
FSEL - Selective Predicated Execution for a Configurable DSP Core

C. Panis

Carinthian Tech

Institute

c.panis@cti.ac.at

U.Hirnschrott, A.Krall

Vienna University of

Technology

uli@complang.tuwien.ac.at

andi@complang.tuwien.ac.at

G.Laure, W.Lazian

Infineon Technologies

Austria

gunnar2@sbox.tu-graz.ac.at

lazian@sbox.tu-graz.ac.at

J. Nurmi

Tampere

University of

Technology

jari.nurmi@tut.fi

Abstract

Increasing system complexity of SOC applications

leads to an increased need of powerful embedded DSP

processors. To fulfill the required computational

bandwidth, state-of-the-art DSP processors allow

executing several instructions in parallel and for

reaching higher clock frequencies they increase the

number of pipeline stages. However, deeply pipelined

processors have drawbacks in the execution of branch

instructions: branch delays. In average not more than

two branch delay slots can be used, additional ones

keep unused and decrease the overall system

performance. Instead of compensating the drawback of

branch delays (e.g. branch prediction circuits) it is

possible to reduce the number of branch delays by

reducing the number of branch instructions.

Predicated execution (also guarded execution or

conditional execution) can be used for implementing if-

then-else constructs without using branch instructions.

The drawback of traditional predicated execution is

decreased code density. This paper introduces

selective predicated execution based on FSEL which

allows reducing the number of branch instructions

without decreasing code density. Selective predicated

execution based on FSEL is part of a project for a

configurable DSP core.

1. Introduction

Increasing system complexity of SOC applications

leads to an increasing demand on computational power

of embedded processors. Deep pipelined processors are

used for reaching higher clock frequencies. But deep

pipelined processors have obstacles when executing

branch instructions: branch delays [1].

Branch delays are caused by taken branch

instructions which cause a break in the linear program

flow. Branch delays can lead to significant

performance lack of the processor sub-system. To

overcome this drawback branch prediction circuits

have been introduced [2][3][4][5]. Especially in the

area of DSP algorithms deterministic behavior is

required, which contradicts prediction approaches.

During system definition the worst case execution time

has to be considered and the prediction assumed as not

to be taken. Therefore prediction has no added value

for system performance. Another approach for reducing

the number of branch delays is reducing the number of

branch instructions. Predicated execution can be

efficiently used to remove conditional branch

instructions caused by if-then-else constructs.

Predicated or conditional execution has already been

introduced in the 80’s. The main drawback of

predicated execution is an increased program code

space. This paper introduces selective predicated

execution based on FSEL enabling a reduced number

of branch instructions without the drawback of

increased code space. Only code sections which can

make use of the advantage of selective predicated

execution need additional instruction space. The

chosen orthogonal implementation of FSEL can be

efficiently used by a C-Compiler.

The first part of the paper is used for illustrating the

motivation of using predicated execution. The second

part introduces two implementation examples of

predicated execution (Texas Instruments C’62xx,

Starcore SC140). The third section is used for

introducing selective predicated execution based on

FSEL. The result section contains some benchmark

results comparing algorithm implementations using

selective predicated execution.

2. Motivation

This section describes the branch delay problem

caused by branch instructions in deeply pipelined

processors. The number of branch delays depends on

the number of pipeline stages located between the

instruction fetch stage and the branch condition

evaluation. Two possible solution approaches are

Proceedings of the IEEE Computer Society Annual Symposium on VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04)

0-7695-2097-9/04 $20.00 © 2004 IEEE

shortly explained in this section: Branch prediction and

predicated execution.

Today’s VLIW (Very Long Instruction Word) DSP

processors provide additional computational bandwidth

by supporting the execution of several instructions in

parallel and by increasing the possible clock frequency

due to deep pipeline structures. Whether an application

can make use of the provided parallelism is mainly

influenced by data dependence between instructions

and by the branch instruction frequency. Less branch

instructions lead to longer basic code blocks and

therefore to a higher possibility to schedule instructions

in parallel (increased instruction level parallelism). In

[6][7][8] the branch frequency of benchmark examples

is analyzed. The ratio is different for scientific code

and general-purpose programs (GP). In average general

purpose programs have a branch ratio between 20-

30%, for scientific code it is still 5-10%. Even for

scientific programs (which will be more significant for

programs running on an embedded DSP core) each 10
th

to 20
th

 instruction is a branch instruction. The ratio

between conditional and unconditional branches is

about 75% conditional branch instructions. Assuming a

processor providing several parallel units, the distance

between branch instructions is getting quite low.

Therefore branch delay slots will consume a significant

number of cycles.

One way to reduce the penalty of branch delays is

the usage of branch prediction. Grohoski [9] divides

conditional branch instructions into loop closing

branch instructions (e.g. caused by while loops) and

other conditional branches. Loop closing conditional

branches will be taken for n-1 times. Assuming that the

remaining conditional branches will be taken with 50%

probability, this leads to a ratio of 5/6 to 1/6 between

taken and not taken branch instructions. Other literature

sources [6][10] estimate a ratio of ¾ to ¼, which still

justifies the emphasis on the effective implementation

of the taken branch instructions.

There are several branch prediction implementations

available, getting trickier as the number of pipeline

stages is increasing [2][3][4][5]. However, this is not in

the focus of this paper.

Another possibility to overcome the problem of

unusable branch delays is predicated or guarded

execution. It can be used to eliminate conditional

branch instructions e.g. generated by if-then-else

constructs, which are common in control code. It

consists of a condition part and an operation part:

(condition) operation

Already in the HP Precision Architecture (1985)

conditional execution has been introduced. To quantify

the advantage of this architectural feature

Pnevmatikatos and Sohi [11] have analyzed benchmark

programs (including Espresso, Gcc and Yacc). About

20% of the instructions have been conditional and 5%

unconditional branch instructions.

In their study they distinguish between fully

guarding which assumes that all instructions can be

executed conditionally, and restricted guarding which

enables only to execute arithmetic instructions under

certain conditions. Detailed results can be found in

[11]. For these benchmark examples about one-third of

the conditional and unconditional branches can be

replaced using full guarding. For restricted guarding

the numbers are lower: about 15% of the conditional

and 2% of the unconditional branch instructions can be

replaced.

The drawback of guarded execution is the growth of

the basic block size. In the above discussed benchmark

examples the size of the basic blocks increases from

4.8 to 7.3 instructions for full guarding. Using

restricted guarding the enlargement is quite less.

Today most of the VLIW architectures support a

mechanism of guarded execution. This is mainly

influenced due to the aspect that VLIW architectures

support a high ILP (instruction-level parallelism),

which requires effective branch handling to prevent

severe performance limitation.

3. Predicated Execution

This section is used to illustrate implementation

examples of predicated execution. The Texas

Instruments C62x family and the Starcore SC140 have

been chosen. Both VLIW DSP architectures provide

the possibility to execute several instructions in

parallel, and therefore predicated execution is

mandatory to prevent a performance lack in code

sequences with high branch frequency.

3.1. TI C62x

The C62x architecture of Texas Instruments supports

each instruction to be executed conditionally (full

guarding) [12]. To obtain full guarding, 3 bits of each

instruction word are used to decode the register whose

status is needed to generate the condition. The possible

registers are B0, B1, B2, A1 and A2. Under certain

conditions A0 can also be used. The remaining coding

space (with 3 bits it is possible to encode 8 states) is

used to encode unconditional execution and one code

combination keeps reserved.

Figure 1: TI C62x instruction example (addk)

Proceedings of the IEEE Computer Society Annual Symposium on VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04)

0-7695-2097-9/04 $20.00 © 2004 IEEE

The instruction example in Figure 1 shows the leading

three bits labeled creg used to code one of the registers.

The z bit following the creg is used to decode, whether

the test takes place for equal to zero (z=1) or not equal

to zero (z=0).

Each instruction consumes 4 bits to code the condition

for the predicated execution, which has influence on

the code density. The implementation to encode static

registers is useful for the scheduler of the C-Compiler

which has a certain freedom of reordering instructions,

which is especially necessary for a VLIW architecture

supporting the execution of several instructions in

parallel. The limitation on a few registers of the

register-file supporting predicated execution leads to a

restricted use of these registers.

3.2. Starcore SC140

The architecture of the SC140 supports full guarding

[13]. Instead of spending the code to each instruction

the prefix (already used to build up the execution

bundle) is used to code the condition. Execution bundle

are those instructions executed during the same clock

cycle. There are two subsets per execution bundle

possible (even and odd). In the assembly syntax, three

instructions are available. IFF is used for instructions

of the current set which will be executed, if the flag T

is equal to zero. If T is one, the instructions are handled

as NOP. The IFT instruction is used for the inverse

function. If T is equal to one, the instructions will be

executed, if T is equal to zero the instructions will be

treated as NOP instructions. The IFA is used for

instructions of the same execution bundle, which are

executed unconditionally.

The predicated execution implementation of the

Starcore SC140 consumes less code space for

implementing predicated execution, but the limitation

on the status of T leads to a significant limitation for

efficient instruction scheduling.

4. Selective Predicated Execution

Selective predicated execution based on FSEL is

implemented as separate instruction, which enables to

execute the instructions of the same execution bundle

conditionally (as illustrated in Figure 2). Therefore the

disadvantage of additional coding space (as pointed out

in section 2) is restricted to sections, where predicated

execution provides added value.

4.1. Architecture

Referring to section 2, the proposed concept is

supporting partial guarding, which means that not all of

the instructions can be executed conditionally.

Different to the definition of partial guarding by

Pnevmatikatos and Sohi [11], all instructions with

exception of the program flow instructions can be

conditionally executed. The FSEL instruction is part of

the program flow execution slot and therefore no

program flow instruction can be part of the execution

bundle. To enable conditional branch instructions the

condition is coded in the instruction word itself.

Figure 2: Influence of FSEL on instruction slots

In Figure 2 the influence of the FSEL instruction is

illustrated. The FSEL instruction contains the

execution condition for the instructions of the same

execution bundle. However, not all of the instructions

of the execution bundle have to be executed

conditionally. Therefore the FSEL instruction supports

coding space to enable unconditional execution of

instructions in parallel (don’t care section).

4.2. Code example

The code example in Figure 3 illustrates the feature of

the FSEL instruction. An if-then-else construct is well

suited for this purpose. If the condition is true, the first

instruction shall be executed, if not then the second

one. On the right side in Figure 3 the related assembly

code for the chosen DSP concept can be seen.

Assuming a five stage pipeline, two branch delays will

decrease the system performance. In the example of

Figure 3 the worst case scenario has been pointed out:

none of the available branch delays caused by branch

instructions can be filled with useful instructions (NOP

instructions are inserted). Assuming the if-then-else

construct in Figure 3 as part of a longer code section,

some of the branch delays get filled with instructions

executed anyway. In this example the available

resources of the DSP core cannot be used. Therefore

the short program sequence has to be executed

sequentially.

Figure 3: Code example

Using FSEL the if-then-else construct can be coded

within one assembly line and executed within one clock

Proceedings of the IEEE Computer Society Annual Symposium on VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04)

0-7695-2097-9/04 $20.00 © 2004 IEEE

cycle, as illustrated in Figure 4. The dc (don’t care)

section is not used for this example but can be used for

instructions executed unconditionally.

Figure 4: Code example using FSEL

Besides increasing code density (no NOP

instructions are inserted), the number of execution

cycles can be reduced. Both aspects have influence on

the power dissipation of the DSP subsystem. Fetching

fewer instructions reduces the switching activity at the

program memory port. Less cycles for executing a

program reduces the required clock frequency.

5. Results

In Table 1 some benchmark examples are illustrated.

The first column contains the name of the chosen

algorithm. The remaining columns contain relative

numbers in %. The benchmark results are generated

once without using predicated execution and once

making use of selective predicted execution.

algorithm Nr.of

bundle (%)

Nr. of

branch

delay

NOPS (%)

Code size

(%)

Blowfish 98,4 80,8 99,2

Dspstone 98,8 94,6 100,1

Efr 91,0 76,6 98,3

Huffmann 88,6 79,9 99,3

Serpent 95,6 88,9 100,9

Table 1: Benchmark results

The results in the table indicate a reduction of

execution bundles and a reduction of necessary branch

delay NOPs by using selective predicated execution.

The influence on code density is neglectable. Thus, the

use of selective predicated execution based on FSEL

allows increasing system performance by reducing the

number of branch delays without decreasing code

density.

6. Acknowledgement

The work has been supported by European

Commission with the project SOC-Mobinet (IST-2000-

30094) and the CDG Gesellschaft.

7. Conclusion

Predicated execution can be used to reduce the number

of branch delays by reducing the number of branch

instructions. The number of execution cycles can be

decreased (less branch delays) which reduces the

required clock frequency for executing an algorithm. A

reduced number of branch delay NOPs leads to

reduced switching activity at the program memory port.

Lower clock frequency and less switching activity at

the program memory port decrease the power

dissipation of the DSP subsystem.

Traditional implementations of predicated execution

feature poor code density. Selective predicated

execution as introduced in this paper provides the

advantages of predicated execution by reducing the

number of unused branch delays, without decreasing

code density. Selective predicated execution based on

FSEL is part of a project for a configurable DSP core.

8. References

[1] P.Lapsley, J.Bier, A.Shoham and E.A.Lee, DSP
Processor Fundamentals, Architectures and Features,

IEEE Press, New York, 1997.

[2] Smith J.E., A study of branch prediction strategies, in

Proc. 8th ISCA, pp.135-48, 1981.

[3] Albert D. and Avnon D., “Architecture of the Pentium

Microprocessors”, IEEE Micro, June 1993.

[4] Heinrich J., MIPS1000 Microprocessor Users Manual

Alpha Draft 11.Oct, MIPS Technologies Inc., Mountain

View. Ca, 1994

[5] Motorola Inc., Power PC620 RISC Microprocessor

Technical Summary, MPC 620/D, Motorola Inc., 1994

[6] Lee J.K.F. and Smith A.J., “Branch prediction strategies

and branch target buffer design”, Computer 17(1), pp.6-

22, 1984.

[7] Stephens C.,Cogswell B. Heinlein J., Palmer G. and

Shen J.P., Instruction level profiling and evaluation of

the IBM RS/6000. In Proc. 18th ISCA, pp.137-46, 1991.

[8] Yeh T.-Y. and Patt Y.N., Alternative implementations of

two-level adaptive branch predictions. In Proc. 19th

ISCA, pp.124-34, 1992.

[9] Grohoski G.F., “Machine organization of the IBM RISC

System/6000 processor”, IBM J.Res. Develop., 34(1),

Jan., 37-58, 1990.

[10] Edenfield R.W., Gallup M.G., Ledbetter Jr., W.B.,

Mc.Garity R.C., Quintana E.E. and Reininger R.A., ”The

68040 processor”, IEEE Micro, pp. 66-78, Feb. 1990.

[11] Pnevmatikos D.N. and Soshi G.S., ”Guarded Execution

and branch prediction in dynamic ILP processors”, In

Proc. 21st ISCA, pp. 120-9, 1994.

[12] Texas Instruments, CPU and Instruction Set Reference

Guide, SPRU189B, Texas Instruments, July 1997.

[13] Motorola Inc. and Lucent Technologies Inc. SC140

DSP Core Reference Manual, MNSC140CORE/D,

Rev.0, 12.1999.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04)

0-7695-2097-9/04 $20.00 © 2004 IEEE

	footer1:

