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Abstract 

Increasing system complexity of SOC applications 

leads to an increased need of powerful embedded DSP 

processors. To fulfill the required computational

bandwidth, state-of-the-art DSP processors allow 

executing several instructions in parallel and for 

reaching higher clock frequencies they increase the 

number of pipeline stages. However, deeply pipelined 

processors have drawbacks in the execution of branch 

instructions: branch delays. In average not more than 

two branch delay slots can be used, additional ones 

keep unused and decrease the overall system 

performance. Instead of compensating the drawback of 

branch delays (e.g. branch prediction circuits) it is 

possible to reduce the number of branch delays by 

reducing the number of branch instructions. 

Predicated execution (also guarded execution or 

conditional execution) can be used for implementing if-

then-else constructs without using branch instructions. 

The drawback of traditional predicated execution is 

decreased code density. This paper introduces 

selective predicated execution based on FSEL which 

allows reducing the number of branch instructions 

without decreasing code density. Selective predicated 

execution based on FSEL is part of a project for a 

configurable DSP core.  

1. Introduction 

Increasing system complexity of SOC applications 

leads to an increasing demand on computational power 

of embedded processors. Deep pipelined processors are 

used for reaching higher clock frequencies. But deep 

pipelined processors have obstacles when executing 

branch instructions: branch delays [1].

Branch delays are caused by taken branch 

instructions which cause a break in the linear program 

flow. Branch delays can lead to significant 

performance lack of the processor sub-system. To 

overcome this drawback branch prediction circuits 

have been introduced [2][3][4][5]. Especially in the 

area of DSP algorithms deterministic behavior is 

required, which contradicts prediction approaches. 

During system definition the worst case execution time 

has to be considered and the prediction assumed as not 

to be taken. Therefore prediction has no added value 

for system performance. Another approach for reducing 

the number of branch delays is reducing the number of 

branch instructions. Predicated execution can be 

efficiently used to remove conditional branch 

instructions caused by if-then-else constructs. 

Predicated or conditional execution has already been 

introduced in the 80’s. The main drawback of 

predicated execution is an increased program code 

space. This paper introduces selective predicated 

execution based on FSEL enabling a reduced number 

of branch instructions without the drawback of 

increased code space. Only code sections which can 

make use of the advantage of selective predicated 

execution need additional instruction space. The 

chosen orthogonal implementation of FSEL can be 

efficiently used by a C-Compiler. 

The first part of the paper is used for illustrating the 

motivation of using predicated execution. The second 

part introduces two implementation examples of 

predicated execution (Texas Instruments C’62xx, 

Starcore SC140). The third section is used for 

introducing selective predicated execution based on 

FSEL. The result section contains some benchmark 

results comparing algorithm implementations using 

selective predicated execution.

2. Motivation

This section describes the branch delay problem 

caused by branch instructions in deeply pipelined 

processors. The number of branch delays depends on 

the number of pipeline stages located between the 

instruction fetch stage and the branch condition 

evaluation. Two possible solution approaches are 
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shortly explained in this section: Branch prediction and 

predicated execution.  

Today’s VLIW (Very Long Instruction Word) DSP 

processors provide additional computational bandwidth 

by supporting the execution of several instructions in 

parallel and by increasing the possible clock frequency 

due to deep pipeline structures. Whether an application 

can make use of the provided parallelism is mainly 

influenced by data dependence between instructions 

and by the branch instruction frequency. Less branch 

instructions lead to longer basic code blocks and 

therefore to a higher possibility to schedule instructions 

in parallel (increased instruction level parallelism). In 

[6][7][8] the branch frequency of benchmark examples 

is analyzed. The ratio is different for scientific code 

and general-purpose programs (GP). In average general 

purpose programs have a branch ratio between 20-

30%, for scientific code it is still 5-10%. Even for 

scientific programs (which will be more significant for 

programs running on an embedded DSP core) each 10
th

to 20
th

 instruction is a branch instruction. The ratio 

between conditional and unconditional branches is 

about 75% conditional branch instructions. Assuming a 

processor providing several parallel units, the distance 

between branch instructions is getting quite low. 

Therefore branch delay slots will consume a significant 

number of cycles. 

One way to reduce the penalty of branch delays is 

the usage of branch prediction. Grohoski [9] divides 

conditional branch instructions into loop closing 

branch instructions (e.g. caused by while loops) and 

other conditional branches. Loop closing conditional 

branches will be taken for n-1 times. Assuming that the 

remaining conditional branches will be taken with 50% 

probability, this leads to a ratio of 5/6 to 1/6 between 

taken and not taken branch instructions. Other literature 

sources [6][10] estimate a ratio of ¾ to ¼, which still 

justifies the emphasis on the effective implementation 

of the taken branch instructions.  

There are several branch prediction implementations 

available, getting trickier as the number of pipeline 

stages is increasing [2][3][4][5]. However, this is not in 

the focus of this paper.  

Another possibility to overcome the problem of 

unusable branch delays is predicated or guarded 

execution. It can be used to eliminate conditional 

branch instructions e.g. generated by if-then-else 

constructs, which are common in control code. It 

consists of a condition part and an operation part:  

(condition) operation 

Already in the HP Precision Architecture (1985) 

conditional execution has been introduced. To quantify 

the advantage of this architectural feature 

Pnevmatikatos and Sohi [11] have analyzed benchmark 

programs (including Espresso, Gcc and Yacc). About 

20% of the instructions have been conditional and 5% 

unconditional branch instructions. 

In their study they distinguish between fully 

guarding which assumes that all instructions can be 

executed conditionally, and restricted guarding which 

enables only to execute arithmetic instructions under 

certain conditions. Detailed results can be found in 

[11]. For these benchmark examples about one-third of 

the conditional and unconditional branches can be 

replaced using full guarding. For restricted guarding 

the numbers are lower: about 15% of the conditional 

and 2% of the unconditional branch instructions can be 

replaced.

The drawback of guarded execution is the growth of 

the basic block size. In the above discussed benchmark 

examples the size of the basic blocks increases from 

4.8 to 7.3 instructions for full guarding. Using 

restricted guarding the enlargement is quite less. 

Today most of the VLIW architectures support a 

mechanism of guarded execution. This is mainly 

influenced due to the aspect that VLIW architectures 

support a high ILP (instruction-level parallelism), 

which requires effective branch handling to prevent 

severe performance limitation. 

3. Predicated Execution 

This section is used to illustrate implementation 

examples of predicated execution. The Texas 

Instruments C62x family and the Starcore SC140 have 

been chosen. Both VLIW DSP architectures provide 

the possibility to execute several instructions in 

parallel, and therefore predicated execution is 

mandatory to prevent a performance lack in code 

sequences with high branch frequency. 

3.1. TI C62x 

The C62x architecture of Texas Instruments supports 

each instruction to be executed conditionally (full 

guarding) [12]. To obtain full guarding, 3 bits of each 

instruction word are used to decode the register whose 

status is needed to generate the condition. The possible 

registers are B0, B1, B2, A1 and A2. Under certain 

conditions A0 can also be used. The remaining coding 

space (with 3 bits it is possible to encode 8 states) is 

used to encode unconditional execution and one code 

combination keeps reserved. 

Figure 1: TI C62x instruction example (addk) 
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The instruction example in Figure 1 shows the leading 

three bits labeled creg used to code one of the registers. 

The z bit following the creg is used to decode, whether 

the test takes place for equal to zero (z=1) or not equal 

to zero (z=0).

Each instruction consumes 4 bits to code the condition 

for the predicated execution, which has influence on 

the code density. The implementation to encode static 

registers is useful for the scheduler of the C-Compiler 

which has a certain freedom of reordering instructions, 

which is especially necessary for a VLIW architecture 

supporting the execution of several instructions in 

parallel. The limitation on a few registers of the 

register-file supporting predicated execution leads to a 

restricted use of these registers. 

3.2. Starcore SC140 

The architecture of the SC140 supports full guarding 

[13]. Instead of spending the code to each instruction 

the prefix (already used to build up the execution 

bundle) is used to code the condition. Execution bundle 

are those instructions executed during the same clock 

cycle. There are two subsets per execution bundle 

possible (even and odd). In the assembly syntax, three 

instructions are available. IFF is used for instructions 

of the current set which will be executed, if the flag T 

is equal to zero. If T is one, the instructions are handled 

as NOP. The IFT instruction is used for the inverse 

function. If T is equal to one, the instructions will be 

executed, if T is equal to zero the instructions will be 

treated as NOP instructions. The IFA is used for 

instructions of the same execution bundle, which are 

executed unconditionally. 

The predicated execution implementation of the 

Starcore SC140 consumes less code space for 

implementing predicated execution, but the limitation 

on the status of T leads to a significant limitation for 

efficient instruction scheduling. 

4. Selective Predicated Execution 

Selective predicated execution based on FSEL is 

implemented as separate instruction, which enables to 

execute the instructions of the same execution bundle 

conditionally (as illustrated in Figure 2). Therefore the 

disadvantage of additional coding space (as pointed out 

in section 2) is restricted to sections, where predicated 

execution provides added value.  

4.1. Architecture 

Referring to section 2, the proposed concept is 

supporting partial guarding, which means that not all of 

the instructions can be executed conditionally. 

Different to the definition of partial guarding by 

Pnevmatikatos and Sohi [11], all instructions with 

exception of the program flow instructions can be 

conditionally executed. The FSEL instruction is part of 

the program flow execution slot and therefore no 

program flow instruction can be part of the execution 

bundle. To enable conditional branch instructions the 

condition is coded in the instruction word itself. 

Figure 2: Influence of FSEL on instruction slots  

In Figure 2 the influence of the FSEL instruction is 

illustrated. The FSEL instruction contains the 

execution condition for the instructions of the same 

execution bundle. However, not all of the instructions 

of the execution bundle have to be executed 

conditionally. Therefore the FSEL instruction supports 

coding space to enable unconditional execution of 

instructions in parallel (don’t care section).    

4.2. Code example 

The code example in Figure 3 illustrates the feature of 

the FSEL instruction. An if-then-else construct is well 

suited for this purpose. If the condition is true, the first 

instruction shall be executed, if not then the second 

one. On the right side in Figure 3 the related assembly 

code for the chosen DSP concept can be seen. 

Assuming a five stage pipeline, two branch delays will 

decrease the system performance. In the example of 

Figure 3 the worst case scenario has been pointed out: 

none of the available branch delays caused by branch 

instructions can be filled with useful instructions (NOP 

instructions are inserted). Assuming the if-then-else 

construct in Figure 3 as part of a longer code section, 

some of the branch delays get filled with instructions 

executed anyway. In this example the available 

resources of the DSP core cannot be used. Therefore 

the short program sequence has to be executed 

sequentially. 

Figure 3: Code example 

Using FSEL the if-then-else construct can be coded 

within one assembly line and executed within one clock 
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cycle, as illustrated in Figure 4. The dc (don’t care) 

section is not used for this example but can be used for 

instructions executed unconditionally.  

Figure 4: Code example using FSEL 

Besides increasing code density (no NOP 

instructions are inserted), the number of execution 

cycles can be reduced. Both aspects have influence on 

the power dissipation of the DSP subsystem. Fetching 

fewer instructions reduces the switching activity at the 

program memory port. Less cycles for executing a 

program reduces the required clock frequency. 

5. Results

In Table 1 some benchmark examples are illustrated. 

The first column contains the name of the chosen 

algorithm. The remaining columns contain relative 

numbers in %. The benchmark results are generated 

once without using predicated execution and once 

making use of selective predicted execution.  

algorithm Nr.of 

bundle (%) 

Nr. of 

branch 

delay 

NOPS (%) 

Code size 

(%) 

Blowfish 98,4 80,8 99,2 

Dspstone 98,8 94,6 100,1 

Efr 91,0 76,6 98,3 

Huffmann 88,6 79,9 99,3 

Serpent 95,6 88,9 100,9 

Table 1: Benchmark results 

The results in the table indicate a reduction of 

execution bundles and a reduction of necessary branch 

delay NOPs by using selective predicated execution. 

The influence on code density is neglectable. Thus, the 

use of selective predicated execution based on FSEL 

allows increasing system performance by reducing the 

number of branch delays without decreasing code 

density. 
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7. Conclusion

Predicated execution can be used to reduce the number 

of branch delays by reducing the number of branch 

instructions. The number of execution cycles can be 

decreased (less branch delays) which reduces the 

required clock frequency for executing an algorithm. A 

reduced number of branch delay NOPs leads to 

reduced switching activity at the program memory port. 

Lower clock frequency and less switching activity at 

the program memory port decrease the power 

dissipation of the DSP subsystem.  

Traditional implementations of predicated execution 

feature poor code density. Selective predicated 

execution as introduced in this paper provides the 

advantages of predicated execution by reducing the 

number of unused branch delays, without decreasing 

code density. Selective predicated execution based on 

FSEL is part of a project for a configurable DSP core. 
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