
Graph Coloring vs. Optimal Register Allocation
for Optimizing Compilers�

Ulrich Hirnschrott, Andreas Krall, and Bernhard Scholz

Institut für Computersprachen, Technische Universität Wien
Argentinierstraße 8, A-1040 Wien, Austria

{uli,andi,scholz}@complang.tuwien.ac.at

Abstract. Optimizing compilers play an important role for the efficient
execution of programs written in high level programming languages. Cur-
rent microprocessors impose the problem that the gap between processor
cycle time and memory latency increases. In order to fully exploit the
potential of processors, nearly optimal register allocation is of paramount
importance. In the predominance of the x86 architecture and in the in-
creased usage of high-level programming languages for embedded systems
peculiarities and irregularities in their register sets have to be handled.
These irregularities makes the task of register allocation for optimizing
compilers more difficult than for regular architectures and register files.
In this article we show how optimistic graph coloring register allocation
can be extended to handle these irregularities. Additionally we present
an exponential algorithm which in most cases can compute an optimal
solution for register allocation and copy elimination. These algorithms
are evaluated on a virtual processor architecture modeling two and three
operand architectures with different register file sizes. The evaluation
demonstrates that the heuristic graph coloring register allocator comes
close to the optimal solution for large register files, but performs badly
on small register files. For small register files the optimal algorithm is
fast enough to replace a heuristic algorithm.

1 Introduction and Motivation

Nowadays high level programming languages dominate the software development
for all kinds of applications on a broad range of processor architectures. For the
efficient execution of programs optimizing compilers are required whereby one of
the most important components in the compiler is register allocation. Register
allocation maps the program variables to CPU registers. The objective of an
allocator is to assign all variables to CPU registers. However, often the number
of registers is not sufficient and some variables have to be stored in slow memory
(also known as spilling).

Traditionally, register allocation is solved by employing graph coloring that
is a well-known NP-complete problem. Heuristics are used to find good register
allocation in nearly linear time [4,3].
� This research is partially supported by the Christian Doppler Forschungsgesellschaft

as part of the Project “Compilation Techniques for Embedded Processors”

L. Böszörményi and P. Schojer (Eds.): JMLC 2003, LNCS 2789, pp. 202–213, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Graph Coloring vs. Optimal Register Allocation for Optimizing Compilers 203

For regular architectures with large register sets graph coloring register al-
location is well explored. In general the heuristic algorithms produce very good
results and register allocations come close to the optimal solution [6]. With small
and irregular register sets register allocation by graph coloring has to be adapted.

A prominent example of an irregular architecture with a small number of
registers is the x86 which has overlapping registers and special register usage
requirements. Another example is the Motorola 68k architecture which has sep-
arate register files for data and addresses. Both architectures have two-operand
instructions whereas more modern RISC architectures provide three-operands
in the instruction set. Intel’s IA-64 processors feature VLIW (Very-Large In-
struction Word), predicated execution, and rotating register files. Furthermore,
embedded processors and digital signal processors (DSP) have non-orthogonal
instruction sets and impose additional constraints for register allocation.

2 Processor Models

2.1 General Description

Our processor is a 5 way variable length VLIW load/store architecture. It sup-
ports some commonly met extensions for the DSP domain, like multiply accu-
mulate instructions, various addressing modes for loads and stores, fixed point
arithmetic, predicated execution, SIMD instructions, etc. The processor’s regis-
ter file consists of two distinct register banks, one bank for data registers, the
other one for address registers. Each data register is 40 bit wide, but can also be
used as a 32 bit register, or as two registers of 16 bit width (“shared registers”,
“overlapping registers”, “register pairs”). Address registers are 16 bit wide.

The register file layout described above causes several idiosyncrasies in the
instruction set. Not all of the instructions may use both registers types. E.g.,
a multiplication may not use address registers, or load and stores can get their
addresses only from address registers (hence the name). Only simple integer
arithmetic is possible with address registers. Some instructions require their
operands to be assigned to adjacent register pairs (SIMD).

2.2 Model Parameters

The first parameter is the number of registers per bank. We modeled 4, 8, and 16
registers per bank, respectively. This covers many of todays popular processors
in the embedded domain. See Fig. 1 for the register model.

The second parameter is the number of operands per instruction. The quasi–
standard mode is three operand mode, meaning that instructions can address up
to 3 different registers (two source registers and one destination register in case of
a binary operation). Two operand mode only allows to address two registers per
instruction. Binary operations therefore require one of the source operands being
the same as the destination operand. This can easily be achieved by inserting
additional register move instructions prior to binary operations.

204 U. Hirnschrott, A. Krall, and B. Scholz

An LnD2n+1 D2n Rm

...
A1 L1D3 D2 R1
A0 L0D1 D0 R0

Fig. 1. Register file for model 8R/xA

3 Extension to Graph Coloring

Chaitin [4] was the first who used a graph coloring approach for register al-
location. Many of the ideas and phases of graph coloring register allocation
introduced by him are used in current register allocators. It is assumed that an
unlimited number of symbolic registers is available to store local variables and
large constants. During register allocation these symbolic registers are mapped
to a finite number of machine registers. If there are not sufficient machine regis-
ters some of the symbolic registers are stored in the memory (spilled registers).
Liveness analysis determines the live ranges of symbolic registers. Symbolic reg-
isters which are live at the same time cannot be assigned to the same machine
register. These assignment constraints are stored in an interference graph. The
nodes of this graph represent the symbolic registers. An edge connects two nodes,
if these two symbolic registers are live at the same time. After liveness has been
computed live ranges are combined when they are connected by a copy instruc-
tion (coalescing). Graph coloring register allocation colors the interference graph
with machine registers spilling some symbolic registers to memory. The register
allocator has to respect constraints like certain register requirements or pairing
of registers.

3.1 Irregular Processors

Graph coloring register allocation becomes complicated when processors have
nonorthogonal register sets or restrictions. For example paired registers form
registers of twice the size. There are instructions which can only use a certain
register or a subset of registers. Two operand instructions require that the des-
tination register of an instruction is the same as one of the source registers.

Briggs [2] solved the problem of paired registers using a multigraph. A paired
register has two edges to another register and a single register has a single edge to
another single register. Such a scheme models paired registers without changing
the other parts of the algorithm or the heuristics. The colorability of a graph can
be determined by the degree of a node as before. Smith and Holloway suggested
using a weighted interference graph and we followed their approach [12].

When using a weighted interference graph the nodes are augmented with
a weight which corresponds to the occupied register resources. The edges rep-
resent the program constraints whereas the weights represent the architectural
constraints. In a weighted graph minor changes to the algorithm are necessary.
The colorability of a node cannot be determined by the degree anymore. Since

Graph Coloring vs. Optimal Register Allocation for Optimizing Compilers 205

we are using optimistic coloring where spill decisions are determined in the se-
lect phase exact computation of the colorability is not necessary. Because we
are already using inaccurate heuristics, we should use exact computations when
possible.

We are weighting short registers with the weight 1 and long registers or
accumulators with weight 2. The colorability equation has to take the weight of
the node and of its neighbors into account. Equation 1 gives the details of the
computation.

dn =
∑

j ε adj(n)

� wj

wn
� ∗ wn (1)

dn is the virtual degree of the weighted node n. If dn is smaller than N , it is
guaranteed that the node can be colored (N is the number of CPU registers
multiplied with the applied weight for n’s register type).

The assignment of certain kinds of values maybe restricted to a predefined
set of registers. This is achieved by precoloring these registers to the required
machine registers [5]. To ensure that coloring a graph with precolored registers is
possible we add move instructions between the symbolic register and the machine
register. If possible these move instructions are eliminated during coalescing. A
typical example are argument registers. At the entrance of a function the incom-
ing argument registers are copied to symbolic registers and before a function
invocation symbolic registers are copied to the outgoing arguments registers.
Similarly before the end of a function the symbolic register is copied to the re-
turn value register. Machine instructions like a multiply-accumulate with a fixed
accumulator register also get this operand precolored and move instructions are
added to ensure colorability.

Some values have to stay in a subset of the machine registers. Examples are
symbolic registers which are live across a function call or symbolic registers which
are operands of machine instructions which only accept a subset of the register
set. Additionally to the symbolic registers the interference graph contains all
machine registers. If only a subset of the registers is allowed, interference edges
are added to the complement set of the allowed machine registers. Symbolic
registers which are live across a function call are in conflict with all machine
registers except callee saved registers. As a further optimization these registers
are saved in caller saved registers instead of memory when caller saved registers
are available and the cost of spilling to memory is higher.

3.2 Coalescing

If source and destination of a move instruction do not interfere, the move can
be eliminated and its operands can be combined into one live range. The inter-
ferences of the new live range are the union of those of the live ranges being
combined. Coalescing of live ranges can prevent coalescing of other live ranges.
Therefore coalescing order is important. Move instructions with higher execution
frequencies should be eliminated first.

206 U. Hirnschrott, A. Krall, and B. Scholz

Aggressive coalescing combines any of non interfering copy related live ranges.
This reckless strategy may turn a k–colorable graph into a not k–colorable graph
and thus is unsafe. Briggs suggests in [1] only to combine live ranges that result
in a live range that has fewer than k neighbors of degree k or higher. George and
Appel suggest in [7] to combine a and b only if for every neighbor t of a, either
t already interferes with b or the degree of t is less than k. Additionally, they
propose interleaving coalescing and graph simplification. Both strategies are safe,
but the iterative approach of George and Appel achieves better coloring results.

If one of the copy related live ranges is precolored, non interference is not
a sufficient prerequisite to do the combination. Suppose a live range a that is
precolored to R and a copy related live range b. a and b can only be coalesced
if neither of b’s neighbors is precolored to R. Further constraints on coalescing
arise from the irregular architecture. It is only possible to combine live ranges
of equal types. Interbank moves (between data and address bank) cannot be
coalesced at all. Combining live ranges of shorts can be problematic, too. Any of
them can be part of a paired register. They can only be combined, if there are
no such constraints, or if they have equal constraints. If only one is constrained,
the constraint must be propagated to the resulting live range.

Two operand mode requires to copy one source operand of a binary operation
to the destination operand. In case of commutative operations, choosing a source
operand that does not interfere with the destination should be favored. The
inserted move will later be eliminated.

3.3 Complete Algorithm

The complete algorithm executes the single phases linearly and does an itera-
tion if spilling is necessary. The single phases are liveness analysis with interfer-
ence graph construction, coalescing, interference graph construction and color-
ing. When adding spill instructions care has to be taken to avoid endless looping
because of spilling live ranges which occur due to loading spilled registers.

4 Optimal Register Allocation

Optimal register allocation delivers the most accurate register allocation. By its
nature register allocation is a very hard problem to solve and an optimal solution
requires exponential run-time for its computation. Therefore, production com-
pilers sacrifice optimality in order to obtain a fast register allocation. Heuristics
are applied which give sub-optimal answers.

However, an optimal register allocation scheme is relevant for assessing
heuristics how good they work in practice. When traditional graph-coloring
heuristics [3], which have an excellent performance for RISC architectures with
a reasonable number of registers, are extended for architectural peculiarities,
the quality of the register allocation might suffer and the comparison with the
optimal solution is essential.

Instead of using an Integer Linear Programming(ILP) [8,9,6] approach for
obtaining an optimal solution, we employed a new algorithm [11] that is based

Graph Coloring vs. Optimal Register Allocation for Optimizing Compilers 207

on Partitioned Boolean Quadratic Programming(PBQP). The PBQP approach
is a unified approach for register allocation that can model a wide range of
peculiarities and supersedes traditional extended graph-coloring approaches [3,
12]. In addition coalescing is an integral part of the register assignment which is
necessary for achieving good allocations.

The PBQP approach uses cost functions for register assignment decisions.
The cost functions have to fulfill two tasks: (1) cost functions that express math-
ematically the model of cost of the architecture, and (2) cost functions that de-
scribe interference constraints, coalescing benefits, and constraints which stem
from the CPU architecture. Basically, we have two classes of cost functions. One
class of cost functions model the costs and constraints involved for one symbolic
register, and the second class of cost functions model the costs and constraints
of two dependent symbolic registers. For our processor we only need a sub set
of the cost functions that were introduced in [11] since its architecture is fairly
orthogonal.

In Table 1 the cost functions for our processor architecture are listed. Spilling
is modeled by a cost function for one symbolic register. The parameter c gives the
costs for spilling and parameter a determines the allocation of symbolic register
s. A symbolic register is either spilled (i.e. a is equal to sp) or a register is
assigned to it (i.e. a ∈ {R0, R1, . . . }). Depending on this decision different costs
are involved. The architecture features four register classes which can be modeled
by cs(a). Registers which are disabled for a symbolic register have ∞ costs and
therefore are excluded for register assignments. An interference of two symbolic
registers s1 and s2 is given by is1s2(a1, a2). Either both allocations have different
register assignments (a1 �= a2) or one of the registers is spilled (a1 = sp). Again,
infinite costs will be raised if for both symbolic register the same CPU register
is allocated. The shared register interference constraint is given in equation for
ds1 s2(a1, a2). This constraint is necessary since two short registers share the
same memory of one long register in the architecture. Coalescing costs of two
symbolic registers are given by p

(b)
s1 s2

(a1, a2). If both register assignments of
s1 and s2 are identical we obtain a coalescing benefit expressed as a negative
number −b.

The cost functions are used for constructing cost matrices and cost vectors
for the PBQP problem. The NP-hard PBQP problem is given as follows:

min f =




∑

1≤i<j≤n

xi · Cij · xj
T



 +




∑

1≤i≤n

ci · xi
T





subject to: ∀i ∈ 1 . . . n : xi · 1T = 1

The cost matrices Cij are determined by the cost functions Fsi,sj of symbolic
registers si and sj as follows:

∀ak, al ∈ A : Cij(k, l) =
∑

fsi sj
∈Fsi sj

fsi sj
(ak, al)

208 U. Hirnschrott, A. Krall, and B. Scholz

Table 1. Cost functions for our processor

Spilling:

s
(c)
s (a) =

{
c, if a = sp
0, otherwise

Class Constraint:

cs(a) =

{
0, if a ∈ class(s) ∪ {sp},

∞, otherwise

Interference:

is1s2(a1, a2) =

{
0, if a1 �= a2 ∨ a1 = sp
∞, otherwise

Shared Register(Interference)

ds1 s2(a1, a2) =

{
∞, if a1 ∈ shared(a2)
0, otherwise

Coalescing:

p
(b)
s1 s2

(a1, a2) =

{
−b, if a1 = a2 ∧ a1 �= sp
0, otherwise

The cost vectors ci are determined by the cost function fsi of symbolic register
si.

∀ak ∈ A : ci(k) =
∑

fsi
∈Fsi

fsi(ak)

The PBQP problem can be solved by dynamic programming as proposed
in [11]. In each step of the algorithm a vector xi is eliminated until the objective
function f becomes trivial, i.e. the first part of the sum

∑
1≤i<j≤n xi · Cij · xj

T

vanishes. Then, the solution of remaining vectors in the objective function is
determined. Reduced vectors can be computed by reconstructing the original
objective function. Unfortunately, not all reductions can be applied in polynomial
time. Therefore, a recursively enumeration is necessary for obtaining the optimal
solution. Basically, we have three reduction: reduction RI for nodes of only one
cost matrix, reduction RII for nodes of two cost matrices, and reduction RN for
nodes with arbitrary number of cost matrices. Reductions RI and RII can be
solved in polynomial time — reduction RN needs exponential time.

The RN reduction for the optimal solution is given in Fig. 2. The first loop
enumerates all possible solutions of vector x. For a given solution the costs
are determined. If it is smaller than the current minimum the solutions of the

Graph Coloring vs. Optimal Register Allocation for Optimizing Compilers 209

1: procedure ReduceN(x)
2: begin
3: min := ∞;
4: for i:=1 to |cx| do
5: h := cx(i);
6: for all y ∈ adj (x) do
7: cy := cy + Cxy(i, :);
9: end
10: remove x;
11: for all scc ∈ G do
12: solve scc;
13: h := h+cost(scc);
14: endfor
15: if h < min then
16: save solutions
17: endif
18: reconstruct node x
19: endfor
20: restore min. solution
21: end

Fig. 2. RN reduction

remaining vectors are saved. The reduction of the vector can split the PBQP
graph in several independent sub-graphs (scc). The performance of the algorithm
can be substantially improved by solving the independent sub-graphs on their
own. For reducing the number of RN nodes it is a good heuristic to select the
vector with the highest number of cost matrices.

5 Results

The intention of the experiments is to compare the implemented register allo-
cation methods on a broad range of architectural models on a wide variety of
programs. The complete evaluation is contained in a longer version of this ar-
ticle and available at www.complang.tuwien.ac.at/papers/HiKrSch2003.ps.
We measured the obtained results both in terms of spilling costs and coalescing
benefits, as well as solve times for coloring the interference graph.

Our experiments covered a total of 210 functions from typical DSP applica-
tions.

Since the optimal method has a worst case of O(kn) (with k . . . number of
registers , n . . . number of nodes), we implemented a timeout. Each function is
given 30 minutes to be solved. If no solution is found, the record is deleted from
all the result sets, and only the remaining subsets of the qualitative records
can be compared. Figure 3 shows the number of solved functions per model.
The minimum is at model 16R/2O, where 148 functions were solved (i.e. all

210 U. Hirnschrott, A. Krall, and B. Scholz

4 R/3 O 8 R/3 O 16 R/3 O 4 R/2 O 8 R/2 O 16 R/2 O
0

50

100

150

200

250

300

N
um

be
r

of
 f

un
ct

io
ns

solved
unsolved

Fig. 3. Functions with optimal solution

1 10 100
Number of nodes

0.01

0.1

1

so
lv

et
im

e
(i

n
s)

Fig. 4. Solve times for 4R/3O

qualitative data refer to this subset of functions). The solve times for model
4R/3O are presented in Fig. 4.

Key points of interest are spilling costs and coalescing benefits. We evaluated
spilling costs and also counted the number of spilled live ranges. Optimal register
allocation performs better in both terms. The gainings over graph coloring are
best when the number of registers is small. The optimal allocator also achieves
better coalescing benefits than graph coloring with aggressive coalescing. Be
aware that the baseline of the coalescing benefits is not zero. It is known that
aggressive coalescing may overly constrain live ranges, so that these cannot be
colored and thus do not contribute to the coalescing benefit. See Figs. 5 and 6
for an overview.

Graph Coloring vs. Optimal Register Allocation for Optimizing Compilers 211

4 R/3 O 8 R/3 O 16 R/3 O 4 R/2 O 8 R/2 O 16 R/2 O
0

50

100

150

200

250

300

N
um

be
r

of
 S

pi
lls

optimal
graph-coloring

Fig. 5. Number of spills

4 R/3 O 8 R/3 O 16 R/3 O 4 R/2 O 8 R/2 O 16 R/2 O
16000

17000

18000

19000

20000

21000

22000

23000

C
oa

le
sc

in
g

B
en

ef
it

optimal
graph-coloring

Fig. 6. Coalescing benefits

6 Related Work

Register allocation based on integer linear programming (ILP) was introduced by
Goodwin and Wilken [8,6]. The approach maps the register allocation problem
to an integer linear program which is solved by an NP-complete ILP-solver. The
work was extended by Kong and Wilken [9] for irregular architectures. As an
example they choose the IA-32 architecture and added additional features such
as address mode selection. The approach can handle irregularities very nicely.
However, the underlying algorithms have exponential solve time and the solvers
are not able to solve bigger functions in reasonable time – they simple cut-off
the solver.

212 U. Hirnschrott, A. Krall, and B. Scholz

Copy propagation is an important task for register allocators, which is
achieved by assigning source and destination of a copy instruction the same
registers. In the past several approaches as Chaitin’s aggressive coalescing [4],
Briggs’ conservative coalescing [3], George and Appel’s iterated coalescing[7],
and Park and Moon’s optimistic coalescing [10] were introduced. All have in
common that they coalesce nodes of the interference graph in a separate pass.
The node selection for coalescing and the strategy of uncolored and coalesced
nodes differs depending on the approach.

7 Conclusions

In this work, we presented an extensive experimental evaluation of two different
register allocation methods for irregular processor architectures. Our experi-
ments show, that the graph coloring based algorithm causes more spilling costs
than the algorithm with an optimal solution. Smaller register numbers result
in an increase of this penalty. Further, aggressive coalescing does not result in
higher coalescing benefits. It overly constrains some of the concerned live ranges
and therefore forces additional spills.

Comparison purely by solve times makes graph coloring the winner. Most of
the functions are colored in less time than we were able to measure, whereas
PBQP is not even able to solve all the functions within a timeout of 30 minutes.
This computation effort does not pay for architectures with a large register file,
where graph coloring achieves near optimal results.

For architectures with a small register file, computation of the optimal so-
lution runs acceptably fast, and the gainings over graph coloring are signifi-
cant. In this case, it is practicable and feasible to chose the optimal method for
most of the typical applications. A longer version of this article is available at
www.complang.tuwien.ac.at/papers/HiKrSch2003.ps.

Acknowledgement. We like to thank the reviewers for their helpful sugges-
tions.

References

1. K.D.C.P. Briggs, K. Kennedy, and L. Torczon. Coloring heuristics for register
allocation. SIGPLAN Notices, 24(7):275–284, July 1989.

2. P. Briggs, K. D. Cooper, and L. Torczon. Coloring register pairs. ACM Letters on
Programming Languages and Systems, (LOPLAS), 1(1):3–13, Mar. 1992.

3. P. Briggs, K.D. Cooper, and L. Torczon. Improvements to graph coloring reg-
ister allocation. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(3):428–455, May 1994.

4. G.J. Chaitin. Register allocation and spilling via graph coloring. ACM SIGPLAN
Notices, 17(6):98–105, June 1982.

5. F.C. Chow and J.L. Hennessy. The priority-based coloring approach to register
allocation. ACM Transactions on Programming Languages and Systems, 12(4):501–
536, Oct. 1990.

Graph Coloring vs. Optimal Register Allocation for Optimizing Compilers 213

6. C. Fu and K.D. Wilken. A faster optimal register allocator. In Proceedings of the
35st Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-
02), pages 245–256, Istanbul, Nov. 18–22 2002. IEEE Computer Society.

7. L. George and A.W. Appel. Iterated register coalescing. ACM Transactions on
Programming Languages and Systems, 18(3):300–324, May 1996.

8. D.W. Goodwin and K.D. Wilken. Optimal and near-optimal global register al-
location using 0-1 integer programming. Software & Practice and Experience,
26(8):929–965, Aug. 1996.

9. T. Kong and K.D. Wilken. Precise register allocation for irregular register archi-
tectures. In Proceedings of the 31st Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO-98), pages 297–307, Los Alamitos, Nov. 30–Dec. 2
1998. IEEE Computer Society.

10. J. Park and S.-M. Moon. Optimistic register coalescing. In Proceedings of the 1998
International Conference on Parallel Architectures and Compilation Techniques
(PACT ’98), pages 196–204, Paris, France, Oct. 12–18, 1998. IEEE Computer
Society Press.

11. B. Scholz and E. Eckstein. Register allocation for irregular register architectures.
In Proceedings of the International Conference of Languages, Compilers and Tools
for Embedded Systems (LCTES’02) and SCOPES’02, Berlin, June 2002. ACM.

12. M. D. Smith and G. Holloway. Graph-coloring register allocation for irregular
architectures. Technical report, Harvard University, 2000.

	Introduction and Motivation
	Processor Models
	General Description
	Model Parameters

	Extension to Graph Coloring
	Irregular Processors
	Coalescing
	Complete Algorithm

	Optimal Register Allocation
	Results
	Related Work
	Conclusions

