Monitors and Exceptions: How to implement Java efficiently

Andreas Krall and Mark Probst
Institut fiir Computersprachen
Technische Universitat Wien
Argentinierstrafle 8
A-1040 Wien
http://www.complang.tuwien.ac.at/andi/
http://www.unix.cslab.tuwien.ac.at/"schani/

Abstract

Efficient implementation of monitors and exceptions is
crucial for the performance of Java. One implemen-
tation of threads showed a factor of 30 difference in
run time on some benchmark programs. This arti-
cle describes an efficient implementation of monitors
for Java as used in the CACAO just-in-time compiler.
With this implementation the thread overhead is less
than 40% for typical application programs and can be
completely eliminated for some applications. This ar-
ticle also gives the implementation details of the new
exception handling scheme in CACAQO. The new ap-
proach reduces the size of the generated native code by
a half and allows null pointers to be checked by hard-
ware. By using these techniques, the CACAQO system
has become the fastest JavaVM implementation for the
Alpha processor.

1 Introduction

Java’s [AG96] main success as a programming language
results from its role as an Internet programming lan-
guage through the machine independent distribution of
programs with the Java virtual machine [LY96]. Addi-
tional reasons for its success are:

e easy to use object-oriented language

e security and safety (bound checks and exception
handling)

support for multithreading

integrated garbage collection

Some of these features of Java can decrease the
performance of Java applications drastically if imple-
mented in the wrong way. A bad decision in the object

layout can lead to an unnecessary indirection for a field
access. If run time bound checks are not removed they
can consume a large percentage of the run time. Ineffi-
cient implementation of synchronization can also lead
to a huge performance degradation. The next section
introduces basic implementation techniques for Java.
The remaining parts of this article give the details of
the thread and exception implementations.

1.1 JavaVM implementation basics

For portability reasons, the first JavaVM implementa-
tions were interpreter based and have therefore been
very slow. Faster implementations are possible using
just-in-time compilers which translate Java byte code
on demand into native code. We developed such a
JIT-based JavaVM system called CACAQ, which is de-
scribed in [KG97]. CACAQ is freely available via the
world wide web.

Conventional compilers are designed for producing
highly optimized code without paying much attention
to their compile time performance. The design goals
of Java just-in-time compilers are different: they must
produce fast code in the smallest possible compilation
time. CACAQ uses a very fast linear time algorithm for
translating JavaVM byte code to high quality machine
code for RISC processors. It has three passes: basic
block determination, stack analysis and register pre-
allocation, final register allocation and machine code
generation. The most important optimization is elimi-
nation of unnecessary copy operations and is done im-
plicitly during stack analysis. Stack analysis tracks the
definition and use of local variables, establishing corre-
spondances between stack locations and local variables.
Register allocation afterwards uses local variables in-
stead of stack locations.

The SUN JDK represents an object by a cell with two
pointers: the first points to the instance data of the ob-
ject, the second to the class descriptor [HGH96]. CA-

CAOQ’s representation eliminates one unnecessary indi-
rection [KG97]. The object itself contains the pointer
to the class descriptor and the instance data. In ad-
dition to other information, the class descriptor con-
tains the virtual function table and, at negative offsets,
pointers to the interface virtual function tables.

2 Threads

2.1 Introduction

Threads are an integral part of the Java programming
language. A Java Runtime Environment (JRE) has
to implement threads to be compliant. A thread im-
plementation includes the creation, execution, switch-
ing, killing and synchronization of threads. In Java
the latter is provided by monitors. Monitors ensure
that, for a given object, only one thread at a time
can execute certain methods, known as synchronized
methods, and blocks which are marked by the keyword
synchronized.

Monitors are usually implemented using mutex (mu-
tual exclusion). A mutex is a data structure which con-
tains the necessary information to guarantee that only
one unit of execution can perform a critical section at
the same time [Sta95].

As we show in section 2.4 a fast implementation of
the synchronization mechanism is crucial for the effi-
ciency of Java. One implementation produced more
than 800% overhead in one of our tests.

2.2 Related work

Java threads can be implemented using threads pro-
vided by the operating system kernel, as user-level li-
braries, or as a combination of the two. There exist
a number of articles describing different, thread imple-
mentation aspects but none captures the problem of
efficient monitor operations for objects.

Sun’s first implementation of the JavaVM on Solaris
was based on user-level threads. The current imple-
mentation uses a combination of kernel and user-level
threads. Some of the advantages of this approach are
outlined in [Jav97].

The freely available JavaVM implementation kaffe
by Tim Wilkinson uses user-level threads [Wil97]. Un-
til version 0.9, each object contained the complete mu-
tex data structure. This enabled a fast monitor imple-
mentation but used a lot more memory than necessary.

Apart from thread implementations used in
JavaVM’s there are many other thread standards and

implementations, the most notable being the IEEE
POSIX extension [POS96].

In [Mue93], Mueller describes a library implementa-
tion of POSIX threads on a standard UNIX system.
This library is a user-level implementation which need
no support from the operating system. A very pop-
ular library of user-level primitives for implementing
threads is QuickThreads by David Keppel, described
in [Kep93].

Bershad et al. present a fast mechanism for mutual
exclusion on uniprocessor systems [BRE92]. They have
a software solution for the implementation of an atomic
test-and-set operation which is faster than the corre-
sponding hardware instruction. However, their imple-
mentation relies on assistance from the operating sys-
tem.

2.3 Implementation basics

A complete thread implementation for Java has to pro-
vide:

e thread creation and destruction,

low level thread switching (usually implemented in
assembly language),

thread scheduling,

synchronization primitives,

a thread safe non-blocking input/output library.

Cacao’s current implementation of threads is based
mainly on the threading code of kaffe version 0.7,
which has been released under a BSD-style license
and can thus be used freely [Wil97]. As mentioned
above, kaffe’s threads are completely user-level, which
means, for example, that they cannot take advantage
of a multiprocessor system.

There are several reasons why we chose this ap-
proach:

e Thread support differs from operating system to
operating system. Not only do some operating sys-
tems provide different APTs to other systems, but
even if they do provide the same interface (most
often in the form of POSIX threads), the costs of
various operations are often very different across
platforms.

e It was a complete implementation, tailored for the
use in a JavaVM and thus made it possible for us
to get thread support up and running quickly.

mutex test tree test
run time in secs | call cost | run time in secs | call cost

Machine JavaVM no sync | sync in us | nosync | sync in us
DEC 21064A 289MHz | OSF JDK port (1.0.2) 1.20 4.14 9.8 8.37 34.69 9.8

DEC 21064A 289MHz | DEC JDK interpreter 1.71 12.80 36.97 12.25 143.10 39.93
DEC 21064A 289MHz | DEC JDK JIT 1.06 11.05 33.30 7.80 130.50 37.45
Pentium-S 166MHz Linux JDK 1.1.3 0.96 1.69 2.43 7.93 16.12 2.50
DEC 21064A 289MHz | Cacao 0.28 0.40 0.40 1.46 4.71 0.99

Table 1: Overhead for calling synchronized methods (one object)

e Parts of Cacao are not yet thread-safe (most no-
tably the compiler and the garbage collector), thus
making it difficult to use a kernel-supported solu-
tion.

Each thread in a Java program corresponds to an in-
stance of the java.lang.Thread class. In order for the
Java run time environment (JRE) to associate platform
specific information with such an instance, it has a pri-
vate member called PrivateInfo of type int, which
can be used by the JRE. Kaffe version 0.7 used this
member as a pointer to a context structure. Since
pointers are 64-bit values on the Alpha, we use an ar-
ray of context structures. PrivateInfo is then used as
an index into this array.

A fixed-size stack is allocated for each thread. The
stack size for ordinary threads can be specified as a
command-line parameter. Special threads (such as the
garbage collector) have their own stack sizes. In order
to catch stack overflows without the burden of checking
the stack top at each method entry, we simply guard
the stack top with one or more memory pages. The
memory protection bits of these pages are modified to
cause a memory protection violation when accessed.
The number of guard pages can be specified on the
command-line.

Thread switching is implemented straightforwardly,
namely by saving callee-save registers to the stack,
switching to the new stack, restoring callee-save reg-
isters and performing a subroutine return.

Scheduling is very simple in Cacao: higher prior-
ity threads always get precedence over lower priority
threads, and threads of the same priority are sched-
uled with a round-robin algorithm.

I/O in user-level threads is a problem since UNIX
I/0O calls are, by default, blocking. They would block
not, just the current thread but the whole process. This
is undesirable. It is thus common practice for thread
libraries to use non-blocking I/O and, in the case of an
operation which would block, suspend the correspond-
ing thread and perform a multiplexed I/O operation

(select(2) in UNIX) on all such blocked files regu-
larly, especially if there are no runnable threads avail-
able.

2.4 Motivation

To optimize an implementation it is necessary to find
the parts which are critical to performance. There-
fore, we analysed the cost of monitors with two small
test programs. The mutex test program simply invoked
a method 300000 times, once with the method being
declared synchronized and once without. The other
test, tree test, allocated a balanced binary tree with
65535 elements and recursively traversed it 50 times
using a method, again once being synchronized and
once being not.

Table 1 shows the differences in run-time for the two
versions of the programs for several JavaVM’s. The
table includes the run times for both versions of the
programs in seconds. The column ‘call cost’ gives the
overhead of a call of a synchronized method compared
to a call of a non-synchronized one. From these num-
bers it is obvious that calls to synchronized methods,
or monitors in general, are much slower than ordinary
method calls.

The question that arises is now whether this has any
influence on common Java programs. To answer this
question, we have used a modified version of kaffe to
gather statistics about monitor usage. The results are
summarized in table 2.

Javac is an invocation of Sun’s javac on the Toba
source files [PTBT97] and is thus single-threaded. Ex-
ecution of this program takes only a few seconds us-
ing Cacao with threads disabled. Biss is a more or
less typical working session with the Java development
environment of the Biss-AWT [Meh97]. It is slightly
multithreaded. Jigsaw invokes the HTTP server Jig-
saw [Jig97] of the World Wide Web Consortium and
lets it serve identical parallel requests from seven hosts,
amounting to about one megabyte split across 200 files

| Application | Objects allocated | Objects with mutex | Monitor operations | Parallel Mutexes |

javac 111504 13695 840292 5
Biss 84939 13357 1058901 12
Jigsaw 215411 23804 855691 25

Table 2: Mutual exclusion statistics

for each request.
threaded.

This application is highly multi-

The table contains the number of objects allocated
during execution and the number of objects for which
a monitor has been entered. The ‘Monitor operations’
column gives the total number of operations performed
on monitors, while the numbers in the ‘Parallel Mu-
texes’ column show the greatest number of mutexes
that were locked simultaneously.

These numbers demonstrate that the performance of
monitor operations is of paramount importance for a
fast JavaVM implementation. We did not include the
number of blocking monitor operations because there
were just two of them, namely in the Biss application.
It was only after we modified kaffe to switch to an-
other thread before each monitorenter operation that
the Biss and Jigsaw applications performed a few thou-
sand blocking monitorenters.

2.5 Mutex implementation

Our mutex data structure includes a pointer to the
thread that has currently locked the mutex (holder).
If the mutex is not locked at all, this is a null pointer.
Because one thread can lock the same mutex multiple
times, we need a count of how many lock operations
without corresponding unlocks have been performed on
the mutex (count). When it goes down to zero, the
mutex is not locked by any thread. Furthermore, we
need to keep track of the threads which have tried to
lock the mutex but were blocked and are now waiting
for it to become unlocked (waiters).

The data structure is defined as follows:

struct mutex {
int count;
thread xholder;
thread *waiters;

}

The locking of a mutex can now be specified as in
figure 1.

The macro disablePreemption() simply sets a
global flag indicating that a critical section is currently

void lockMutex (struct mutex *mux) {
disablePreemption();

if (mux->holder == NULL) {
mux->holder = currentThread;
mux->count = 1;

} else if (mux->holder == currentThread) {
mux->count++;

} else {
blockUntilMutexIsNotLocked (mux) ;
mux->holder = currentThread;
mux->count = 1;

}

enablePreemption() ;

Figure 1: Code for lockMutex ()

being executed and that preemption must not take
place. enablePreemption() unsets the flag and checks
whether a thread switch is necessary (see below). On
a multiprocessor system this would need to be imple-
mented using a test-and-set instruction, or some equiv-
alent.

The inverse operation, namely the unlocking of the
mutex, can be expressed as in figure 2.

The function resumeThread() sets a flag which re-
sults in a thread switch to the given thread after pre-
emption has been re-enabled.

These algorithms are simple, straightforward and
reasonably efficient.

2.6 Object-Mutex relation

Since the JavaVM specification states that each object
has a mutex associated with it, the obvious solution
seems to be to include the mutex structure in each
object. The mutex structure could be reduced to a
length of eight bytes if we used thread numbers in-
stead of pointers. But, using such a solution, the javac
application would allocate nearly one megabyte of mu-
tex data, just for a few seconds of execution. This is
unacceptable.

void unlockMutex (struct mutex *mux) {
disablePreemption();

—--mux->count;
if (mux->count == 0) {
mux->holder = NULL;
if (mux->waiters != NULL) {
thread *next = mux->waiters;
mux->waiters = next->next;
resumeThread (next) ;
}
}

enablePreemption();

Figure 2: Code for unlockMutex ()

On the other hand, the figures show that it is very
seldom that more than 20 mutexes are locked at the
same time. This suggests that using a hash table, in-
dexed by the address of the object for which a monitor
operation is to be performed could be very efficient.
This is exactly what Cacao does.

We use a hash function which uses the 2n least signif-
icant bits of the address where 2" is the size of the hash
table. This function can be implemented in four RISC
instructions. Since we ran into performance problems
with overflow handling by internal chaining, we now
use external chaining with a preallocated pool of over-
flow entries managed by a free list.

An entry in the hash table has the following struc-
ture:

struct entry {
object *obj;
struct mutex mux;
struct entry *next;

}

In order to minimize the overhead of the lock-
ing/unlocking operations, we should strive for code
sequences small enough to be inlined, yet powerful
enough to handle the common case. We have chosen to
handle the first entry in the collision chain slightly dif-
ferently from the rest by not destroying the associated
mutex when the count goes down to zero. Instead the
decision is deferred until when a mutex with the same
hash code gets locked and would thus use this location.
The major benefit of this approach is that the code to
lock the mutex need not (in the common case) check
for the location to be free, since each hash table loca-
tion will, during the course of execution, only be free
at the beginning of the program and will then never

1 void monitorenter (object *o)
2 {
3 entry *e;
4 disablePreemption();
5
6 e = firstChainEntry(o);
7 if (e->obj ==
8 &% e->mux.holder
9 == currentThread)
10 e->mux.count++;
11 else
12 lockMutexForQObject(e,0);
13
14 enablePreemption();
15 }
Figure 3: Code of monitorenter()
1 void monitorexit (object *o0)
2 {
3 entry x*e;
4 disablePreemption();
5
6 e = firstChainEntry(o);
7 if (e->obj == o)
8 e->mux.count—--;
9 else
10 unlockMutexForObject (e,0);
11

12 enablePreemption();
13 }

Figure 4: Code of monitorexit ()

be freed again. The unlocking code is simplified by the
fact that the code need not check whether the hash ta-
ble location should be freed. Based on the experience
that a recently locked mutex is likely to be locked again
in the near future, this technique also improves overall
performance.

See figures 3 and 4 for the code of the correspond-
ing JavaVM instructions. These functions handle
(as we show below) the most common case and
depend on the two functions for the general case
presented in figures 5 and 6 (we now assume that
enablePreemption() /disablePreemption() pairs
can be nested).

Even if they are not short enough to be inlined in ev-
ery synchronized method, these functions are certainly
small enough to make the effort of coding them as
specially tailored, assembly language functions worth-
while. This bypasses the standard subroutine linkage
conventions, gaining a little extra speed.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

void lockMutexForObject (entry *e,
object *0) {
disablePreemption();

if (e->obj != NULL)
if (e->mux.count == NULL)
claimEntry(e,o0);
else
while (e->obj != o) {
if (e->next == NULL) {
e = e->next = allocEntry(o);
break;
}
e = e->next;
}
else
e->obj = o;

lockMutex (&e->mux) ;

enablePreemption();

}

Figure 5: Code for lockMutexForQObject ()

void unlockMutexForObject (entry xe,
object *0) {
disablePreemption() ;

if (e->obj == o)
unlockMutex (&e->mux) ;

else {
/* Assuming entry is there */
while (e->next->obj != o)

e = e—->next;

unlockMutex (&e—>next->mux) ;

if (e->next->mux.count == 0)
e->next = freeEntry(e->next);

}

enablePreemption();

}

Figure 6: Code for unlockMutexForQObject ()

Program | Line 6 | Line 10 | Line 12 | Ratio 12/6 |
javac 420147 | 405978 14169 33712 %
Biss 384350 | 370171 14179 3.689 %
Jigsaw 426695 | 391680 35015 8.206 %

Table 3: Execution statistics for monitorenter ()

Program | Line 6 | Line 8 | Line 10 | Ratio 10/6 |
javac 420146 | 419815 331 0.078 %
Biss 384368 | 383281 1087 0.282 %
Jigsaw 428997 | 416890 12107 2.822 %

Table 4: Execution statistics for monitorexit ()

2.7 Results

To demonstrate that nearly all cases are indeed han-
dled by these small routines, we have written a
small application which simulates the locking and
unlocking operations of the three applications we
used above (tables 3 and 4). As can be seen,
only a small percentage of cases need to be handled
in the general routines lockMutexForObject() and
unlockMutexForObject ().

We have also considered the possibility of using a
cache of recently used mutexes to improve performance,
similar to a translation-lookaside buffer in micropro-
cessors which cache the mapping between virtual and
physical memory pages. To evaluate whether this
would be worthwhile, we have simulated caches with
one, two, four and eight elements using the three appli-
cations as test candidates. We have used least-recently-
used as the cache replacement strategy. Though this is
not easily implemented in software, it provides a good
estimate of the best hit rate that can be achieved with
an efficient implementation. Table 5 summarizes the
results.

Using an implementation supporting the monitor
routines, as discussed in section 2.6, and one imple-
mentation without thread support, we have run several
applications on a 300MHz DEC 21064A (see table 6).
For these single threaded applications, the overhead
introduced by monitor operations ranges from 0% to
37%, depending on the number of monitor operations
in the applications. Note, however, that this cannot
be compared to the overhead figures given in table 1,
since these applications do more than just entering and
exiting a monitor.

Using the implementation described, the mutex test
application for table 1 took 0.40 seconds with a syn-
chronized and 0.28 seconds with an ordinary method
to complete. In this program the time spent on lock-

miss rates by size of cache
Application | 1 Element | 2 Elements | 4 Elements | 8 Elements
javac 15.076 % 9.757 % 4.931 % 3.193 %
Biss 13.488 % 8.349 % 4.765 % 3.141 %
Jigsaw 43.694 % 37.700 % 22.680 % 5.182 %
Table 5: Results of cache simulation
Javalex | javac | espresso Toba java_cup
run time without threads 2.82 4.91 3.23 4.32 1.35
run time with threads 3.89 5.40 3.23 5.53 1.56
overhead (optimized impl.) 37 % 10 % 0% 28 % 15 %
number of lock/unlock pairs | 1818889 | 420146 2837 1558370 | 124956

Table 6: Overhead of monitor operations

ing/unlocking a mutex is 0.40 microseconds. The rea-
son for the higher cost of mutex operations in the tree
test is that this test violates the locality of monitor
operations. Overall, these numbers compare very fa-
vorably with the other implementations.

For most single-threaded applications, the monitor
overhead can be eliminated completely. If it is possible
to determine statically that the dynamic class-loader
and the java.lang.Thread class are not used, syn-
chronization code need not be generated.

3 Exception handling

3.1 Introduction

Exceptions in Java occur either implicitly or explicitly.
Typical implicit exceptions are references to the null
pointer, array index out of bounds and division by zero.
Exceptions also can be raised explicitly with the throw
instruction. To handle exceptions occurring during ex-
ecution, code which can raise an exception is included
in a try block. An efficient implementation of excep-
tion handling has to take care of managing try blocks
and to check for implicit exceptions efficiently .

3.2 Known implementation techniques

Three standard methods exist for implementing excep-
tion handling:

e dynamically create a linked list of try block data
structures,

e use static try block tables and search these tables
at run time (suggested for JavaVM interpreters),

e use functions with two return values.

The first method has been used in portable imple-
mentations of exception handling for C++ [CFLM92]
or Ada [GMB94] using setjmp and longjmp. A linked
exception handling data structure is created when en-
tering a try block and the structure is discarded when
leaving the protected block. Java requires precise ex-
ceptions. It means that all expressions evaluated before
the exception raising instruction must have finished
and all expressions after the raising instruction must
not have been started. Therefore, in practice, some
instructions may not be moved freely. In the case of
subroutine calls, the callee-saved registers must be re-
stored to their original value. The data structure can
be used to store such information. The disadvantage
of this method is that creating and discarding of the
data structure takes some time even if an exception is
never raised.

The second method has been suggested for an ef-
ficient exception handling implementation of C++
[KS90] and is used in Java implementations. For ev-
ery method, the JavaVM maintains an exception table.
This exception table contains the program counter of
the start and the end of the try block, the program
counter of the exception handler and the type of the
exception. A JavaVM interpreter can easily interpret
this structure and dispatch to the corresponding han-
dler code. If the byte code is translated to native code,
the equivalent technique is more complicated.

To simplify restoration of the registers, the old CA-
CAO implementation used a different scheme [KG97].
A method has two return values: the real return value
and an exception value stored in a register. After each
method call, the exception register is checked and, if
it is non-zero, the exception handling code is executed.
Since an exception is rarely raised, the branch is easy

to predict and cheap. Entering and leaving a try block
have no associated costs. At compile time, the dispatch
information contained in the exception table is trans-
lated into method dispatching native code.

Run time checks for null pointers and array bounds
are quite frequent, but can be eliminated in many cases.
It is often possible to move a loop invariant null pointer
check before the loop or to eliminate a bound check.
Some more sophisticated compilers use these code mo-
tion techniques.

3.3 Motivation for a change

The old CACAO implementation was simple, but it
only makes sense if the number of try blocks is high.
We made an empirical study to count the numbers of
static occurrences of method invocations and of try
blocks in some applications (see table 7). The number
of method invocations is two magnitudes bigger than
the number of try blocks. Furthermore, an exception
is rarely raised during program execution. This led us
to a new implementation of exception handling.

3.4 The new
scheme

exception handling

The new exception handling scheme is similar to that
in a JavaVM interpreter. If an exception occurs, infor-
mation in the exception table is interpreted. However
native code complicates the matter.

The pointers to Java byte code must be replaced
by pointers to native code. It requires that, during
native code generation, the order of basic blocks not
be allowed to change. If basic blocks are eliminated
because of dead code, the information about a block
can not be discarded if there is a pointer to it in the
exception table.

A CACADO stack frame only contains copies of saved
or spilled registers. There is no saved frame pointer.
The size of a stack frame is only contained in the
instructions which allocate and deallocate the stack.
Therefore, to support exception handling, additional
information has to be stored elsewhere.

The code for a method needs access to constants
(mostly address constants). Since a global constant ta-
ble would be too large for short address ranges and, be-
cause methods are compiled on demand, every method
has its own constant area which is allocated directly be-
fore the start of the method code (see fig. 7). A register
is reserved which contains the method pointer. Con-
stants are addressed relative to the method pointer.

code

method pointer
constants

Figure 7: CACAO method layout

During a method call, the method pointer of the call-
ing method is destroyed. However the return address is
stored in a register which is preserved during execution
of the called method and has to be used for returning
from the method. After a method return, the method
pointer of the calling method is recomputed using the
return address. The following code for a method call
demonstrates the method calling convention:

LDQ cp, (obj) ; load class pointer
LDQ mp,met(cp) ; load method pointer
JSR ra, (mp) ; call method

LDA mp=rat+offset ; recompute method pointer

At the beginning of the constant area, there are fields
which contain the necessary information for register
restoration:

framesize the size of the stack frame

isleaf a flag which is true if the method is a leaf
method
intsave number of saved integer registers

floatsave number of saved floating point registers
extable the exception table — similar to the
JavaVM table

The exception handler first checks if the current exe-
cuting method has an associated handler and may dis-
patch to this handler. If there is no handler, it unwinds
the stack and searches the parent methods for a han-
dler. The information in the constant area is used to
restore the registers and update the stack pointer. The
return address and the offset in the immediately follow-
ing LDA instruction is used to recompute the method
pointer.

The change to the new scheme allowed us to imple-
ment the null pointer check for free. We protect the
first 64 Kbyte of memory against read and write ac-
cess. If an bus error is raised, we catch the signal and
check if the faulting address is within the first 64K. If
this is the case, we dispatch to our exception handler,
otherwise we propagate the signal. This gives faster
programs and reduces the work of the compiler in gen-
erating pointer checking code. As shown in table 7, the
numbers of null pointer checks are quite high.

JavaLex | javac | espresso | Toba | java_cup
null pointer checks 6859 8197 11114 | 5825 7406
method calls 3226 7498 7515 4401 5310
try blocks 20 113 44 28 27

Table 7: Number of pointer checks, method invocations and try blocks

Javalex | javac | espresso | Toba | java_cup
CACAO old 61629 | 156907 | 122951 | 67602 | 87489
CACAOQO new | 37523 86346 69212 | 41315 52386

Table 8: Number of generated native instructions

3.5 Results

We measured the improvement of the new exception
handling scheme. We could not measure a noticeable
improvement in the run time (compilation time not
included). The improvement seemed to be around 3%
but the inaccuracy of the measurements were in the
same range. The cost of the exception register check
was too small. But the total execution time was smaller
because of faster compilation due to the reduction in
size of the generated code (see table 8). The code size
was nearly halved. One reason was that, for simplicity,
the old compiler did not share exception dispatch code
and this led to additional code growth.

4 Conclusions and further work

We have presented an efficient implementation of mon-
itors and exceptions for Java. The thread overhead
is less than 40% for typical application programs with
our implementation and can be removed completely for
some applications. A new exception handling imple-
mentation halved the size of the generated native code
compared to our previous implementation. The CA-
CAO system using these techniques is currently the
fastest JavaVM implementation for the Alpha proces-
sor. CACAO can be obtained via the world wide web at
http://wuw.complang.tuwien.ac.at/java/cacao/.

Acknowledgement

We express our thanks to David Gregg, Michael
Gschwind and Nigel Horspool for their comments on
earlier drafts of this paper. We would also like to thank
the reviewers for their helpful suggestions.

References

[AG6]

[BRE92]

[CFLM92]

[GMBY4]

[HGHOI6]

[JavaT7]

[Tig97]

[Kep93]

Ken Arnold and James Gosling. The Java
Programming Language. Addison-Wesley,
1996.

Brian N. Bershad, David D. Redell, and
John R. Ellis. Fast mutual exclusion
for uniprocessors. In Annual Symposium
on Architectural Support for Programming
Languages and Operating Systems, pages
223-233. ACM, October 1992.

Don Cameron, Paul Faust, Dmitry Lenkov,
and Michey Mehta. A portable imple-
mentation of C++ exception handling. In
C++ Technical Conference, pages 225-243.
USENIX, August 1992.

E. W. Giering, Frank Mueller, and T. P.
Baker. Features of the Gnu Ada runtime li-
brary. In TRI-Ada 94, pages 93-103. ACM,
1994.

Cheng-Hsueh A. Hsieh, John C. Gyllen-
haal, and Wen-mei W. Hwu. Java bytecode
to native code translation: The Caffeine
prototype and preliminary results. In 29th
Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO’29),
1996.

Java threads whitepaper.
sun.com/, 1997.

http://java.

Jigsaw.
1997.

http://www.w3.org/Jigsaw/,

David Keppel. Tools and techniques for
building fast portable threads packages.
Technical Report UWCSE 93-05-06, Uni-
versity of Washington, 1993.

[KG97]

[KS90]

[LY96]

[Meh97]

[Mue93]

[POS96]

[PTB*97]

[Sta95]

[Wil97]

Andreas Krall and Reinhard Grafl. CA-
CAO - a 64 bit JavaVM just-in-time com-
piler. Concurrency: Practice and Experi-
ence, 9(11):1017-1030, 1997.

Andrew Koenig and Bjarne Stroustrup. Ex-
ception handling for C++. Journal of
Object Oriented Programming, 3(2):16-33,
July/August 1990.

Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification. Addison-
Wesley, 1996.

Peter Mehlitz. Biss AWT. http://www.
biss-net.com/biss-awt.html, 1997.

Frank Mueller. A library implementation
of POSIX threads under UNIX. In Winter
USENIX, pages 29-41, San Diego, January
1993.

Standard for threads interface to POSIX.
IEEE, P1003.1c, 1996.

Todd A. Proebsting, Gregg Townsend,
Patrick Bridges, John H. Hartman, Tim
Newsham, and Scott A. Watterson. Toba:
Java for applications. Technical report,
University of Arizona, Tucson, AZ, 1997.

William Stallings. Operating Systems.
Prentice Hall, 1995.

Tim Wilkinson. KAFFE: A free vir-
tual machine to run Java code. http:
//www.kaffe.org, 1997.

10

