
Modeling Application-Specific Processors for Embedded
Systems

Florian Brandner•, Viktor Pavlu�, and Andreas Krall�

•COMPSYS, LIP, ENS de Lyon
UMR 5668 CNRS – INRIA – UCB Lyon

florian.brandner@ens-lyon.fr

� Institute of Computer Languages
Vienna University of Technology

vpavlu,andi@complang.tuwien.ac.at

Abstract: Embedded systems often have to operate under rigid power and perfor-
mance constraints. Off-the-shelf processors often cannot meet those requirements,
instead Application-Specific Instruction Processors (ASIP) are used that are tuned for
the particular system at hand.

A popular and powerful way of modeling ASIPs is the use of a Processor Descrip-
tion Language (PDL). These languages capture the internal hardware organization as
well as the processor’s instruction set using a formal specification. Given a proces-
sor description, generator tools can (semi-)automatically derive software development
tools, instruction set simulators, and even hardware reference models.

An integral part of the software, running on the ASIP, is the interaction with de-
vices outside of the computing platform. However, these external devices are ne-
glected by many PDLs. This is, in part, due to their diverse nature and complex behav-
ior. Explicitly including such devices in processor models, is thus unlikely to give a
practical solution.

We propose a basic set of communication patterns for the xADL processor explo-
ration system that allow to interact with external devices, while otherwise treating them
as black boxes. The xADL system allows to model three kinds of communication: (1)
data exchange using dedicated instructions or memory mapped I/O, (2) asynchronous
delivery of data directly into processor registers or memory, and (3) asynchronous sig-
naling using interrupts. A major advantage of our approach is that all side-effects of
these interactions are visible to the xADL tool suite. For example, our compiler gener-
ator accounts for side-effects during code generation, while the generated simulators
reduce simulation time by refactoring the expensive emulation of interrupts.

1 Introduction

Modern embedded and cyber-physical systems have to perform complex and demanding
computations, while, at the same time, consuming a minimal amount of power, restricting
heat dissipation, and minimizing the physical dimension of the device. Traditional off-
the-shelf processors often cannot meet these strict requirements. A very powerful, but
inflexible, alternative is the use of specialized hardware components that are tuned for the
particular application. These devices often consume a minimal amount of power, while

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

meeting performance constraints. The downside of these hardwired devices is that changes
late during the design processes, or worse, after deployment, are exceedingly expensive
or even impossible. The use of Application-Specific Instruction Processors (ASIP) is an
attractive and increasingly popular alternative that combines the benefits of specialized
hardware with the programmability of general purpose processors.

A simple form of ASIP can be derived by adding specialized instructions to an existing
processor core [Gon00]. The specialized instructions are then used by the programmer to
improve the efficiency of crucial algorithms. More sophisticated systems discover a set
of beneficial instruction set extensions [PPIM03] via application profiling. These systems
can also be used to rediscover program fragments that match these instruction extensions
in a compiler [MWK+09]. Instruction set extensions are, however, limited by the interface
provided by the underlying core processor. In addition, it is rather complicated to provide
processor families optionally sharing certain extensions that are applicable to a wider field
of applications or system configurations.

Processor Description Languages (PDL) overcome these limitations by providing a for-
mal model of the processor’s hardware components and instruction set. These models can
be processed and extended by humans and tools alike and thus provide great flexibility
during the development of customized ASIPs. PDLs can usually be classified in either of
the following categories. Behavioral languages allow to model the instruction set of a pro-
cessor using an abstract specification of instruction semantics. Structural languages, on
the other hand, focus on the underlying hardware components and their interconnections.
While behavioral languages are best suited to high-level tasks, such as the automatic cus-
tomization of a compiler for a particular ASIP, structural languages provide the necessary
information for low-level tasks, such as the generation of a hardware reference design. A
third class of PDLs, so called mixed languages, thus combine a behavioral and a structural
view in order to cover high-level and low-level tasks equally well.

Most existing PDLs focus exclusively on the processor itself, neglecting external devices.
ASIPs intended for use in an embedded system naturally have to deal with external de-
vices, e.g., reading the measurements of a sensor. The inability of existing PDLs to inter-
face to these devices often represents an obstacle in the development and test phase of a
new ASIP design. Integrating full specifications of external devices into processor models
is unlikely to result in practical solutions, due to the diverse nature of these devices. Al-
ternative solutions that do not overload the PDL, but provide the necessary flexibility, are
thus needed.

Instead of including those device specifications in our processor modeling system, we pro-
vide flexible primitives in our structural xADL language that allow to interface with ex-
ternal devices. These primitives capture various communication patterns typically found
in embedded systems. We distinguish between three forms of communication: (1) explicit
data exchange using dedicated instructions or memory mapped I/O, (2) asynchronous com-
munication through direct access to the processor registers and/or memory from external
devices, and (3) the signaling of external events using interrupts. We demonstrate that
these primitives are flexible and expressive to model the communication with external de-
vices, which are otherwise treated as black boxes by our system. We also show that the
information encoded in our processor models can be effectively exploited in our generator

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

tools. Our simulator generator, for example, is able to refactor the expensive checks for
pending interrupts in order to improve the simulation performance using dynamic binary
translation [Bra09b]. Another example is the compiler generator [BEK07, Bra10], which
is capable of accounting for potential side-effects of interactions with external devices. An
overview of the xADL tool suite and a detailed evaluation is presented in [Bra09a].

The remainder of this paper is organized as follows. Related work on formal processor
modeling using processor description languages is given in Section 2. Section 3 intro-
duces the general principles of the structural xADL language that captures the hardware
organization of a processor and relies on instruction set extraction in order to derive an
abstract behavioral model. The following Section 4 presents three basic communication
patterns provided by the xADL language in order to interface with external devices. We
finally conclude in Section 5.

2 Related Work

One of the most influential processor description languages is nML [FPF95], where the
processor’s instruction set (ISA) is modeled by an attributed grammar. AND-rules in the
grammar combine attributes of other rules, while OR-rules allow to compactly enumerate
instruction variants. In its latest form, nML includes a basic skeleton defining the internal
organization of the processor. nML does not allow to model a wide range of communica-
tion and I/O patterns, due to its instruction-centric view.

The MIMOLA language [Mar79, Mar84] and its software system (MSS) is one of the few
well-known structural processor description languages. It originated from architecture
synthesis and micro-programming of the synthesized hardware blocks and is thus well
suited to model arbitrary hardware structures – including blocks to communicate and in-
terface with external devices. A complex extraction algorithm provides an instruction set
view of the processor and allows to derive an instruction selector for a compiler based
on tree pattern matching [LM97, LM98]. The capabilities of this approach are limited,
since the input to the extraction algorithms is a general synthesizable hardware specifica-
tion. Our language, in contrast, is designed to ease the specification of the processor’s ISA
based on a comprehensible extraction approach and suitable abstractions. Consequently,
the derived instruction model is more generic and provides additional information to the
generator tools. On the downside, our approach is less flexible in capturing arbitrary hard-
ware structures. We present, in this work, three generic communication patterns that allow
our processor models to interact with arbitrary additional hardware structures or external
devices, which are otherwise treated as black boxes by our system. This approach gives a
good compromise between flexibility and expressiveness, while, at the same time, allows
to off-load the specification of external entities outside of our PDL.

Most modern PDLs follow a mixed approach, unifying the benefits of both behavioral and
structural models. The EXPRESSION language [HGG+99] is a typical mixed processor
description language, where a processor model consists of several independent views that
separately capture the instruction set, the hardware structure, and the abstract instruction

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

semantics for retargetable compilation. A major problem of EXPRESSION is that the
various views are highly redundant and hard to extend. The software tools, furthermore,
cannot automatically verify consistency among the various views of the processor.

A very mature framework has been developed around the LISA language [PHvM99]. In-
structions are composed of so-called operations that provide information on the behavior,
the assembly syntax, and the binary encoding. The instruction behavior is described using
C, C++, or SystemC, which prohibits high-level applications such as compiler generation
but gives great flexibility to model the communication with external devices. Ceng pro-
posed an additional section to model the abstract behavior of instructions for the automatic
generation of a compiler [CHL+05].

A core ability of MADL [QM03, QRM04] is the possibility to formally define the pro-
cessor behavior via Operation State Machines (OSM). Interactions among these state ma-
chines are controlled by token managers that are not covered by the MADL language and
have to be supplied separately, e. g., using C++ code. The interface to the token managers
can be used to realize similar communication patterns as proposed here. However, the
behavior of the token managers is completely opaque to the MADL generator tools and
thus cannot be exploited. Our approach similarly off-loads the complexity of modeling the
external devices. Still, the relevant side-effects are visible to the xADL tools, which are
able to exploit this additional information, e.g., in order to speed-up simulation.

A recent book by Prabath Mishra and Nikil Dutt provides an excellent introduction to
processor description languages and their applications [MD08]. The book covers most of
the languages and systems presented here, and many more, in great detail.

3 Processor Modeling using xADL

The xADL language is a structural processor description language based on XML. Its main
building blocks are component types and interconnected instances thereof that model the
internal organization of the processor. Conceptually, though, the hardware structure is
only a means to express the processor’s instruction set, which is automatically extracted.

xADL processor models consist of four major parts: a configuration section, meta-informa-
tion on instructions and programming conventions, a set of component type declarations,
and finally, a specification of the processor’s data path using component instances. The
configuration section provides parameters, such as the bit-width of the data path, the num-
ber of functional units or the number of registers, while the meta-information covers the
syntax and binary encoding of instructions as well as programming conventions of the ap-
plication binary interface (ABI), e. g., the stack layout and register usage conventions on
function calls. We will not discuss those sections in more detail here. The type declara-
tions provide reusable and extensible definitions of the processor’s hardware components.
These components are first instantiated from types and then interconnected to compose
the data path of the processor. The processor’s instruction set is not explicitly specified.
We use a comprehensible and flexible extraction algorithm that enumerates all possible
instructions that can be implemented using the available hardware resources.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

3.1 Component Types

A fundamental concept of the xADL language are component types, which provide blue-
prints for register files, caches, memories, and functional units. Types specify the basic
properties of a given hardware component, such as the number of input and output ports
or the component’s data width. xADL supports inheritance and type arguments similar to
C++ templates to provide additional flexibility for the development of generic, reusable,
and extensible specifications.

Immediate Fields are bit-fields embedded in the current instruction word. While typi-
cally not represented by dedicated hardware structures, xADL models immediate fields as
separate components in a processor description that serve as a data source in the data path.

<ImmediateType name="ImmW_t" wid th ="16" />

Figure 1: An immediate type of a MIPS processor model.

Register Files are built out of a number of base-registers that all have the same bit-width.
The contents of the base-registers are accessible through input and output ports. For each
such port, the bit-width and an offset relative to the least significant bit of the base-register
can be specified to model sub-registers and register-pairs. The following example de-
picts a register file definition for a MIPS processor. The size and number of the base-
registers is given using two configuration parameters width p and count p. Three
separate ports are defined, Rs, Rt, and Rd, which all, by default, inherit the bit-width of
the base-registers. The base-register with index zero is immutable and always provides a
constant value of zero.

<RegisterType name="R_t" wid th ="width_p" r e p e a t c o u n t ="count_p" >
<Constant i n d e x ="0" v a l u e ="0" />
<Port name="Rs" w r i t e a b l e ="false" />
<Port name="Rt" w r i t e a b l e ="false" />
<Port name="Rd" r e a d a b l e ="false" />
</RegisterType>

Figure 2: Type of the general purpose register file of a MIPS core.

Storage Elements represent data caches and memories accessible to the processor. xADL
models memories and caches as black boxes regarding the underlying implementation
technology. Both have input and output ports similar to register files, but their internals
are not part of the processor description. Instead, annotations provide a timing model and
a partitioning of the memorys address space. Caches have additional connections to other
caches or memories in order to retrieve data on a cache-miss. Typical cache organizations
found in modern processors are captured in predefined cache templates that can also be
selected through annotations. An example of a memory type is shown in Section 4.1.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

Functional Units are the main building blocks of every xADL processor model. Units
represent the computational resources of a processor and thus carry most of the behavioral
information used for instruction extraction. The language distinguishes two kinds of func-
tional units: regular functional units that perform computations and containers. Containers
provide a means of structuring a processor model by encapsulating parts of the processor’s
data path to be reused and customized through type arguments and inheritance.

Regular functional units perform computations on behalf of a specific instruction. Their
capabilities are captured by a set of operations that the functional unit can perform in a
given cycle. The operations are in turn specified using a sequence of micro-operations that
represent indivisible calculation steps. The xADL language defines a rich set of predefined
micro-operations, including arithmetic and logic operations, comparisons, control opera-
tions, and utility functions. Figure 3 depicts the definition of a simplified arithmetic unit
from a MIPS processor model. The functional unit has several input and output ports that
can be used within the unit’s operations in order to read input values or supply values to
other functional units. Two operations are defined. A nor, which performs a simple or of
the value supplied by the two input ports Rs i and Rt i. The result of this computation
is negated by a not that writes the result to the output port Rd o. The ori operation
similarly performs a logical or.

The set of built-in micro-operations is sufficient for the description of most instructions
and processors. However, user-defined micro-operations are often useful, e. g., to model
the communication with external devices as will be discussed later.

<UnitType name="EX_t">
<Input name="Rs_i" wid th ="32" />
<Input name="Rt_i" wid th ="32" />
<Input name="ImmW_i" wid th ="16" />
<Output name="Rd_o" wid th ="32" d e f a u l t ="inactive" />

<Temporary name="tmp" wid th ="32" />

<Operation name="nor" >
<Body>

<or d="tmp" a="Rs_i" b="Rt_i" />
<not d="Rd_o" a="tmp" />

</Body>
</Operation>

<Operation name="ori" >
<Body>

<or d="Rd_o" a="Rs_i" b="immW_i" />
</Body>

</Operation>
</UnitType>

Figure 3: Simplified type of the arithmetic unit of a MIPS processor model.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

3.2 Datapath and Pipeline

A processor’s data path consists of component instantiations from the previously defined
types that are connected through their respective input and output ports using data links.
Data links correspond to wires between the ports of two components. Regular data links
simply connect two instances within a single pipeline stage, no buffering of the data is
performed. In order to model a pipelined processor, data links can be extended using the
stageboundary keyword which causes a logical register to be placed on the data link.
Both forms of data links are grouped into collections, so-called connects. Figure 4 depicts
the instantiations of an immediate ImmW, a register R and a functional unit EX from the
respective types. The functional unit is connected to the two other instances forming a
rather simple data path. Two connects specify data links to the input ports of the unit,
either from the register file to the pair Rs i and Rt i or from the register file and an
immediate to the pair Rs i and ImmW i. The output port Rd o is always connected to the
register file. As this example shows, connects provide a means of connecting components,
modeling pipeline stages, and, in addition, specifying groups of legal port assignments.

A complete processor specification also has to deal with potential hazards, i. e., conflicts
arising from accesses to common resources or data updates. Structural hazards are re-
solved automatically using a resource model that is derived from the component instances.
To resolve data hazards xADL offers another type of connections called hazard links.
Three different data hazard links are provided by the description language. Forward
links model the bypassing of register values from one pipeline stage to another in order to
hide execution latencies. Stall links do not carry data, but instead cause the instruction
that reads from or writes to the port at the head of the link to wait until the other instruction
has completed its operation. The third kind of hazard link, ignore links, does not imply
any action, but may be used for documentation and verification purposes.

<Immediate name="ImmW" t y p e ="ImmW_t" />
<Register name="R" t y p e ="R_t" />
<Unit name="EX" t y p e ="EX_t">
<Connect>
<Input i n p u t ="Rs_i" s e l e c t ="R.Rs" s t a g e b o u n d a r y ="true" />
<Input i n p u t ="Rt_i" s e l e c t ="R.Rt" s t a g e b o u n d a r y ="true" />
</Connect>
<Connect>
<Input i n p u t ="Rs_i" s e l e c t ="R.Rs" s t a g e b o u n d a r y ="true" />
<Input i n p u t ="ImmW" s e l e c t ="ImmW" s t a g e b o u n d a r y ="true" />
</Connect>
<Connect>
<Output i n p u t ="Rd_o" s e l e c t ="R.Rd" s t a g e b o u n d a r y ="true" />
</Connect>
<Hazard o u t p u t ="Rd_o" t y p e ="forward" s e l e c t ="EX.Rs_i EXE.Rt_i" />
</Unit>

Figure 4: Instantiation of components and their corresponding interconnections.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

Ignoring hazard links, the ports and connects of a processor specification induce an acyclic
hyper-graph [BM07] that is further complemented by additional hyper-edges connecting
the input and output ports of functional units and storage components. We refer to this
hyper-graph as the processor graph. It forms the basis of the instruction set extraction that
will be presented shortly. Figure 5 shows a graphical representation of a simple processor
graph with three functional units, a cache, an immediate, and two register files.

3.3 Signals and Aborts

In contrast to structural and data hazards, control hazards often originate from a small class
of instructions that need to directly control the data path and its operation – a typical ex-
ample of such instructions are branches and jumps. Signals provide a way to communicate
asynchronously between the currently active instructions in the pipeline. A signal corre-
sponds to a global single-bit control line in hardware that causes individual instructions in
the pipeline to abort.

3.4 Instruction Set Extraction

The instruction set is implicitly contained in the structural xADL processor description and
is automatically derived from the corresponding processor graph using an instruction set
extraction algorithm. The algorithm proceeds in two phases. The first phase enumerates
so-called instruction paths, which represent connected sub-graphs of the processor graph,
where every hyper-edge has at most a single predecessor. An instruction path represents
a possible path of execution through the processor’s data path for a given instruction. The
second phase enumerates all possible instructions that can be formed using the functional
units along the instruction paths. At this stage, an instruction is represented by its instruc-
tion path and a set of operations, one for each functional unit on the path. In order to derive
the final abstract instruction set model, we compute an ordering of the operations of an in-
struction and concatenate the respective micro-operations to form a linear sequence. The
micro-operations are furthermore annotated with information on signals and hazards that
could influence the execution of the respective instruction. The annotated linear sequence
of micro-operations represents the final behavioral view that is used throughout the xADL

R1

Imm

U1

U2

C

U3

R2

R1’

e1 e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

Figure 5: Example of a simple data path represented by a directed hypergraph.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

FE::pc i = move(pc::p fe) [st: 0, op: fe]

FE::pc o = add(FE::pc i, const 4) [st: 0, op: fe]

pc::p fe = move(FE::pc o) [st: 0, op: fe]

ICache::@read = move(FE::pc o) [st: 0]

ICache::read = read(ICache::@read) [st: 0]

DE::ImmW i = move(ImmW) [st: 1, op: de]

DE::Rs i = move(R::Rs[0,31]) [st: 1, op: de]

DE::IW i = move(ICache::read) [st: 1, op: de]

a
b
o
r
t
o
n
B
E
X

decode(IW i) [st: 1, op: de]

DE::Rs o = move(DE::Rs i) [st: 1, op: de]

DE::ImmWu o = zext(DE::ImmW i) [st: 1, op: de]

EX::ImmWu i = move(DE::ImmWu o) [st: 2, op: ori]

EX::Rs i = move(DE::Rs o) [st: 2, op: ori]

EX::Rd o = or(EX::Rs i, EX::ImmWu i) [st: 2, op: ori]

MEM::Rd i = move(EX::Rd o) [st: 3, op: fwd]

MEM::Rd o = move(MEM::Rd i) [st: 3, op: fwd]

WB::Rd i = move(MEM::Rd o) [st: 4, op: wb]

WB::Rd o = move(WB::Rd i) [st: 4, op: wb]

R::Rd[0,31] = move(WB::Rd o) [st: 4, op: wb]

Figure 6: Behavioral model of the ori instruction, including annotations for the resolution of control
hazards (via the BEX signal), register by-passes, hardware resources, and pipeline stages.

tool suite. Since every instruction is associated with an instruction path, we have a tight
coupling between the behavioral and structural processor view.

An interesting feature of the xADL language is that the structure of the processor graph is
allowed to be very generic. This can be used to define several parallel pipelines, modeling
VLIW processors or out-of-order execution. We only impose one restriction on the graph:
Instructions have to be fetched and decoded from one location, usually a memory or cache,
i. e., the head of all instruction paths, representing the instruction fetch hardware, has to be
identical.

Assuming each functional unit of the processor from Figure 5 is associated with exactly
one operation opi. The instruction set extraction first computes five paths: {e1, e2, e3, e6,
e8, e10, e11}, {e1, e2, e4, e7, e9, e10, e11}, {e1, e2, e3, e6, e8, e10, e12}, {e1, e2, e4, e7,
e9, e10, e12}, and {e1, e2, e5}. Each path results in an instruction, e. g., the instruc-
tion corresponding to the first path can be modeled as a pair ({e1, e2, e3, e6, e8, e10},
{op1, op2, op3}). Figure 6 shows the final behavioral model of the MIPS ori instruction.

4 Interfacing with the Physical World

As for most other PDLs, the primary goal of our xADL language is to provide abstractions
and primitives to describe a processor and its instruction set in a compact and concise way.
However, ASIPs are usually embedded into a larger system and thus have to interact with
the external world. We will present the basic primitives available in the xADL system that
allow the modeling of three different communication patterns. The first form of commu-

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

nication is the explicit sending and receiving of data using dedicated instructions or via
memory mapped I/O. Another approach allows to asynchronously read from or deliver
data to the internal processor state, e. g., to access internal communication registers within
the processor core. We use, so-called, parallel instructions to model this asynchronous
form of communication by injecting virtual instructions into the processor pipeline that
update or read the processor’s internal state. A specialized form of this asynchronous
communication is the signaling of external events that need immediate reaction using in-
terrupts. Interrupts are, however, different since the execution of the current program is
redirected to an interrupt handler. Parallel instructions in combination with signals allow
to elegantly and concisely express this behavior.

4.1 Data Exchange using Dedicated Instructions

Memory Mapped I/O A very natural means to model communication in an ASIP is
the use of dedicated instructions that initiate a data transfer. In the simplest form, we can
use the infrastructure of the memory subsystem for this purpose, which is usually referred
to as memory mapped I/O. The basic idea is to assign specific regions of the processor’s
address space to external devices. A read access to such a memory region triggers a bus
transaction that is automatically re-routed to the corresponding device. Write accesses are
treated in a similar fashion. The xADL language already allows to model the memory
infrastructure, including caches and memories, we thus only have to provide additional
annotations to designate the address ranges reserved for I/O. In addition, we have to spec-
ify how data caches treat data from memory mapped I/O – the usual approach is to bypass
the data cache for these accesses. These annotations can later be used by the generator
software, for example, in order to account for memory mapped I/O during simulation. The
compiler generator similarly has to treat memory accesses to those regions conservatively.
It is, for example, not safe to remove seemingly redundant memory accesses that perform
I/O. Note that details on how bus transfers are performed are not included in the xADL
model, we only capture the timing of transactions in order to avoid overloading the pro-
cessor specifications. Figure 7 shows an example cache type definition, annotated with
information on an AddressRange. The annotation defines an address space reserved
for a device class dev, as well as the minimal and maximal access delays that have to be
adhered when communicating with the device.

<MemoryType name="IOMemory_t" >
<Input name="write" d a t a w i d t h ="32" a l i g n m e n t ="32" />
<Output name="read" d a t a w i d t h ="32" a l i g n m e n t ="32" />

<AddressRange o f f s e t ="0x1000" l e n g t h ="16" c l a s s ="dev"
min�d e l a y ="100" max�d e l a y ="120" />

</MemoryType>

Figure 7: Excerpt of the data memory definition of a MIPS processor.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

I/O Operations Bus transactions are sometimes too time consuming for certain com-
munication tasks. It is thus desirable to provide dedicated I/O instructions that communi-
cate directly with the device at hand. This can be specified through user-defined micro-
operations in the xADL language. These micro-operations serve as black boxes within
the processor model that represent the communication with the device. Details how this
communication is carried out are, again, not included in the xADL language itself. The
micro-operations are thus conservatively treated as black boxes by most generator tools.
The compiler generator, for example, treats user-defined micro-operations conservatively
and merely provides so-called intrinsic functions that permit the use of the involved in-
structions from high-level languages, such as C or C++. For the simulator generator it is
of course not an option to treat those operations as black boxes. It thus requires semantic
models in the form of C or C++ code for user-defined micro-operations. It is important
to note that user-defined micro-operations are rather rare, therefore we believe that this
approach represents an acceptable trade-off between the flexibility and simplicity.

A user-defined micro-operation can be defined using the Function keyword and a set of
input and output arguments, as depicted by Figure 8. Once defined, a user-defined micro-
operation can be invoked, just like any other micro-operation, using the Call keyword
within the body of an operation in a unit type. The example defines a simple interface to
send data, represented by the input argument payload, to an external device, which sup-
plies an immediate response through the output argument acknowledge. It is important
to note that the definition of the micro-operation is polymorphic with regard to the input
and output arguments, i. e., the respective data representation depends on the context of
the calling operation. Additional timing annotations can be specified in order to capture
devices having longer communication delays.

<Function name="send_data">
<Input name="payload" />
<Output name="acknowledge" />

</Function>

Figure 8: Example of a user-defined micro-operation.

4.2 Asynchronous Data Exchange

Another communication pattern allows to model asynchronous delivery of data directly to
a register or memory of the processor core using parallel instructions. Parallel instruc-
tions are special “instructions” that are, in contrast to regular instructions, not fetched
from memory. They are implicitly executed on every cycle, independently from the pro-
gram running on the ASIP, by dedicated functional units. During their execution, parallel
instructions can read and write registers and even access memory and caches of the proces-
sor core.1 They thus lend themselves to specify asynchronous data delivery and/or provide
read accesses to the internal processor state.

1Immediate and variable register operands are not possible, since they cannot be fetched from memory.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

The major advantage of this approach is that all data exchanges are explicitly contained
in the processor specification, i. e., values do not appear out of nowhere but instead origi-
nate from a parallel instruction. This provides valuable information to the generator soft-
ware. The compiler generator, for instance, can account for side-effects that may arise
from asynchronous data exchange. Also, the simulator generator can exploit the addi-
tional information in order to reduce simulation overhead. The interface to the device
actually delivering the data is, as before, not explicitly specified in the xADL proces-
sor model itself – the previously presented user-defined micro-operations are, again, well
suited for this purpose.

Parallel instructions do not require any extension to the syntax of the xADL language, in
contrast to the communication patterns based on memory mapped I/O and dedicated I/O
instructions. However, parallel instructions do not satisfy the definition of an instruction
from Section 3.4. Instead of extending the xADL language, we thus extended the instruc-
tion set extraction algorithm such that parallel instructions are recognized and accepted.
Figure 9 shows an extended version of the processor graph from Section 3.2, defining a
simple parallel instruction using a new functional unit PU. The instruction reads from a
new register port of R1 and writes to the existing input port of the same register file.

R1

Imm

U1

U2

C

U3

R2

R1’

e1 e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

PU

p1

p1 p3

Figure 9: Example of the simple data path from Figure 5 extended by a parallel instruction.

4.3 Signaling Asynchronous Events

The final communication pattern does not directly deal with data exchange, but rather
provides a means to signal asynchronous events that need immediate attention, e. g., an
interrupt signaling that data is available to be read from a sensor. As previously, for the
modeling of asynchronous data exchange, interrupts are specified via parallel instructions.
In contrast to data exchanges, interrupts cause the currently running program to be inter-
rupted by redirecting the execution to an interrupt handler. This usually implies a disrup-
tion of the regular flow of instructions through the processor pipeline and the resetting of
the processor’s program counter. The former is represented by signals that are triggered
by the parallel instruction modeling an interrupt dispatch. The signal then causes the in-

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

structions within the pipeline to abort before their execution is completed. At the same
time, the program counter is stored, in order to resume the execution after the interrupt,
and subsequently overwritten by the address of the interrupt handler. An interrupt dispatch
is characterized by these very specific operations and can thus be easily detected by the
xADL tools. It is furthermore possible to verify that interrupts are correctly modeled in
the processor specification, e. g., by ensuring that no permanent side-effects are caused
when an interrupt is triggered. As before, the explicit representation of interrupts and
interrupt-like parallel instructions can be leveraged to improve the various generator tools.
In particular, simulation performance can be drastically improved.

4.4 Time Synchronization

An important aspect that has to be accounted for when interfacing with external devices is
timing. The xADL language specifies a static skeleton of the processor’s data path, where
timing is only expressed implicitly using pipeline stages and certain annotations describ-
ing the timing of memory and bus transactions. The interaction with external devices is
thus implicitly synchronized using a global time model based on cycle counters. This is
particularly important for the simulator generator that heavily utilizes global time tags to
track when data is available. During a simulation run all external devices have to follow
this timing scheme in order to guarantee correct synchronization between the simulation
of the respective devices and the processor core.

4.5 Preliminary Results

The communication patterns described in the previous sections allow a wide range of de-
vices to interface with an ASIP specified in the xADL language. We were able to leverage
existing primitives, such as user-defined micro-operations and parallel instructions in or-
der to implement those patterns, which are already supported by the existing tool suite.
Even though interrupts are described using existing primitives they need special care. The
problem stems from the redirection of the currently running program to the interrupt han-
dler. All xADL tools have to conservatively assume that the behavior of every instruction
could potentially be modified as a side-effect of an interrupt dispatch. This poses a se-
vere problem, in particular, for compiler generation, which heavily relies on predictable
semantics of the instruction set model.

Our simulation framework relies on dynamic binary translation and thus faces a similar
problem. Interrupts modify the behavior of every instruction and, in addition, can be
triggered at any moment in time. This reduces the gains of dynamic binary translation,
because code has to be generated that is able to simulate every possible outcome of the
simulation. This increases code size and compilation time considerably. Another nega-
tive side-effect is that code optimizations that often improve simulation time considerably
cannot be applied effectively, since intermediate states that usually could be eliminated

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

need to be retained for the, rare, event of an interrupt. We have extended our simula-
tion framework to account for the special semantics of interrupts using a generic rollback
mechanism [Bra09b]. Our system optimistically assumes that interrupts will not occur
when the simulation is performed using binary translated code. In the rare event of an
interrupt the simulation is aborted and reverted to a previously established safe point using
a rollback. Simulation then resumes using a slower interpreter that faithfully captures in-
terrupts. Similar optimization techniques are also applicable to the simulation of memory
mapped I/O, e. g., to reduce the simulation overhead for memory accesses where the exact
memory address is unknown. Our results indicate that compilation time is considerably
reduced by about 30% and that simulation speed is reduced by up to a factor of 3 for a set
of embedded benchmarks from the MiBench suite.

5 Conclusion

During the development of a new ASIP design for an embedded system, it is important
to account for external devices, such as sensors and actuators, that will interact with the
software running on the ASIP. Traditional PDLs neglect this problem to a large extent and
are thus not suited to model ASIPs in this context.

We have shown how existing primitives of our xADL language can be used to express
three communication patterns that are frequently found in embedded systems. While it
is not practical to specify the exact behavior of these external devices within a PDL, our
approach is able to capture the relevant side-effects of data exchange operations on the
processor state in a concise and compact manner. A major advantage of our approach is
that all generator tools, in particular the compiler and simulator generator, can leverage
this information in order to improve the generated tools.

References

[BEK07] Florian Brandner, Dietmar Ebner, and Andreas Krall. Compiler generation from struc-
tural architecture descriptions. In CASES ’07: Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, pages 13–22, 2007.

[BM07] John Adrian Bondy and U. S. R. Murty. Graduate texts in mathematics - Graph theory,
volume 244. Springer, 2007.

[Bra09a] Florian Brandner. Automatic Tool Generation from Structural Processor Descrip-
tions. In KPS ’09: Workshop on Programmiersprachen und Grundlagen der Pro-
grammierung, 2009.

[Bra09b] Florian Brandner. Precise simulation of interrupts using a rollback mechanism. In
SCOPES ’09: Workshop on Software and Compilers for Embedded Systems, pages
71–80, 2009.

[Bra10] Florian Brandner. Completeness of Automatically Generated Instruction Selectors. In
ASAP ’10: Conference on Application-specific Systems, Architectures and Processors,
pages 175–182. IEEE, 2010.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

[CHL+05] Jianjiang Ceng, Manuel Hohenauer, Rainer Leupers, Gerd Ascheid, Heinrich Meyr,
and Gunnar Braun. C Compiler Retargeting Based on Instruction Semantics Models.
In DATE ’05: Conference on Design, Automation and Test in Europe, pages 1150–
1155, 2005.

[FPF95] Andreas Fauth, Johan Van Praet, and Markus Freericks. Describing instruction set
processors using nML. In EDTC ’95: European Conference on Design and Test, pages
503–507, 1995.

[Gon00] Ricardo E. Gonzalez. Xtensa: A Configurable and Extensible Processor. IEEE Micro,
20(2):60–70, 2000.

[HGG+99] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt, and Alex Nico-
lau. EXPRESSION: A language for architecture exploration through compiler/simu-
lator retargetability. In DATE ’99: Conference on Design, Automation and Test in
Europe, pages 485–490, 1999.

[LM97] Rainer Leupers and Peter Marwedel. Retargetable Generation of Code Selectors from
HDL Processor Models. In EDTC ’97: European Conference on Design and Test,
pages 140–144, 1997.

[LM98] Rainer Leupers and Peter Marwedel. Retargetable Code Generation based on Struc-
tural Processor Descriptions. In Design Automation for Embedded Systems, pages
1–36. Kluwer Academic Publishers, 1998.

[Mar79] Peter Marwedel. The MIMOLA design system: Detailed description of the software
system. In DAC ’79: Design Automation Conference, pages 59–63. IEEE, 1979.

[Mar84] Peter Marwedel. The MIMOLA design system: Tools for the design of digital proces-
sors. In DAC ’84: Conference on Design automation, pages 587–593, 1984.

[MD08] Prabhat Mishra and Nikil Dutt. Processor Description Languages, volume 1. Morgan
Kaufmann, 2008.

[MWK+09] Kevin Martin, Christophe Wolinski, Krzysztof Kuchcinski, Antoine Floch, and Fran-
cois Charot. Constraint-Driven Instructions Selection and Application Scheduling in
the DURASE system. In Conference on Application-specific Systems, Architectures
and Processors, ASAP ’09, pages 145–152. IEEE, 2009.

[PHvM99] Stefan Pees, Andreas Hoffmann, Vojin Živojnović, and Heinrich Meyr. LISA – ma-
chine description language for cycle-accurate models of programmable DSP architec-
tures. In DAC ’99: Conference on Design Automation, pages 933–938, 1999.

[PPIM03] Armita Peymandoust, Laura Pozzi, Paolo Ienne, and Giovanni De Micheli. Automatic
Instruction Set Extension and Utilization for Embedded Processors. In Conference
on Application-specific Systems, Architectures and Processors, ASAP ’03, pages 108–
118. IEEE, 2003.

[QM03] Wei Qin and Sharad Malik. Flexible and Formal Modeling of Microprocessors with
Application to Retargetable Simulation. In DATE ’03: Conference on Design, Automa-
tion and Test in Europe, pages 556–561. IEEE, 2003.

[QRM04] Wei Qin, Subramanian Rajagopalan, and Sharad Malik. A Formal Concurrency Model
based Architecture Description Language for Synthesis of Software Development
Tools. In LCTES ’04: Conference on Languages, Compilers, and Tools for Embed-
ded Systems, pages 47–56. ACM, 2004.

,1)250$7,.��������,QIRUPDWLN�VFKDIIW�&RPPXQLWLHV�
����-DKUHVWDJXQJ�GHU�*HVHOOVFKDIW�I�U�,QIRUPDWLN�����������������%HUOLQ

ZZZ�LQIRUPDWLN�����GH�

HUVFKLHQHQ�LP�7DJXQJVEDQG�GHU�,1)250$7,.������
/HFWXUH�1RWHV�LQ�,QIRUPDWLFV��%DQG�3����
,6%1������������������

ZHLWHUH�$UWLNHO�RQOLQH��
KWWS���LQIRUPDWLN�����GH�����KWPO�

