normalized by
rewriting the rule into two production rules nt ← op1(α, nt′, γ)
and nt′ ← op2(β) where nt′ is a new non-terminal symbol and
α, β and γ denote sequences of operands of arbitrary length. This
transformation can be iteratively applied until all production rules
are either chain rules or base rules.

The instruction selection problem for SSA graphs is modeled
in PBQP as follows. For each node u in the SSA graph, a PBQP
variable xu is introduced. The domain of the variable xu is the
subset of base rules Ru = {r1, . . . , rku} whose operations op
match the operation of the SSA node u. The cost vector ~cu =
wu · 〈cost(r1), . . . , cost(rku)〉 of variable xu encodes the costs
of selecting a base rule ri where cost(ri) denotes the associated
cost of base rule ri. Weight wu is used as a parameter to optimize
for various objectives including speed (e.g. wu is the expected
execution frequency of the operation in node u) and space (e.g.
the wu is set to one).

An edge in the SSA graph represents data transfer between the
result of an operation u, which is the source of the edge, and the
operand v which is the tail of the edge. To ensure consistency
among base rules and to account for the costs of chain rules, we
impose costs dependent on the selection of variable xu and variable
xv in the form of a cost matrix Cuv . An element in the matrix
corresponds to the costs of selecting a specific base rule ru ∈ Ru

of the result and a specific base rule rv ∈ Rv of the operand node.
Assume that ru is nt ← op(. . . ) and rv is · · · ← op(α, nt′, β)
where nt’ is the non-terminal of operand v whose value is obtained
from the result of node u. There are three possible cases:

1. If the nonterminal nt and nt’ are identical, the corresponding
element in matrix Cuv is zero, since the result of u is compatible
with the operand of node v.

void convert(char *txt,char *ds,int b,int x)
{

int d;
char *p=txt;
do {

d = x % b;
x = x / b;
*p++=ds[d];

} while(x > 0);
*p=0;
reverse(txt); // reverse string

}

char buf[100],digits[]="0123456789ABCDEF";
convert(buf,digits,10,4711);

Figure 2. Motivating Example

2. If the nonterminals nt and nt′ differ and there exists a rule
r : nt′ ← nt in the transitive closure of all chain-rules, the
corresponding element in Cuv has the costs of the chain rule,
i.e. wv · cost(r).

3. Otherwise, the corresponding element in Cuv has infinite costs
prohibiting the selection of incompatible base rules for the
result u and operand v.

A solution of PBQP determines which base rules and chain
rules are to be selected. A traversal over the basic blocks using
the SSA graph is sufficient to execute the associated semantic rules
in order to emit the code. However, this approach [7] is not able
to deal with complex instruction patterns that have multiple results,
i.e., patterns that cannot be expressed in terms of tree shape produc-
tions. As an example, consider the C fragment given in Fig. 2 that
shows a number conversion routine. On an architecture, which sup-
ports a divmod instruction and post-increment addressing modes,
the instruction selector could exploit these features for reducing
code size and improving the execution speed of the program. How-
ever, neither the pattern for divmod nor the pattern for the post-
increment store can be expressed in terms of tree shaped produc-
tions as depicted in the SSA graph in Fig. 3. Both patterns have
multiple in-coming and out-going edges and cover multiple nodes
in the SSA graph at the same time.

In this paper we introduce a new approach that is able to cope
with complex patterns as shown in our motivating example. An
excerpt of a cost augmented graph grammar describing the divmod
instruction and the post-increment addressing mode is listed in
Fig. 4. In the graph grammar, each pattern is a tuple of productions
constituting a DAG shaped pattern, costs, and the semantic actions.
For example the divmod pattern P1 shown in Fig. 4 can only be
applied if the arguments for the div and the mod node are identical.
This is expressed by naming the arguments of the div node with x
and y. These labels are re-used in the rule for mod expressing that
the same arguments have to match. The associated cost function for
a pattern is shown in brackets. The underlying architecture of the
example assumes a MIPS R2000 like division instruction, i.e., both
the quotient and the remainder are stored in dedicated registers.
The rules C1 and C2 emit the move instructions (mflo and mfhi
respectively) to retrieve the values of the divmod instruction.

Tree patterns do not destroy the topological order for emitting
the code, however, complex patterns can: a cyclic data dependency
occurs if a set of operations in the SSA graph is matched by
a pattern for which there exists a path in the SSA graph that
exits and re-enters the complex pattern within the basic block.
This cycle would imply that operations are executed on the target
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txt

ds

b

x

φ

inc

φ

div mod

ld[]

st *

>

0

st *

0

reverse()

Division-
Modulo
Pattern

Auto-Inc
Pattern

Figure 3. SSA Graph of the Motivating Example in Fig. 2

P1) 〈lo← div(x : reg1, y : reg2), hi← mod(x, y)〉
[2] {emit divmod r(reg1),r(reg2)}

P2) 〈← st*(x : reg1, reg2), reg← inc(x)〉
[3] {emit addi tmpreg,r(reg1),0;

movsw r(reg2),(tmpreg)++)}
P3) ← st*(reg1, reg2)

[2] {emit sw r(reg2),(r(reg1))}
P4) reg← inc(reg)

[2] {emit addi r(tmpreg),r(reg),4}
C1) reg← lo

[2] {emit mflo r(reg)}
C2) reg← hi

[2] {emit mfhi r(reg)}

Figure 4. Fragment of Rules

hardware before the values of the operands are available. Hence,
the matcher must prohibit those cycles in the minimum cost cover
by finding a topological order among the patterns. The example in
Fig. 5 illustrates the problem of finding a cover that does not cause
any cyclic data dependencies. The code fragment contains three
feasible instances of a post-increment store pattern (cf. P2, P3, P4
in Fig. 4). Assuming that we know that p, q, and r point to mutually
distinct memory locations, there are no further dependencies apart
from the edges shown in the SSA graph. The example obviously
gives rise to a topological order of the semantic rules as long as we
do not select all three instances of the post-increment store pattern
concurrently.

Modeling memory accesses in the instruction selection of a
compiler is a challenging problem. SSA graphs do not reflect

*p:=r+4;
*q:=p+4;
*r:=q+4;

inc st*

p

inc

st*

q

st*

inc

r

(a) Input Block (b) SSA Graph

Figure 5. Example: Topology Constraints

(1) x1:=*p;
(2) *q:=1;
(3) x2:=x1+2;
(4) *p:=x2;

st *

+

2

p

ld

RMS Pattern

st *

q 1

WAR

WAW

(a) Input Block (b) SSA Graph

Figure 6. Example: Memory Dependencies

memory dependencies. However, they do have memory operations
that impose data dependencies among memory operations includ-
ing loads and stores. For example consider the example shown
in Fig. 6 that depicts a typical read-modify-write (RMW ) pat-
tern such as “add r/m32, imm32” in the IA32/AMD64 archi-
tecture. A corresponding production rule might be formulated as
stmt ← st*(x : reg1, +(ld(x), imm)). If we have to assume that
p and q might address the same memory location, we have to ac-
count for the antidependency among statements (1) and (2) and
the output dependency among statements (2) and (4); depicted in
Fig. 6(b) with dotted lines. There is obviously no topological order
among the highlighted part forming the RMW pattern and the store
corresponding to instruction (2), i.e., we cannot apply the pattern
even if it is the cheapest graph cover. To ensure the existence of
a topological order among the chosen productions, the SSA graph
is augmented with additional edges representing potential data de-
pendencies.

5. Instruction Selection using Complex Patterns
The extension of the instruction selector [7] is mainly concerned
about prohibiting cycles in the selection of patterns and considering
memory dependencies for the instruction selection. We can restrict
the algorithm to normalized grammars that consist of the following
types of productions: (1) chain rules of the form nt0 ← nt1, and
(2) tuples of base rules of the form nt0 ← op(nt1, . . . , ntkp)

The main scheme of our algorithm for matching complex DAG
patterns is shown in Algorithm 1. Steps (1), (2), and (5) differ
from the approach described in [7]. First, we identify concrete
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Algorithm 1 Generalized PBQP Instruction Selection
1: identify instances of complex patterns within basic blocks
2: transform the problem to an instance of PBQP
3: obtain a solution for the PBQP instance using a generic solver
4: for all basic blocks b do
5: compute a topological order for the subgraph Sb ⊆ B that

is induced by basic block b
6: apply the semantic rules associated with the chosen produc-

tions in the order computed in step (5).

tuples of nodes in the SSA graph that can be used to form patterns
specified in the input grammar. Next, we transform the problem
to an instance of PBQP that is processed using a generic solver
library.

The problem formulation ensures the existence of a topological
order among the chosen productions and allows for a straight-
forward back-transformation that maps a solution vector of PBQP
to a complete graph cover. The partial order among the particular
nodes is defined by the edges in the SSA graph and additional
data dependencies among load and store instructions. We can thus
use a reversed post-order traversal to apply the semantic actions
associated with the chosen productions in a proper order on the
subgraphs induced by individual basic blocks. This process rewrites
those subgraphs in a bottom-up fashion into target specific DAGs
that are directly passed to a prepass list scheduler.

5.1 Identifying Patterns in SSA Graphs
As described in Section 4, generalized productions cover a tuple
instead of individual nodes in the SSA graph. The matcher has to
choose among them based on associated cost functions. Therefore,
we enumerate instances of complex patterns in step (1) of Algo-
rithm 1, i.e., concrete tuples of nodes that match the terminal sym-
bols specified in a particular production. More formally, an instance
of a complex production p is a |p|-tuple

(v1, . . . , v|p|) ∈ V |p| vi 6= vj ∀ 1 ≤ i < j ≤ |p|
of nodes in the SSA graph such that oi = op(vi) ∀ 1 ≤ i ≤ |p|,
i.e., each node matches the terminal symbol of the corresponding
base rule. An instance l is called viable if costsp(l) < ∞. The set
of all viable instances for a production p and an SSA graph G is
denoted by Ip(G).

A dependency between two instances of complex patterns p and
q within a basic block b is denoted by p ≺b q. Note that this relation
might have cycles as shown in examples in Section 4. The relation
defines the partial order in which the semantic actions have to be
applied and can be naturally derived from the edges in the SSA
graph augmented with potential memory dependencies.

5.2 Problem Transformation
This section describes the transformation of the generalized in-
struction selection problem to an instance of PBQP . We define the
set of decision variables X = {x1, . . . , xn} along with their finite
domains {D1, . . . , Dn}. A local cost vector ci = (c1, . . . , c|Di|)
specifies the costs of assigning variable xi to a particular element
in its domain. For related variables xi and xj , we establish matrix
costs Cij that valuate a particular assignment of xi and xj .

Decision Variables Decision variables are created both for nodes
in the SSA graph and for each of the enumerated instances of
complex patterns. The whole set of variables X = X1 ·∪ X2 is
defined as follows.

For each SSA node u ∈ V , we introduce a variable xu ∈ X1.
The domain of xu is defined by the set of applicable base rules
arising from two different sources:

1. Simple productions consisting of a single base rule; those are
handled just like in previous approaches

2. Base rules arising from complex productions. Those rules are
treated as a set of simple base rules, e.g., the production

〈stmt← st*(x : reg1, reg2), reg← inc(x)〉
is decomposed into stmt〈← st*(x : reg1, reg2)〉 and 〈reg←
inc(x)〉. All base rules with the same signature obtained from
the decomposition of complex productions contribute only to
a single element to the domain for xu. Base rules derived
from productions p for which u does not appear in any of the
instances in Ip(G) can be safely omitted.

While the former group represents the set of patterns that can be
used to obtain a cover for node u, the second class of base rules
can be seen as a proxy for the whole set of instances of (possibly
different) complex productions in which u arises. The costs for
elements in xu are 0 for the proxy states corresponding to the
selection of a complex instance, otherwise they reflect the real costs
of the corresponding simple rule.

For each instance l ∈ Ip(G) of a complex production p, we
create a distinct decision variable xl ∈ X2 that encodes whether
the particular instance is chosen or not, i.e., the domain consists of
the elements on and off. As we will describe later, it is sometimes
necessary to further refine the state on in order to guarantee the
existence of a topological order among the chosen nodes. The local
costs for xl are set to be 0 if xl is off and costsp(l) otherwise.

Constraints Constraints can be formulated in PBQP in terms of
quadratic cost functions represented by cost matrices that “glue”
the particular variables together. Among the two sets of variables
X1 and X2 we create three different types of related costs, i.e.,
X1 → X1, X1 → X2, and X2 → X2.

The first type of cost matrices is established among adjacent vari-
ables u, v ∈ X1. Therefore, we add matrix costs Cuv as outlined
in Section 4 that enforce compatibility between two rules and ac-
counts for the cost of chain rules. If no derivation exists, the costs
are set to∞ with the effect that the transition is prohibited. Among
identical nonterminals, costs are 0. More formally, let e = (u, v)
be an edge in the SSA graph and let ntu

0 ← ou(ntu
1 , . . . , ntu

n) and
ntv

0 ← ov(ntv
1 , . . . , ntv

m) denote the base rules corresponding to
variables u and v. We define

CX1→X1
uv = we mincosts(ntu

0 , ntv
opnum(e))

while mincosts(nti, ntj) denotes the minimal costs for all chain
rule derivations from nti to ntj . The function mincosts can be
easily derived by computing the transitive closure for all chain rules
in the grammar, e.g., using the Floyd-Warshall algorithm [10].

For each variable xl ∈ X2 corresponding to an instance l, we
need to create constraints ensuring that the corresponding proxy
state is selected on all variables xu ∈ X1 that represent the SSA
nodes u forming l. Therefore, we create matrix costs CX1→X2

ul
such that the costs are zero if xl is set to off or xu is set to a base
rule that is not associated to the instance l. Otherwise, costs are set
to ∞. Thus, when one of the instances correlated to a particular
node u in the SSA graph is selected, the only remaining element
in the domain of u with costs less than∞ is the associated proxy
state corresponding to the particular base rule fragment.

So far, the formulation allows the trivial solution where all of the
related variables encoding the selection of a complex pattern are set
to off (accounting for 0 costs) even though the artificial proxy state
for xu has been selected. We overcome this problem by adding a
large integer value M to the costs for all proxy states. In exchange,
the costs c(v) for variables xv ∈ X2 are set to (c(v) − |l|M)
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while |l| denotes the number of nodes for instance l. Thus, the
penalties for the proxy states are effectively eliminated unless an
invalid solution is selected.

The last type of matrix costs is established among variables
xu ∈ X2 and xv ∈ X2 where xu 6= xv . These matrices ensure
that

• two instances lu and lv covering the same nodes in the SSA
graph cannot be selected at the same time, i.e. assigned to the
state on

• the set of selected instances does not induce cyclic data depen-
dencies

The basic idea is to reduce the problem to the task of finding an
induced acyclic sub-graph within the dependence graph Db(G) that
can be defined as follows.

• there is a node w ∈ Db(G) for every instance lw ∈ Ip(G)
consisting of SSA nodes in block b

• there is a directed arc (w1, w2) ∈ Db(G) iff lw1 ≺b lw2

Any subset of instances that is selected at the same time induces
a subgraph G′ ⊆ Db(G) that has to be acyclic to allow for a valid
emit order. We exploit the property that every acyclic directed sub-
graph of Db(G) gives rise to a not necessarily unique topological
order. Note that it is sufficient to reduce the problem to the strongly
connected components of Db(G). We can integrate this idea into
the problem formulation obtained so far as follows:

1. for every strongly connected component Si of Db(G), we com-
pute an upper bound max(Si) on the number of instances rep-
resented by nodes in Si that can possibly be selected at the same
time without multi-coverage of SSA nodes. In general, this sub-
task can be reduced to the maximum independent set problem
which is known to be NP complete. However, it is sufficient to
solve the problem heuristically since the bounds are only used
to decrease the problem size of the PBQP instance.

2. for all decision variables representing complex instances within
a non-trivial strongly connected component Si, i.e., its cardinal-
ity is greater than one, we replace the state on in their domain
with the elements 1, . . . , |max(Si)| representing their index in
a topological order. The costs of those elements corresponds to
the costs of the former on state.

3. we establish matrix costs Cuv among variables xu, xv ∈ X2

for instances u and v respectively as follows

CX2→X2
uv =

8>>><>>>:
∞, if xu 6= off ∧ xv 6= off ∧

(xu = xv ∨ u ∩ v 6= ∅ ∨
((u, v) ∈ Si ⊆ Db ∧ xu > xv)),

0, otherwise.

If one or both instances are set to off, the element of CX2→X2
uv

is zero. Otherwise, if both u and v are within the same strongly
connected component in Db(G) and u ≺b v, we want to make
sure that the index assigned to u is less than the index assigned
to v. Similarly, costs are set to ∞ if xu = xv or u ∩ v 6= ∅
in order to ensure that no two instances can be assigned to the
same index and instances covering a common node cannot be
selected at the same time. These cost matrices constrain the
solution space such that no cyclic data dependencies can be
constructed in any valid solution.

The decision variables and matrices described above constitute a
complete PBQP formulation for the generalized instruction selec-
tion problem.

Example One way to think of an instance of PBQP is as a di-
rected labeled graph. Nodes represent decision variables that are
annotated with the local cost vectors and edges among nodes rep-
resent non-zero cost matrices. For each node, the solver selects a
unique element from its domain such that the corresponding over-
all costs are minimized.

Using this notation, we illustrate the PBQP formulation pre-
sented above in Fig. 7 using the example SSA graph shown in
Fig. 5 and the rule fragments given in Fig. 4. Base rules and cost
matrices for the address variables p, q, and r are omitted for sim-
plicity. Decision variables X1 for SSA nodes are denoted in cir-
cles while those for complex instances are represented by rounded
squares. We use k as a placeholder for the term 3 − 2M 1 repre-
senting the costs for production P3 minus the penalty that has been
added on adjacent variables in X1. The example shows all three
types of matrix costs that can arise in the problem transformation.
Note, that the corresponding nodes for all three instances (2, 1),
(3, 5), and (6, 4) of production P3 are within one and the same
strongly connected component in the dependence graph Db(G).

5.3 PBQP Solver
For solving the PBQP instances we use a fast heuristic solver and
an exponential branch-and-bound solver. The heuristic solver im-
plements the algorithm introduced in [25, 6], which solves a sub-
class of PBQP optimally in O(nm3), where n is the number of
discrete variables and m is the maximal number of elements in
their domains, i.e., m = max (|D1|, . . . , |Dn|). For a given prob-
lem, the solver eliminates discrete variables until the problem is
trivially solvable. Each elimination step requires a reduction. The
solver has reductions R0, RI, RII, which are not always applica-
ble. If no reduction can be applied, the problem becomes irre-
ducible and a heuristic is applied, which is called RN. The heuristic
chooses a beneficial discrete variable and a good assignment for it
by searching for local minima. The obtained solution is guaranteed
to be optimal if the reduction RN is not used [6]. The branch-and-
bound solver [15] finds an optimal solution by searching the space
spawned by the RN nodes of the problem. The space is pruned by
a lower bound (i.e. the sum of the minima of all cost vectors and
cost matrices of the PBQP problem) to speed up the convergence
of the search. To show the effectiveness and efficiency of PBQP
we employ a quadratic integer program to solve the instruction se-
lection problem (cf. Appendix). We linearise the quadratic integer
program such that standard integer linear program solvers can be
used for obtaining a solution.

6. Experimental Results
We have implemented the global instruction selector described
in Section 5 within LLVM 2, which is a compiler infrastructure
built around an equally named fully typed low level virtual ma-
chine [18]. All benchmarks are converted using a gcc based fron-
tend (llvm-gcc) into LLVM intermediate code that is further pro-
cessed using the standard set of machine-independent optimiza-
tions and fed into the code generation backend.

Both the existing LLVM instruction selector and our PBQP in-
struction selector are implemented as graph transformations that
rewrite a selection graph representing LLVM intermediate code
into target dependent machine instructions. Prior to code gener-
ation, a legalize phase that is common to both instruction selec-
tors lowers certain DAG nodes to target dependent constructs, e.g.,
floating point instructions are converted into library calls and 64bit
operations are lowered into 32bit arithmetic. A subsequent prepass

1 M denotes a sufficiently large integer constant.
2 http://www.llvm.org
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Figure 7. PBQP graph for the Example shown in Fig. 5. We use k as a shorthand for the term 3− 2M .

scheduler converts the result graphs into a sequence of machine in-
structions while accounting for resource constraints of the target
processor. This approach is superior to the workflow of most exist-
ing compilers that usually have to rebuild a data dependence graph
from a fixed topological order during scheduling, since the same
data structure along with precious annotations from alias analysis
can be passed from one phase to another without loss of informa-
tion. The existing LLVM instruction selector implements a bottom
up pattern matching approach on the scope of basic blocks. Most
architecture dependent parts are generated from a target descrip-
tion at compiler compile time. While the algorithm efficiently han-
dles simple patterns, custom C++ code has to be used in order to
match instructions that cannot be expressed using the existing in-
frastructure. While this approach makes it difficult to retarget the
code generator and to implement application specific instruction
set extensions, it is very efficient in terms of compile time and is
applicable in the realm of just in time compilers.

We consider the existing ARMv5 backend of LLVM 2.1 and
implement a corresponding grammar for our new instruction se-
lector. Most of the complex addressing modes available on ARM
cannot be handled by the bottom up approach implemented in
LLVM. Therefore, a preprocessing algorithm tries to identify pre-
and post-increment memory accesses and rewrites them into target
dependent DAG nodes. Additionally, the instruction selector is by-
passed for certain nodes such as cmov instructions, multiplies, or
the complex addressing modes available both for arithmetic/logic
and memory access instructions. Those cases are handled by hand-
written, target dependent C++ procedures aside from the generic
algorithm.

In contrast to the existing LLVM instruction selector, our algo-
rithm can be fully retargeted using a grammar with the extensions
presented in Section 5 and does not necessitate the ad-hoc tech-
niques implemented for LLVM. The grammar consists of a total
number of 555 normalized rules; 46 rules are complex rules consist-
ing of multiple base rules that could not be handled with previous
approaches. A base set of 80 rules has been automatically derived
from the existing machine description. About 40 rules are used for
the various ARM addressing modes. Dedicated nonterminals are
used to efficiently describe repeating pattern fragments such as the
arithmetic operations with flexible addressing mode 1 that implic-
itly shift/rotate one of the source registers by another register or
immediate value.

[<Rn>, #±<imm12>]!
LDR|STR {B}<Rd>, [<Rn>,±<Rm>]!

pre- [<Rn>,±<Rm> <shift> #<imm>]!
indexed [<Rn>, #±<imm8>]!

LDR|STR {H|SH|SB}<Rd>, [<Rn>,±<Rm>]!
[<Rn>], #±<imm12>

LDR|STR {B}<Rd>, [<Rn>],±<Rm>
post- [<Rn>],±<Rm> <shift> #<imm>
indexed [<Rn>], #±<imm8>

LDR|STR {H|SH|SB}<Rd>, [<Rn>],±<Rm>

Table 1. ARMv5 Pre-/Postindexed Addressing Modes

Composite rules are necessary for the available pre- and post-
increment addressing modes on ARMv5 which cannot be ex-
pressed as simple tree patterns (see Table 1). An Example of a
post-increment store pattern has already been shown in Fig. 4. In
our prototype implementation, the cost functions account for move
instructions that inevitably have to be inserted by the register allo-
cator if the base register is used (maybe indirectly) by another SSA
node that has to be scheduled after the load/store instruction that
is part of the pattern. In those cases, the old value has to be saved
into a temporary register, which effectively increases the costs of
our patterns. We compute those cost functions efficiently using
precomputed successor sets.

Since SSA form is maintained in LLVM until register alloca-
tion, machine instructions cannot both read and define the same
operand. Therefore, all instructions with autoincrement addressing
have an additional (virtual) destination operand <Rt> along with
a constraint for the register allocator of the form <Rt> = <Rn>.
While our approach would be capable to capture some complex
ARM instructions such as LDRD|STRD (load/store double) and
LDM|STM (load/store multiple), those pattern require constraints of
the form <Ri> = <Rj>+1, which currently cannot be handled
by the register allocator. Those modifications are beyond the scope
of this work.

In addition to pre- and post-increment loads and stores, we
implement complex patterns for swap instructions (swp, swpb), and
the signify versions of various instructions such as adds and movs
that implicitly set the Z flag in the processor status register (CPSR).
Those instructions can be effectively used to replace an explicit cmp
instruction in counting loops. However, since the induction variable
in most counting loops is increased, we use a simple prepare-pass
that checks for loop carried dependencies and reverts them, thereby
frequently allowing for the application of typical subs patterns.
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Even though there is neither a hardware div nor a mod instruc-
tion on ARMv5, we can fold the necessary calls into the runtime li-
brary (libgcc) into a combined function that delivers both the quo-
tient and the remainder at the same time ( aeabi [u]idivmod).

Methodology We apply our prototype implementation to three
different suites of benchmarks, i.e., typical DSP kernels mostly
taken from the fixed point branch of the DSPstone suite [26],
medium sized applications from the MiBench suite [21], and gen-
eral purpose programs represented by the SPECINT 2000 bench-
mark suite [17].

All programs have been cross compiled using one core of a
Xeon DP 5160 3GHz with 24GB of main memory. The DSP ker-
nels and the MiBench suite are executed with the free, cycle ac-
curate instruction set simulator included in the gdb3 project. This
approach is not feasible for large benchmarks such as those from
the SPEC suite. Therefore, we execute them on real hardware. The
target board running a Linux 2.4.22 kernel is equipped with an Intel
XScale IOP80321 (600MHz) and 512MB of memory. For floating
point operations, we use the IEEE754 implementation that ships
with gcc since there is no hardware floating point unit available
on our target. Both the original backend and our PBQP based im-
plementation have been verified against a gcc 4.0.2 cross compiler
which has also been used to build binutils and glibc. Execution
times have been gathered using the unix time utility considering
the best out of 10 runs on the unloaded machine.

Benchmarks compiled for the instruction set simulator have
been linked with newlib – a C library implementation for embed-
ded systems. We omit those benchmarks from the MiBench suite
that use operating system features such as sockets and pipes that
are not implemented in newlib. Likewise, we do not provide re-
sults for the most simple benchmarks in the DSPstone suite such as
complex update or startup since all considered compilers pro-
duce the same few instructions.

For the DSP kernels, we extend the simulator with a simple
stopwatch facility that is triggered by dedicated reserved opcodes
and allows us to obtain cycle accurate measures for inner loops
without startup and I/O overhead.

The most difficult PBQP instances are generated for the SPEC
suite. We present results for all benchmarks except 252.eon which
is written in C++ and therefore cannot be compiled with our pro-
totype implementation. Figure 9 shows the number of SSA graphs
over the whole benchmark set compared to the number of nodes

3 http://sourceware.org/gdb/

benchmark gcc LLVM PBQP LLVM
PBQP

dsp-fft 768393 868252 741807 1.17
dsp-fir 333 167 150 1.11
dsp-fir2dim 2430 1149 1149 1.00
dsp-lms 812 598 553 1.08
dsp-matrix 16127 16191 13893 1.17
misc-cmac 1691443 1608654 1565287 1.03
misc-convert 2117 1924 1228 1.57
misc-dct8x8 196377 116682 113594 1.03
misc-qsort 22187557 24541181 21219621 1.16
misc-serpent 3463333 2062079 2067729 1.00
misc-vdot 20707 20717 18716 1.11

Table 2. Execution time [cycles] for inner loops of various DSP
benchmarks (mostly taken from the DSPstone suite).

benchmark gcc LLVM PBQP LLVM
PBQP

basicmath 6980.14 6992.17 6989.30 1.00
bitcount 93.06 109.35 106.67 1.03
susan 679.63 763.69 696.55 1.10
jpeg 15.53 16.36 15.18 1.08
lame 2447.82 2470.31 2592.58 0.95
dijkstra 482.79 323.46 323.43 1.00
stringsearch 9.96 10.28 9.94 1.03
blowfish 1.42 1.41 1.41 1.00
rijndael 897.08 540.06 535.59 1.01
sha 19.63 19.82 18.73 1.06
crc32 833.12 753.29 753.29 1.00
fft 1552.64 1558.51 1558.22 1.00
adpcm 656.61 854.71 801.46 1.07
gsm 3054.84 3103.48 3077.01 1.01

Table 3. Execution time [megacycles] for the MiBench suite.

(partitioned into classes of size ten). Note the logarithmic scale
of the y-axis. The vast majority of graphs (99.5%) has less than
100 nodes. The largest graph over the whole benchmark set can be
found in 176.gcc and consists of 1613 nodes and 1026 edges.

In order to solve the PBQP instances, we compare the heuristic
approach described in [25, 6] with an optimal algorithm based on
branch & bound [15]. Furthermore, the solver time for the PBQP
instances is compared to a linearization of the problems that are
solved with ILOG CPLEX 10. The PBQP is translated to a linear
program with 0-1 variables.

Computational Results Cycle accurate results for the DSP ker-
nels and the MiBench suite are shown in Table 2 and 3 respectively.
We compare the results obtained with gcc , the original LLVM
2.1 backend, and our new instruction selector based on PBQP .
Speedups for the DSP kernels are up to 57% (misc-convert, see
Fig. 2) with an average of 13%. The largest gains for the MiBench
suite could be achieved for automotive-susan with a speedup of
10%. Only a single benchmark (consumer-lame) shows a slow-
down by 5% that is caused by spill code due to an inferior register
allocation. All results have been obtained with the heuristic PBQP
solver.

Next, we consider the benchmarks from the SPECINT 2000
suite. Detailed results are shown in Table 4. All of the benchmarks
could be compiled with the heuristic PBQP solver within half a
minute, most of them took only a couple of seconds. The compile
time slowdown compared to LLVM is about a factor of 2 and is
mainly caused by the overhead for building the SSA graphs on top
of the standard selection graph data structures and the immature
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prototype implementation of our matcher. Column mem. denotes
the maximum amount of memory required to represent the PBQP
instances. None of the benchmarks compiled with the PBQP based
instruction selector is slower than the LLVM compiled version
while speedups are up to 10%. Over the whole benchmark suite,
the average speedup is about 5%.

For the simple approach where each rule is either a base rule or
a chain rule, the size of the PBQP problem for a particular grammar
is at most linear in the size of the graph. This is no longer the case
for our generalization since we enumerate combinations of nodes.
In general, the number of instances for a k-ary pattern in a SSA
graph with n nodes is bound by O(

`
n
k

´
) which is in O(nk). Thus,

for worst case examples, the exhaustive enumeration for composite
patterns quickly renders the problem intractable.

However, as our experiments show, this does not appear to be
a burden in practice since there is usually only a reasonably small
number of viable alternatives for complex patterns within a basic
block. Figure 9 shows the average problem size in bytes per graph
size that is necessary to represent the PBQP problem. The graph
shows an almost linear behavior in the size of the input graphs.

The number of decision variables for PBQP is determined by
the size of the input graph and the number of instances that could be
identified. Over the whole benchmark set, only 1.1% of all variables
were used to select among compound rule alternatives. Likewise,
about 94.9% of nonzero matrices were established among nodes
representing simple operations, 2.8% had to be used to enforce con-
sistency among regular nodes and pattern variables, and about 2.2%
were required to ensure the existence of a topological order among
them. Over the whole benchmark set, about 18.618 opportunities
for pre- and post-increment instructions could be identified; a max-
imum of 92 within a single graph.

If there are no RN nodes in the reduction phase of the heuristic
solver, the solution is optimal. If RN nodes occur in the reduction
phase, we are interested in the quality of the obtained solution.
Note that almost all of the input graphs (177.870) could be solved
without RN reductions and, hence, are optimally solved by the
heuristic solver. For the remaining graphs (7968), we compare the
solution with an optimal solution obtained by the branch & bound
solver.

Results are given in the column “solver statistics” in Table 4.
The first column (opt1) contains the number of instances that could
be solved directly to provable optimality by the heuristic solver.
The remaining cases have been verified by the B&B solver. Most
of them could not be improved further (opt2) while only a small

number (shown in column sub.) was suboptimal. This shows that
in practice that the solution of the heuristic PBQP solver coincides
with the optimal solution or is very close to the optimal solution.

To show the effectiveness of the PBQP approach for instruction
selection, we compare the branch & bound solver with a state of the
art integer linear programming ILOG(tm) CPLEX 10 solver. We
obtain a linear program for PBQP by applying standard techniques
to linearize the PBQP objective function (cf. appendix).

For the SPEC benchmark the total solver time for all PBQP
instances for instruction selection was 196 seconds whereas the
ILP solver required more than 163 hours. The PBQP branch &
bound solver solved all instances optimally whereas CPLEX could
not find an optimal solution for 15 instances within a 10 hours
time cut-off. Note the use of the branch & bound solvers increases
the compile time by 50% on average. However, the compile time
slowdown to the heuristic solver can be substantial (e.g. 186.crafty
benchmark) reaching factors up to 30.

7. Conclusions
Instruction selection for irregular architectures such as digital sig-
nal processors still imposes considerable challenges in spite of the
remarkable amount of attention it has received in the past. First, the
limited scope of most standard approaches is leading to suboptimal
code not accounting for the computational flow of a whole func-
tion. Second, many architectural features commonly found in the
area of embedded systems cannot be expressed using well-known
techniques such as tree pattern or DAG matching.

We present a generalization to PBQP based instruction selection
that can cope with complex DAG patterns with multiple results.
The approach has been implemented in LLVM for an embedded
ARMv5 architecture. Extensive experiments show improvements
of up to 57% for typical DSP code and up to 10% for MiBench and
SPECINT 2000 benchmarks (5% on average). Using a heuristic
PBQP solver, all benchmarks could be compiled within less than
half a minute, with about 99.83% of all problem instances solved to
optimality. The comparison of the PBQP instruction selector with a
linearization to integer linear programming confirms the efficiency
and effectiveness of instruction selection based on PBQP solvers.
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A. Integer Program
We obtain an integer program from the cost vectors and cost ma-
trices of the PBQP problem. The PBQP variables xi are mapped
to 0-1 variables yij where j is in the range between 1 and |Di|. A
constraint is added to the integer program that restricts the solu-
tion of yij such that exactly one of the variables is set to one, i.e.,
only one element of the domain is assigned to PBQP variable xi. In
the objective function we have a linear combinations of the vector
elements. For cost matrices we have a quadratic term.

min f =
X

1≤i≤n

X
1≤j≤|Di|

c(xi, dj)yij+

X
1≤i≤n

X
1≤j≤|Di|

X
1≤k≤n

X
1≤l≤|Dk|

C(xi, xk, dj , dl)yijykl

s.t.∀1 ≤ i ≤ n : ∀1 ≤ j ≤ |Di| : yij ∈ {0, 1}

∀1 ≤ i ≤ n :
X

1≤j≤|Di|

yij = 1

We use a standard technique [1] to linearize the term C(xi, xk, dj , dl)·
yijykl resulting in a quadratic number of 0-1 variables in the linear
integer program.
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