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closely related to closures since they too can be nested in methods and classes. Their
translation scheme follows the scheme described for closures. They are crucial for
implementing iterators efficiently. Iterators are quite valuable as they permit encapsu-
lation of iteration strategies within containers. In other words, the iteration algorithm,
complete with its initialization code and termination condition, is hidden within the
container data structure. This makes client code simpler and more robust. A translator
implementing our extensions is available at http://www.complang.tuwien.ac.at/java/xjava/.
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Translation Iterators are implemented using the exception mechanism of Java. Two
new exceptions are defined, Break and Continue /*1*/. Inside an iterator method, a break
at method level or labelled with the method name is translated to a throw of the excep-
tion Break /*2*/. Similar a continue is translated to a throw of the exception Continue.
Each use of an iterator method is protected by a try which catches Break and Continue
exceptions /*3*/. Only one try block for each loop nesting containing iterators is gener-
ated. The exception handler contains the break or continue statement optional
extended by a label /*4*/. The loop keyword is just transformed into a while (true) /*5*/. 

Discussion The iterator concept presented here is more expressive than Sather’s iters
and allows an elegant encapsulation of iteration protocols. The translation scheme relies
on closures and anonymous objects presented earlier. Exceptions are an efficient imple-
mentation technique. In Java they are very frequent and are often implemented as func-
tions with two return values: the exception and the function return value. Our iterators
are just that: methods with two return values. The exception set-up and the iterator call
overhead can be eliminated if the iterator is inlined.

7 Conclusions
This paper proposes four non-intrusive language extensions, tuples, closures, anony-
mous objects and iterators, designed to improve the expressive power of Java without
modifying the semantics of existing programs or complicating the language unduly.
Tuples are useful on their own as typed heterogeneous containers of fixed size. Their
real value is for efficiently implementing functions with multiple return values. In this
respect they fit well with closures. Closures are first class functions. Their presence in
the language makes it easy to express functions that manipulate other functions as is
commonly done in functional programming. Anonymous objects are literal objects

final class Break extends Exception {} /*1*/
final class Continue extends Exception {} /*1*/
class Sequence {

private int i, max;
public int next() throws Break, Continue {

if (i > max)
throw new Break(); /*2*/

return i++;
}
public Sequence(int count) {

max = count;
i = 1;

}
}
class itertest {

public static void main(String args[]) {
Sequence seq = new Sequence(10);
while (true) /*5*/

try /*3*/
System.out.println(“Seq: ”

 +seq.next());
catch (Break b) break; /*4*/
catch (Continue c) continue;

}
}

source translation

class Sequence {
private int i, max;
public iter int next() {

if (i > max)
break; /*2*/

return i++;
}
public Sequence(int count) {

max = count;
i = 1;

}
}
class itertest {

public static void main(String args[]) {
Sequence seq = new Sequence(10);
loop 

System.out.println(“Seq: ”
+ seq.next()); /*3*/

}
}
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easily. All that needs be done is to add the following method to the Matrix class:

Iter rows() { // rows() is a method of the Matrix class
return new Iter{ // newIter() returns an anonymous object

int x = -1; // x is an instance variable of the iter
iter Object next() { // next() returns an anonymous object

if (++x >= data.length)
break;

return MutableIter { // The iterator traverses a row of the matrix
int y = 0; // y indicates the position in the row
iter Object next() { // next() returns the next element

if (y >= data[0].length)
break;

else 
return data[x][y++];

}
}();

}
} ();

}

The method next() of the outermost iterator returns a different element iterator each time
it is invoked. The row iterator does not allow modification of elements, while the ele-
ment iterator does. As an illustration, the following code fragment adds a different inte-
ger to each row: 

r = m.rows();
loop {

c = (MutableIter) r.next();
val++;
loop c.set( (Int) c.next().add(val));

}

Iterators can be composed. To illustrate how, we show a solution to the fringe compar-
ison problem (i.e. compare the value of all leaves of two trees). A solution in Sather is
given in [11]. In the following example we assume that the class tree has a method allEle-
ments which returns an iterator and a method isLeaf to check if a tree is a leaf. 

class FringeTree extends Tree {
public Iter fringe() { // fringe() returns an iterator

Iter allElements = elements(); // allElements stores the standard tree iter
return Iter{ // The iterator returned by fringe() filters 

iter Object next() { // the values returned by elements() and
loop { // yields only the leaves of the tree.

Tree t = (Tree) allElements.next();
if t.isLeaf() return t;

}
break;

}
boolean done() { allElements.done();} // The method done returns true if all 

}(); // elements have been visited
}

boolean fringeCompare(FringeTree B) { // fringeCompare() compares two trees.
Iter iterA = fringe(), IterB = B.fringe();
boolean check = true;
while (check) 

check = (iterA.next()) .equals( iterB.next() ) ); // compare the fringes
return check && iterA.done() && iterB.done();

}
}
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We provide the keyword loop as syntactic sugar for while(true). An advantage of our
approach is that the iterator is an entity which has a denotation, thus in the following
code fragment v1 and v2 actually denote two consecutive odd integers (which would not
be possible with Sather iterators):

loop {
v1 = o.next();
v2 = o.next(); 

}

We avoid the semantic complication of having to deal with hot arguments and corou-
tines. Iterators are objects like any other and calls to iterators are normal method invo-
cations. Using anonymous objects allows the definition of iterators to be located within
the container class. This has the advantage of establishing a strong link between the two
implementations and of granting full access to the internals of the container object. Fig-
ure 1 shows a two dimensional matrix class which has a method, elements(), that returns
an iterator object. The iterator extends the class SeqMutableIter of sequenceable and
mutable iterators; it is an abstract class which defines a set of four standard methods:
next() and prev() to return the next and previous elements of the sequence, set() and set-
Next() to modify the contents of the container. Note that it accesses the state of the matrix
directly. Given a matrix r, the code to initialize all elements is:

r = m.elements();
loop

r.setNext(null);

The efficiency of this solution depends on the ability of the compiler to in-line method
calls and replace dynamic allocation with stack allocation. Recent work on static pro-
gram analysis [1] and compiler optimizations of object-oriented programs [5] suggests
that it is possible to generate good code for iterators.

An advantage of our approach is that many different iteration strategies can be
added to a container class without placing a burden on the interface of the class. For
instance, we can have an iterator to perform a row order traversal of the matrix quite 

 iter Object prev() {
if (x < 0)break;
if (--y >= 0)return data[x][y];
y = data[0].length; x--;
return prev();

 }
boolean done() {

return x<0 || x> data.length; 
}

 iter void set(Object o) {
if (done()) break;
return data[x][y];

 }

 iter void setNext(Object o) {
next(); set(o); 

 }
}();

}
...

Figure 1   A matrix class with an iterator.

class Matrix {

Object data [][];

public Matrix (int x, int y) { data = new Object[x][y]; }

SeqIter elements() {

return new SeqMutableIter{
 int x = 0 
 int y = -1;

 iter Object next() {
if (x >= data.length)

break;
if (++y < data[0].length)

return data[x][y];
y = -1; x++;
return next(); 

 }
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a value, with the keyword yield, or terminate the loop with the keyword quit. Sather puts
the iterator in charge of checking for termination and breaking loops. This clever idea
simplifies the task of writing code that iterates over multiple data structures. Hot argu-
ments may be used to modify the data structure. For example, consider the task of copy-
ing an array. Assuming that arr1 and arr2 are isomorphic arrays, the Sather code for
copying the contents, starting at index i, of arr1 into arr2 is:

loop
v := arr1.next!(i);
arr2.set!(i, v);

end

Here i is the starting index, next!() and set!() are iterator invocations; either one could ter-
minate the loop if the end of the corresponding array is reached. The second argument
of set!() needs to be hot in order to provide a new v each time control is transferred to
set!(). One drawback of hot arguments is that in order to know which arguments are hot,
one must look at the class interface. Each syntactic occurrence of an iterator denotes a
different co-routine; in the following Sather code, the values of v1 and v2 are always
equal:

loop
v1 := arr1.next!(i);
v2 := arr1.next!(i);

end

We adopt a simpler and more elegant model for iteration in Java. Iterators are objects
which have one or more iteration methods. We add a single keyword “iter” which is
used to qualify iteration methods. An iteration method is a method which may either:
(1) return a value, using the normal return keyword, (2) terminate a loop using the break
keyword or (3) go to the loop head, using the continue keyword. An iterator which
returns a bounded sequence of positive odd numbers would be coded:

class OddIntIter {

int i = -1;

int Max;

iter int next() {
if (i >= Max) 

break next;
else {

i = i + 2;
return i;

}
}

public OddIntIter(int m) { 
Max = m; 

}
}

Note that break and continue can be labelled by the name of the enclosing iter to indicate
that control flow should leave the iterator breaking any inner loops. An example of the
use of an iterator to sum the odd numbers between 0 and 20 is as follows:

o = OddIntIter(20);
while(true) 

x += o.next();
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elements of the container one by one. Before discussing how to design iterators, let’s
review some requirements for a general purpose iteration abstraction:

• interface: the interface should allow one to retrieve, modify, and, possibly, add
or delete, elements of the target data structure without having to understand the
implementation of the underlying abstraction,

• multiplicity: multiple iterators may iterate over the same data structure; the same
iterator must be usable in different contexts without losing track of its position in
the data structure,

• composability: multiple data-structures may be iterated over in a single loop;
simple iterators may be composed to form more complex ones,

• efficiency: the code of the iterator must have direct access to the data structure
over which it iterates; the compiler should be able to compile away the iterator
abstraction.

With no additional support from the language, iteration protocols may be encapsulated
in objects. Thus, for example, a Tree object may have a method inOrder() that returns an
InOrderTreeIter—an object with an interface for in-order tree traversal and methods for
checking if the complete tree has been visited. The same class could have other methods
returning pre- and post-order iterators. This solution meets the first three requirements.
As for efficiency, the problem is that the iterator objects require privileged access to the
container object (as with C++’s friend declaration) and that they rely heavily on the com-
piler to optimize away the dynamic nature of allocation and method invocation. 

Alternatively, the iterator can be made part of the container object. Thus, for in-
stance, a Tree object might have a method initIter() which would take three arguments:
the order of traversal, a method next() which would return the next element and a method
done() that would return true if the entire tree had already been visited. The advantage of
this solution is that the iteration code has access to the implementation of the data ab-
straction. The disadvantage is that it is not easy to implement multiple iterators over the
same object, as it would be necessary to keep track of the source of each invocation and
maintain a stack of states for all active iterators. The designers of CLU found a solution
to both problems. In CLU an iterator is an operation (i.e. method) of an abstract data
type. An invocation of an iterator has the general form:

for <loop variable> in <iterator invocation> do
<body> end;

Semantically an iterator is a coroutine, it may thus yield a value (this value is bound to
the loop variable and used within the loop body), or terminate the loop by returning.
There are four major weaknesses of CLU’s iterators: (1) the restriction to one iterator
per loop, i.e. it is not possible to iterate over two data structures at the same time, (2)
the inability to modify the data structure—CLU iterators are uni-directional, informa-
tion flows from the iterator to the loop body, and never the other way around— (3) the
lack of composability—CLU iterator abstractions can not be composed or abstracted
further—and (4) there is no provision for keeping the state of an iterator between loops,
i.e. to traverse part of the tree in one loop and the other part in another loop. 

Sather generalizes CLU iterators. Iterators are still coroutines, but they can be used
anywhere inside the loop body and some of their arguments are marked as “hot” to
mean that they are re-evaluted each time control is passed back to the iterator. An iter-
ator is thus a special kind of method implemented as a co-routine which can either yield
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Translation An anonymous object is translated to a new class definition. Accesses to
variables declared in the enclosing function or to fields of an enclosing object are trans-
lated in the same way as closures. The only difference is that the new class cannot be
used as an environment as in the optimization for closures. The constructor for the
extended class gets two additional arguments for the enclosing object and environment.
These two fields are initialized after the constructor of the super class has been called. 

Discussion The functionality of anonymous objects is subsumed by a new feature of
Java called inner classes [15]. The details of their design were published a couple of
months after this paper had been written and submitted; they generalize the concept of
anonymous object and allow class definitions to nest. Our translation scheme differs
from the Sun proposal as described in the previous section.

6 The Fourth New Construct: Iterators
Iteration over data structures is a common and repetitive task that often requires inti-
mate knowledge of the implementation of the data structures on which the iteration is
being carried out. Empirical evidence indicates that iteration code is tricky as errors
related to initialization and stopping conditions are frequent. Encapsulating iteration
protocols, thus shifting responsibility from client to provider, has proven quite effective
in reducing coding effort and improving reliability. For instance, iteration-intensive
classes in the Sather [11] library have been reduced to a third of their size by the addi-
tion of explicit support for iteration. 

An iterator is a control abstraction which encapsulates a particular traversal order
over a container object. Examples of containers include lists, arrays, matrices, hash ta-
bles, sets, or even sequences of integers. Iterators are used in loop constructs to return

source translation

class Xtd {
int x;
public Xtd(int i) {x = i;}

}
final class Xtd000 extends Xtd {

private B outobj;
private Env000_BfB outenv;
int ext;
Xtd000(B o, Env000_BfB e) {

super(5);
outobj = o;
outenv = e;
ext = x + outobj.i_B + outenv.i_fB;

}
}
final class Env000_BfB {

int i_fB;
}
class B {

int i_B;
Xtd fB() {

Env000_BfB env = new Env000_BfB();
env.i_fB = 2;
return new Xtd000(this, env);

}
}

class Xtd {
int x;

 public Xtd(int i) {x = i;}
}

class B {
int i_B = 1;
Xtd fB() {

 int i_fB = 2;
return Xtd {

int ext = x + i_B + i_fB;
} (5);

}
}
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a separate environment object only if more than one anonymous function is used inside
a method. Otherwise the function object contains the variables of the environment in-
stead of a reference to the environment. An environment or a reference to the object is
generated only if enclosing variables are accessed. All implementations of higher order
functions require the presence of a garbage collector. Otherwise it would be difficult to
reclaim environment objects.

5 The Third New Construct: Anonymous Objects
Java offers mechanisms for writing many of its data types literally, e.g. integers, strings,
arrays, classes. Unlike Modula-3 and Self, Java has no support for expressing literal
objects. An anonymous object is an expression which extends an existing class and
yields an instance of this anonymous class. The anonymous object is nested within
some method definition and has the same access to variables as an unnamed function.
The structure of an anonymous object is 

<BaseClass> { ... <Extension> ... } ( ... <Constructor arguments> ... )

An example of an extension is:

BigNum{ 
int i = x; /*1*/
public BigNum add(BigNum n) { 

System.out.println(“Add” + toString() + “ to “ + n.toString());
return super.add(n);

}
}(3);

This yields an object of an anonymous subclass of BigNum with a new instance variable
i and a new implementation of the method add(BigNum). Note the reference to a free vari-
able x in the assignment to i /*1*/. A valid context for this expression could be:

class BigNum {
public BigNum add(BigNum n) { ... }
public BigNum(int i) { ... }

}

class P {

public BigNum foo() {
int x = ...;

return BigNum{ 
int i = x; 
public BigNum add(BigNum n) { 

System.out.println(“Add” + toString() + “ to “ + n.toString());
return super.add(n);

}
}(3);

}
}

We have chosen to grant access to all variables and methods of the lexically enclosing
object to an anonymous object, because we want the freedom afforded by friend decla-
rations in C++ which proves indispensable for the efficient iterators of section 6. Anon-
ymous objects are not allowed to define static variables or methods as it would not be
clear when to initialize them, especially if the initializer was defined in terms of the
dynamic values of enclosing variables.
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sure is replaced by a constructor call with two arguments: the object (this) and the envi-
ronment /*9*/. Closure invocation is replaced by a call to eval /*10*/.

Discussion Closures are popular. Since this paper was submitted two implementations
of closures have been described [13] and [14]. The concept of higher order functions in
Pizza is similar to ours but the translation to Java is quite different. In Pizza every vari-
able of an enclosing function is passed as an additional function argument. Variables
which are modified have to be passed as a reference argument. This is accomplished by
putting the variable in a single element array. (The same translation scheme for access-
ing variables of an enclosing function is used for the translation of inner classes [15].)
This leads to the creation of a large number of single element arrays and to functions
with very large argument lists. The overhead of heap allocating all of these one-element
arrays may be a performance bottleneck. In our translation scheme, we create a single
environment object for all variables of an enclosing function and pass only one addi-
tional argument to the closure.

Our implementation is similar to closures in functional languages [8] and nested
scoping in Pascal and Modula-2 [2]. In a machine level implementation, a pointer to the
stack frame would replace the reference to the environment and give faster access to the
variables. Our implementation has the advantage that only variables of the environment
have to be put on the heap, whereas in a machine level implementation the complete
stack frame must be put on the heap. For faster variable access, the translator generates

class ObjSeq {
Object seq[];

 ObjSeq(int size) {
seq = new Object[size];

}
void apply(VoidObjectFun fun) {

for (int i = 0; i < seq.length; i++) {
fun(seq[i]);

} } }

class high {
String str = “High: “;
public void test(String args[]) {

String s = “Seq: “; /*1,3*/
ObjSeq os = new ObjSeq(5);
os.apply(VoidObjectFun (obj) {

System.out.
println(str+s+obj.toString());

} );
} }

final class Env0 {
String s; /*1*/

}
final class VoidObjectFun0

extends VoidObjectFun {
private Env0 outenv; /*4*/
private high outobj; /*5*/
VoidObjectFun0(high o, Env0 e) { /*6*/

outobj = o; outenv = e;
}
void eval(Object obj) {

System.out.println(this.outobj.str /*7*/
+this.outenv.s+obj.toString()); /*8*/

} }  
class ObjSeq {

Object seq[];
 ObjSeq(int size) {

seq = new Object[size];
}
void apply(VoidObjectFun fun) {

for (int i = 0; i < seq.length; i++) {
fun.eval(seq[i]); /*10*/

} } }
class high {

String str = “High: “;
public void test(String args[]) {

Env0 env = new Env0(); /*2*/
env.s = “Seq: “; /*3*/
ObjSeq os = new ObjSeq(5);
os.apply(

new VoidObjectFun0(this, env) /*9*/
);

} }
source translation
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type SimpleFun = (int) -> void; // Unnamed function type declaration
class P { // Class definition

private int x;
static int y;
public SimpleFun adder(int z) {

return SimpleFun(int w){ return x + y + z + w; }; //Unnamed function creation
}

 
In this example x is member of the enclosing object, y is a static member and z is a local
argument of the enclosing function. The function is closed over these free variables.
The implementation must therefore ensure that their lifetimes exceed that of the closure.
Invocation is as expected:

SimpleFun s = p.adder(4); // p is of class P
x = s(4)* 3; // the closure is invoked

Translation A closure type is translated to an abstract class with a single abstract func-
tion named eval which has the same signature as the closure type. Each closure of this
type is translated to a class which extends the abstract class. The body of the closure
translates into the body of eval. A definition of the closure is translated into an instanti-
ation, and an invocation of the closure is replaced by a call of eval.

Since closures can access variables of the enclosing scope, we must consider visibility
and lifetime of variables. Variables must be visible from the new class generated by the
translator and they must not be garbage collected before the end of the closure’s execu-
tion. For local variables of the enclosing function: There are two categories of vari-
ables: read-only and read-write variables. The former can be passed by value as addi-
tional arguments to the function. The latter have to be passed by reference. Passing by
reference requires encapsulation of the variable in an object. We create one object,
called an environment, for all variables that may be modified by the closure /*1*/. The
enclosing function must create the environment /*2*/ and initialize it with the values of
the local variables. Arguments of the enclosing function are treated as local variables.
The enclosing function is modified so that accesses to variables used by the closure
become accesses to the environment /*3*/. The closure class must include an instance
variable that will point to the environment /*4*/. Determining which variables will be
modified requires static analysis of the closure body. In general, it is not possible to be
exact. A safe approximation is to include all variables that appear in the closure’s body.
For instance variables of the enclosing object: The translator ensures that the closure
will have a reference to the enclosing object, this reference is stored in an instance vari-
able of the closure class /*5*/. The two reference fields are initialized by a constructor of
the closure class /*6*/. Fields of the enclosing object are accessed via outobj /*7*/ and
fields of the enclosing function via outenv /*8*/. There is a further visibility issue if
instance variables of the enclosing object have been declared as private. In this case the
translator changes the visibility of the corresponding instance variables from private to
the default. This means that other classes in the same package may see these variables.
The translator is responsible of checking that other classes do not try to access the
instance variables which have just been made visible. Safety may be compromised if
another file is compiled separately within the same package. The definition of the clo-

type VoidObjectFun = (Object o) -> void;
abstract class VoidObjectFun
 abstract void eval(Object o);
}

source translation
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of an assignment are tuples, the constructor call is eliminated and the assignment is split
up /*3*/. Indexed access is translated to a field access /*4*/.

Discussion Adding tuples to Java does not make the language significantly more com-
plex and does not require changes to the virtual machine. Their usefulness stems from
their syntactic convenience and from their amenability to compiler optimizations. The
fact that tuple types are not subtypes of Object guarantees that tuples can not be stored
in heterogeneous data structures. This together with copy semantics prevents tuples
from being aliased creating the opportunity for the compiler to avoid constructing tuples
altogether. For tuple valued functions, tuples can be passed on the stack. The usefulness
of tuples increases if they are coupled with pattern matching. A number of alternatives
for a syntax and semantics of pattern matching are being considered. 

Non-intrusive extensions are always limited by the language being extended. In the
case of tuples, we would have preferred to use the same syntax as array initializers for
tuple literals, i.e. curly braces, but this would complicate parsing. The second problem
is that subtyping between tuple types is not possible, at least not with our current trans-
lation scheme. We would like to be able to base subtyping of tuples on structural sub-
typing. For instance, a tuple type (the child) is a subtype of another tuple type (the par-
ent) if both have the same arity and if the type of each field of the child is a subtype of
the type of the corresponding field in the parent. Structural subtyping conflicts with Ja-
va’s otherwise explicit name based subtyping.

4 The Second New Construct: Closures
Closures are functions defined inside the scope of an object or method and closed over
their free lexical variables. A closure is a value which can be stored, copied, given as
an argument and invoked to yield a result. Closures allow a higher order programming
style in which the programmer writes functions to manipulate other functions. Func-
tional languages and languages such as Smalltalk-80 and Beta support closures. In fact,
higher order functions are already implicitly present in objects. Having explicit closures
simplifies the coding of many common tasks; two examples of which are callbacks in
graphical user interfaces and manipulation of the elements of container data structures.
The following expression elaborates into a closure:

SimpleFun(int y){ return x + y + z + w; }

SimpleFun is a closure type followed by an argument list and the suspended function
body. The body of the closure refers to three free variables, x, y and z, which can either
be local variables of an enclosing function or method, members of the enclosing object
referred to by this, or static members of the enclosing object’s class.

source translation

class tuple {
public static void main(String args[]) {

NameKey nk, nk1; String name; int key;
nk = [“andi”, 1]; /*1*/
[name, key] = nk; /*2*/
[name, key] = [“andi”, 1]; /*3*/
name = nk[0]; /*4*/
nk[1] = 1; /*4*/
nk1 = nk;

}
}

class tuple {
 public static void main(String args[]) {

NameKey nk, nk1; String name; int key;
nk = new NameKey(“andi”, 1);  /*1*/
name = nk.tuple0; key = nk.tuple1; /*2*/
name = “andi”; key = 1; /*3*/
name = nk.tuple0; /*4*/
nk.tuple1 = 1; /*4*/
nk1 = new NameKey(nk.tuple0, nk.tuple1);

}
} 
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the object view, tuples are objects with unnamed fields and no user defined code. Con-
sider a function that negates two values and returns the pair as a tuple:

type Pair = [Integer, Boolean]; // Tuple type definition
Pair negate(Integer i, Boolean b) { // Function definition

return [-i, not b];
}

[val, truth] = negate(42,true) // Function invocation

Using arrays, the same function must return an array of objects. Array accesses will
require bound checking as well as dynamic typechecking. The result is less efficient
and, in our opinion, harder to understand.

Object[] negate(Integer i; Boolean b) {
Object[] o = {-i,not b};
return o;

}

Object[] temp = negate(42, true);
val = (Integer)temp[0];
truth = (Boolean)temp[1];

The other alternative is to define a new object class. This version must bear the addi-
tional cost of allocating the return object on the heap. If the compiler is not able to inline
the constructor call, an extra function call must be issued. The solution is definitely
more verbose.

class Pair {
public Integer first;
public Boolean second;
Pair (Integer i, Boolean b) {

first = i; second = b;
}

}
Pair negate(Integer i; Boolean b) {

return new Pair(-i,not b);
}

Pair temp = negate(42,true);
val = temp.first;
truth = temp.second;

Translation In Java, types are introduced by class definitions. Therefore tuple type dec-
larations must be translated into class definitions. Tuples map to classes with translator-
generated field names. In addition, a constructor must be added to complete the class
definition. 

A tuple can be used as an expression (literal) and on the left hand side of an assignment
(lvalue). Tuple literals are translated to constructor calls /*1*/. For lvalues, fields are
extracted from the rvalue and assigned to the lvalue from left to right /*2*/. If both sides

source translation

type NameKey = [String, int];

final class NameKey { 
String tuple0; int tuple1;
NameKey(String t0, int t1) {

tuple0 = t0;
tuple1 = t1;

}
}
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out the libraries. Both are missing in Java. Statically typed languages, on the other hand,
have difficulties typing container classes. C++ solves the problem by introducing pa-
rameterized types. Java does not have them, and forces programmers to rely on run-time
typechecking or to write similar code many times. Java lacks an explicit type declara-
tion statement, the designers must have felt that it was redundant, they chose to include
interfaces instead. But interfaces are restricted as they can not contain data attributes.
The reason for this choice is pragmatic, adding data attributes would complicate the lan-
guage implementor’s life by recreating the problems that stem from multiple inherit-
ance. These omissions and restrictions motivate this paper.

3 The First New Construct: Tuples
Tuples are typed sequences of values that can be viewed either as special kinds of arrays
or as simplified objects. They have been given a lightweight syntax that makes them
useful to represent typed heterogeneous containers and to implement multiple return
values for functions. A tuple type is a cartesian product of types, each type in the pro-
duct corresponds to the type of one of the tuple elements. Thus, a tuple is both polymor-
phic, by inclusion on the element types, and heterogeneous because the types of ele-
ments can differ. The type [t0, ..., tn] denotes a n-tuple where ti is the type of the i-th ele-
ment. A tuple type declaration in the extended language has the form

type T = [t0, ..., tn];

which introduces a type T describing n-tuples of type [t0, ..., tn]. The expression [3, true]
creates a tuple literal with two fields containing the integer 3 and the boolean true
respectively. The types of tuple variables and tuple valued functions must be specified,
whereas the type of a literal is inferred from context. The following code fragment illus-
trates the use and syntax of tuple operations:

type Pair = [int, boolean]; // Tuple type declaration
Pair p, s; // Tuple variables
int i; boolean b;
p = [3, true]; // Creation of a tuple and assignment to a variable.
s = p; // Tuple value assignment
s[0] =1; // Element assignment
i = s[0]; // Element extraction
[i, b] = p; // Element extraction
[i, b] = id([i, b]); // Type of function id is Pair id(Pair)
[i, b] = id(p);
return [2, b]; // Returning a newly created tuple

Tuple values are always transmitted by copy, thus a function invocation such as id(s)
creates a copy of the tuple. The tuple variable assignment s = p performs an element-
wise copy. The equality test is implemented as an element-wise comparison. All tuple
variables are initialized to empty tuples, so the declaration Pair p; is equivalent to Pair p
= [null, null];. Different tuple types are not related by subtyping. Tuple types are to be
primitive types and are not subtypes of Object, they can not be stored in variables of
another type.

We mentioned that tuples can be viewed as either arrays or object. In the array view,
tuples are typed heterogeneous arrays of fixed sized for which the arity appears in the
type. Element extraction is syntactic sugar for array access. Tuples differ from plain ar-
rays because they allow individual elements to have different types yet remain type
safe. They tend to remain small as it is necessary to declare the type of each element. In
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This work is an offshoot of research on mobile computations carried out within the
Swiss FNRS ASAP project. We are implementing a new object-oriented language,
named SEAL, that allows running computations to move between different hosts on the
net. Java is the intermediate language of the SEAL compiler and the extensions we
present are features of SEAL. The translation schemes are close renditions of the trans-
lation schemes from SEAL to Java. There is a long tradition of using high level languag-
es as portable intermediate languages. The usual choice is C, but there are arguments in
favour of Java. A strongly typed language eases the task of developing a code generator
as the output of the compiler is easier to read and understand. Garbage collection and
support for object-oriented programming are already there, the SEAL compiler may use
them as such. Moreover, Java brings byte-code portability and standardized user inter-
face libraries. Java’s drawback is that if a straightforward mapping from SEAL con-
structs to Java constructs can not be found then the semantics must be emulated in soft-
ware, e.g. [7] emulates a Nesl VM on top of the Java VM, where each Nesl VM instruc-
tion corresponds to a function written in Java. Lower level constructs pose the most
problems. For instance, it would be difficult to translate a language with unrestricted
memory access and explicit memory management. Nevertheless, Java has already been
used as a target for languages such as Ada [17], Scheme [4], Basic [9], Nesl [7]. The
work on SEAL is ongoing.

2 Language Extensions
We describe four Java language extensions designed to support a simple translation
scheme to plain Java or to byte code. For each extension, we sketch semantics and
usage, describe the key points of the translation scheme and conclude with a discussion.
For clarity, the translation to plain Java is described below. During the translation pro-
cess new class names have to be generated; we simply chose to extend user defined
names by sequential integer values. If these conflict with existing names, the user can
specify a prefix to the translator-generated names [15].

We proceed with a brief description of Java [12]. A class is a template for creating
objects, or instances. It defines data attributes, instance variables, and operations, meth-
ods, of its instances. It is also a run-time repository for shared data and operations called
static variables and methods1. Each class implicitly defines a homonymous type. Class-
es may inherit from other classes, thus extending the set of data attributes and methods
of the objects they define. Java only allows single-inheritance, that is, a class may ex-
tend a single parent. Interfaces are named sets of method signatures which implicitly
define homonymous types. A class may implement a number of interfaces, i.e provide
implementations for all methods of these interfaces. Interfaces introduce multiple sub-
typing. Java has an exception mechanism. A statement which raises an exception causes
a non-local control flow branch to the first handler of this type of exception. Exceptions
follow the termination model. These features are not new, they can be traced to C for
the syntax, Smalltalk-76 for the object model, Modula-3 for the exceptions, C++ for
constructors and static typing. As always, it is interesting to study what was left out of
a design and ponder why. For instance, C got around its lack of high level abstraction
mechanism with a very liberal type system and the ability to call arbitrary code through
function pointers. In Smalltalk, unnamed procedures, called blocks, are used through-

1. The use of the keyword “static” is somewhat confusing. It refers to the fact that in-
stances of a class are created dynamically while the class itself is created and initialized
at load-time.
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Abstract. The design of Java sports a simple and elegant object model. Its
simplicity may well be the language’s main selling point—it is both easy to
learn and to implement—but in the long run the same simplicity may prove
to be a sign of a lack of expressive power that could hinder the development
of large software systems. We present four non-intrusive language exten-
sions, tuples, closures, anonymous objects and iterators, give examples of
use and detail a translation scheme into plain Java. These extensions enhance
the expressive power of Java and allow certain common programming idi-
oms to be coded more naturally.

1 Introduction
The role of high-level programming languages is to lay a veneer of abstraction over the
bare machine in order to provide software developers with the means of expressing
algorithms. The constructs of a language—loops, routines and such—abstract over fre-
quently repeated patterns of machine code, reflecting and fostering a certain coding
style. Java is a new object-oriented programming language remarkable for its concep-
tual simplicity: everything revolves around classes. The class is the only mechanism for
defining new abstractions available to the programmer. Thus every abstraction must be
expressed in terms of classes, even when other abstraction mechanisms would be better
suited. We feel that Java suffers from a heavy handed application of Occam’s razor to
the extent that some simple tasks and common programming idioms require cumber-
some and error prone coding. It is a view shared by other researchers, if the number of
proposals to patch up the language is any indication [3][13][14][15]. 

This paper presents and details four non-intrusive extensions of the Java language.
By non-intrusive we mean that they preserve the semantics of Java, i.e. the meaning of
existing code is not affected. For our implementation we had two choices: either gener-
ate byte codes, or perform a source-to-source translation. The Java VM is so tightly cou-
pled to the source language [13] that there is little real difference between the two. For
the sake of clarity we present our extensions as source program transformations. The
extensions, tuples, closures, anonymous objects and iterators, are well known program-
ming language features which we adapt here to fit Java. Our contribution is twofold.
First we show how Java can be extended, providing a discussion which can be useful to
implementors wishing to modify the language or use it as a portable intermediate lan-
guage. Second, our tuples and iterators differ from existing proposals and we present an
efficient translation scheme. Clearly, these extensions do not purport to solve all Java’s
problems, far from it. Important contributions have already addressed the issue of
bounded parametric polymorphism [3][13] and nested classes [15], and further research
is needed.


